1 /*
2  *  drivers/mtd/nand/au1550nd.c
3  *
4  *  Copyright (C) 2004 Embedded Edge, LLC
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/platform_device.h>
21 #include <asm/io.h>
22 #include <asm/mach-au1x00/au1000.h>
23 #include <asm/mach-au1x00/au1550nd.h>
24 
25 
26 struct au1550nd_ctx {
27 	struct mtd_info info;
28 	struct nand_chip chip;
29 
30 	int cs;
31 	void __iomem *base;
32 	void (*write_byte)(struct mtd_info *, u_char);
33 };
34 
35 /**
36  * au_read_byte -  read one byte from the chip
37  * @mtd:	MTD device structure
38  *
39  * read function for 8bit buswidth
40  */
au_read_byte(struct mtd_info * mtd)41 static u_char au_read_byte(struct mtd_info *mtd)
42 {
43 	struct nand_chip *this = mtd->priv;
44 	u_char ret = readb(this->IO_ADDR_R);
45 	au_sync();
46 	return ret;
47 }
48 
49 /**
50  * au_write_byte -  write one byte to the chip
51  * @mtd:	MTD device structure
52  * @byte:	pointer to data byte to write
53  *
54  * write function for 8it buswidth
55  */
au_write_byte(struct mtd_info * mtd,u_char byte)56 static void au_write_byte(struct mtd_info *mtd, u_char byte)
57 {
58 	struct nand_chip *this = mtd->priv;
59 	writeb(byte, this->IO_ADDR_W);
60 	au_sync();
61 }
62 
63 /**
64  * au_read_byte16 -  read one byte endianness aware from the chip
65  * @mtd:	MTD device structure
66  *
67  * read function for 16bit buswidth with endianness conversion
68  */
au_read_byte16(struct mtd_info * mtd)69 static u_char au_read_byte16(struct mtd_info *mtd)
70 {
71 	struct nand_chip *this = mtd->priv;
72 	u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
73 	au_sync();
74 	return ret;
75 }
76 
77 /**
78  * au_write_byte16 -  write one byte endianness aware to the chip
79  * @mtd:	MTD device structure
80  * @byte:	pointer to data byte to write
81  *
82  * write function for 16bit buswidth with endianness conversion
83  */
au_write_byte16(struct mtd_info * mtd,u_char byte)84 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
85 {
86 	struct nand_chip *this = mtd->priv;
87 	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
88 	au_sync();
89 }
90 
91 /**
92  * au_read_word -  read one word from the chip
93  * @mtd:	MTD device structure
94  *
95  * read function for 16bit buswidth without endianness conversion
96  */
au_read_word(struct mtd_info * mtd)97 static u16 au_read_word(struct mtd_info *mtd)
98 {
99 	struct nand_chip *this = mtd->priv;
100 	u16 ret = readw(this->IO_ADDR_R);
101 	au_sync();
102 	return ret;
103 }
104 
105 /**
106  * au_write_buf -  write buffer to chip
107  * @mtd:	MTD device structure
108  * @buf:	data buffer
109  * @len:	number of bytes to write
110  *
111  * write function for 8bit buswidth
112  */
au_write_buf(struct mtd_info * mtd,const u_char * buf,int len)113 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
114 {
115 	int i;
116 	struct nand_chip *this = mtd->priv;
117 
118 	for (i = 0; i < len; i++) {
119 		writeb(buf[i], this->IO_ADDR_W);
120 		au_sync();
121 	}
122 }
123 
124 /**
125  * au_read_buf -  read chip data into buffer
126  * @mtd:	MTD device structure
127  * @buf:	buffer to store date
128  * @len:	number of bytes to read
129  *
130  * read function for 8bit buswidth
131  */
au_read_buf(struct mtd_info * mtd,u_char * buf,int len)132 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
133 {
134 	int i;
135 	struct nand_chip *this = mtd->priv;
136 
137 	for (i = 0; i < len; i++) {
138 		buf[i] = readb(this->IO_ADDR_R);
139 		au_sync();
140 	}
141 }
142 
143 /**
144  * au_verify_buf -  Verify chip data against buffer
145  * @mtd:	MTD device structure
146  * @buf:	buffer containing the data to compare
147  * @len:	number of bytes to compare
148  *
149  * verify function for 8bit buswidth
150  */
au_verify_buf(struct mtd_info * mtd,const u_char * buf,int len)151 static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
152 {
153 	int i;
154 	struct nand_chip *this = mtd->priv;
155 
156 	for (i = 0; i < len; i++) {
157 		if (buf[i] != readb(this->IO_ADDR_R))
158 			return -EFAULT;
159 		au_sync();
160 	}
161 
162 	return 0;
163 }
164 
165 /**
166  * au_write_buf16 -  write buffer to chip
167  * @mtd:	MTD device structure
168  * @buf:	data buffer
169  * @len:	number of bytes to write
170  *
171  * write function for 16bit buswidth
172  */
au_write_buf16(struct mtd_info * mtd,const u_char * buf,int len)173 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
174 {
175 	int i;
176 	struct nand_chip *this = mtd->priv;
177 	u16 *p = (u16 *) buf;
178 	len >>= 1;
179 
180 	for (i = 0; i < len; i++) {
181 		writew(p[i], this->IO_ADDR_W);
182 		au_sync();
183 	}
184 
185 }
186 
187 /**
188  * au_read_buf16 -  read chip data into buffer
189  * @mtd:	MTD device structure
190  * @buf:	buffer to store date
191  * @len:	number of bytes to read
192  *
193  * read function for 16bit buswidth
194  */
au_read_buf16(struct mtd_info * mtd,u_char * buf,int len)195 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
196 {
197 	int i;
198 	struct nand_chip *this = mtd->priv;
199 	u16 *p = (u16 *) buf;
200 	len >>= 1;
201 
202 	for (i = 0; i < len; i++) {
203 		p[i] = readw(this->IO_ADDR_R);
204 		au_sync();
205 	}
206 }
207 
208 /**
209  * au_verify_buf16 -  Verify chip data against buffer
210  * @mtd:	MTD device structure
211  * @buf:	buffer containing the data to compare
212  * @len:	number of bytes to compare
213  *
214  * verify function for 16bit buswidth
215  */
au_verify_buf16(struct mtd_info * mtd,const u_char * buf,int len)216 static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
217 {
218 	int i;
219 	struct nand_chip *this = mtd->priv;
220 	u16 *p = (u16 *) buf;
221 	len >>= 1;
222 
223 	for (i = 0; i < len; i++) {
224 		if (p[i] != readw(this->IO_ADDR_R))
225 			return -EFAULT;
226 		au_sync();
227 	}
228 	return 0;
229 }
230 
231 /* Select the chip by setting nCE to low */
232 #define NAND_CTL_SETNCE		1
233 /* Deselect the chip by setting nCE to high */
234 #define NAND_CTL_CLRNCE		2
235 /* Select the command latch by setting CLE to high */
236 #define NAND_CTL_SETCLE		3
237 /* Deselect the command latch by setting CLE to low */
238 #define NAND_CTL_CLRCLE		4
239 /* Select the address latch by setting ALE to high */
240 #define NAND_CTL_SETALE		5
241 /* Deselect the address latch by setting ALE to low */
242 #define NAND_CTL_CLRALE		6
243 
au1550_hwcontrol(struct mtd_info * mtd,int cmd)244 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
245 {
246 	struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
247 	struct nand_chip *this = mtd->priv;
248 
249 	switch (cmd) {
250 
251 	case NAND_CTL_SETCLE:
252 		this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
253 		break;
254 
255 	case NAND_CTL_CLRCLE:
256 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
257 		break;
258 
259 	case NAND_CTL_SETALE:
260 		this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
261 		break;
262 
263 	case NAND_CTL_CLRALE:
264 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
265 		/* FIXME: Nobody knows why this is necessary,
266 		 * but it works only that way */
267 		udelay(1);
268 		break;
269 
270 	case NAND_CTL_SETNCE:
271 		/* assert (force assert) chip enable */
272 		au_writel((1 << (4 + ctx->cs)), MEM_STNDCTL);
273 		break;
274 
275 	case NAND_CTL_CLRNCE:
276 		/* deassert chip enable */
277 		au_writel(0, MEM_STNDCTL);
278 		break;
279 	}
280 
281 	this->IO_ADDR_R = this->IO_ADDR_W;
282 
283 	/* Drain the writebuffer */
284 	au_sync();
285 }
286 
au1550_device_ready(struct mtd_info * mtd)287 int au1550_device_ready(struct mtd_info *mtd)
288 {
289 	int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0;
290 	au_sync();
291 	return ret;
292 }
293 
294 /**
295  * au1550_select_chip - control -CE line
296  *	Forbid driving -CE manually permitting the NAND controller to do this.
297  *	Keeping -CE asserted during the whole sector reads interferes with the
298  *	NOR flash and PCMCIA drivers as it causes contention on the static bus.
299  *	We only have to hold -CE low for the NAND read commands since the flash
300  *	chip needs it to be asserted during chip not ready time but the NAND
301  *	controller keeps it released.
302  *
303  * @mtd:	MTD device structure
304  * @chip:	chipnumber to select, -1 for deselect
305  */
au1550_select_chip(struct mtd_info * mtd,int chip)306 static void au1550_select_chip(struct mtd_info *mtd, int chip)
307 {
308 }
309 
310 /**
311  * au1550_command - Send command to NAND device
312  * @mtd:	MTD device structure
313  * @command:	the command to be sent
314  * @column:	the column address for this command, -1 if none
315  * @page_addr:	the page address for this command, -1 if none
316  */
au1550_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)317 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
318 {
319 	struct au1550nd_ctx *ctx = container_of(mtd, struct au1550nd_ctx, info);
320 	struct nand_chip *this = mtd->priv;
321 	int ce_override = 0, i;
322 	unsigned long flags = 0;
323 
324 	/* Begin command latch cycle */
325 	au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
326 	/*
327 	 * Write out the command to the device.
328 	 */
329 	if (command == NAND_CMD_SEQIN) {
330 		int readcmd;
331 
332 		if (column >= mtd->writesize) {
333 			/* OOB area */
334 			column -= mtd->writesize;
335 			readcmd = NAND_CMD_READOOB;
336 		} else if (column < 256) {
337 			/* First 256 bytes --> READ0 */
338 			readcmd = NAND_CMD_READ0;
339 		} else {
340 			column -= 256;
341 			readcmd = NAND_CMD_READ1;
342 		}
343 		ctx->write_byte(mtd, readcmd);
344 	}
345 	ctx->write_byte(mtd, command);
346 
347 	/* Set ALE and clear CLE to start address cycle */
348 	au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
349 
350 	if (column != -1 || page_addr != -1) {
351 		au1550_hwcontrol(mtd, NAND_CTL_SETALE);
352 
353 		/* Serially input address */
354 		if (column != -1) {
355 			/* Adjust columns for 16 bit buswidth */
356 			if (this->options & NAND_BUSWIDTH_16)
357 				column >>= 1;
358 			ctx->write_byte(mtd, column);
359 		}
360 		if (page_addr != -1) {
361 			ctx->write_byte(mtd, (u8)(page_addr & 0xff));
362 
363 			if (command == NAND_CMD_READ0 ||
364 			    command == NAND_CMD_READ1 ||
365 			    command == NAND_CMD_READOOB) {
366 				/*
367 				 * NAND controller will release -CE after
368 				 * the last address byte is written, so we'll
369 				 * have to forcibly assert it. No interrupts
370 				 * are allowed while we do this as we don't
371 				 * want the NOR flash or PCMCIA drivers to
372 				 * steal our precious bytes of data...
373 				 */
374 				ce_override = 1;
375 				local_irq_save(flags);
376 				au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
377 			}
378 
379 			ctx->write_byte(mtd, (u8)(page_addr >> 8));
380 
381 			/* One more address cycle for devices > 32MiB */
382 			if (this->chipsize > (32 << 20))
383 				ctx->write_byte(mtd,
384 						((page_addr >> 16) & 0x0f));
385 		}
386 		/* Latch in address */
387 		au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
388 	}
389 
390 	/*
391 	 * Program and erase have their own busy handlers.
392 	 * Status and sequential in need no delay.
393 	 */
394 	switch (command) {
395 
396 	case NAND_CMD_PAGEPROG:
397 	case NAND_CMD_ERASE1:
398 	case NAND_CMD_ERASE2:
399 	case NAND_CMD_SEQIN:
400 	case NAND_CMD_STATUS:
401 		return;
402 
403 	case NAND_CMD_RESET:
404 		break;
405 
406 	case NAND_CMD_READ0:
407 	case NAND_CMD_READ1:
408 	case NAND_CMD_READOOB:
409 		/* Check if we're really driving -CE low (just in case) */
410 		if (unlikely(!ce_override))
411 			break;
412 
413 		/* Apply a short delay always to ensure that we do wait tWB. */
414 		ndelay(100);
415 		/* Wait for a chip to become ready... */
416 		for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
417 			udelay(1);
418 
419 		/* Release -CE and re-enable interrupts. */
420 		au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
421 		local_irq_restore(flags);
422 		return;
423 	}
424 	/* Apply this short delay always to ensure that we do wait tWB. */
425 	ndelay(100);
426 
427 	while(!this->dev_ready(mtd));
428 }
429 
find_nand_cs(unsigned long nand_base)430 static int __devinit find_nand_cs(unsigned long nand_base)
431 {
432 	void __iomem *base =
433 			(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
434 	unsigned long addr, staddr, start, mask, end;
435 	int i;
436 
437 	for (i = 0; i < 4; i++) {
438 		addr = 0x1000 + (i * 0x10);			/* CSx */
439 		staddr = __raw_readl(base + addr + 0x08);	/* STADDRx */
440 		/* figure out the decoded range of this CS */
441 		start = (staddr << 4) & 0xfffc0000;
442 		mask = (staddr << 18) & 0xfffc0000;
443 		end = (start | (start - 1)) & ~(start ^ mask);
444 		if ((nand_base >= start) && (nand_base < end))
445 			return i;
446 	}
447 
448 	return -ENODEV;
449 }
450 
au1550nd_probe(struct platform_device * pdev)451 static int __devinit au1550nd_probe(struct platform_device *pdev)
452 {
453 	struct au1550nd_platdata *pd;
454 	struct au1550nd_ctx *ctx;
455 	struct nand_chip *this;
456 	struct resource *r;
457 	int ret, cs;
458 
459 	pd = pdev->dev.platform_data;
460 	if (!pd) {
461 		dev_err(&pdev->dev, "missing platform data\n");
462 		return -ENODEV;
463 	}
464 
465 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
466 	if (!ctx) {
467 		dev_err(&pdev->dev, "no memory for NAND context\n");
468 		return -ENOMEM;
469 	}
470 
471 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
472 	if (!r) {
473 		dev_err(&pdev->dev, "no NAND memory resource\n");
474 		ret = -ENODEV;
475 		goto out1;
476 	}
477 	if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
478 		dev_err(&pdev->dev, "cannot claim NAND memory area\n");
479 		ret = -ENOMEM;
480 		goto out1;
481 	}
482 
483 	ctx->base = ioremap_nocache(r->start, 0x1000);
484 	if (!ctx->base) {
485 		dev_err(&pdev->dev, "cannot remap NAND memory area\n");
486 		ret = -ENODEV;
487 		goto out2;
488 	}
489 
490 	this = &ctx->chip;
491 	ctx->info.priv = this;
492 	ctx->info.owner = THIS_MODULE;
493 
494 	/* figure out which CS# r->start belongs to */
495 	cs = find_nand_cs(r->start);
496 	if (cs < 0) {
497 		dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
498 		ret = -ENODEV;
499 		goto out3;
500 	}
501 	ctx->cs = cs;
502 
503 	this->dev_ready = au1550_device_ready;
504 	this->select_chip = au1550_select_chip;
505 	this->cmdfunc = au1550_command;
506 
507 	/* 30 us command delay time */
508 	this->chip_delay = 30;
509 	this->ecc.mode = NAND_ECC_SOFT;
510 
511 	this->options = NAND_NO_AUTOINCR;
512 
513 	if (pd->devwidth)
514 		this->options |= NAND_BUSWIDTH_16;
515 
516 	this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
517 	ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
518 	this->read_word = au_read_word;
519 	this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
520 	this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
521 	this->verify_buf = (pd->devwidth) ? au_verify_buf16 : au_verify_buf;
522 
523 	ret = nand_scan(&ctx->info, 1);
524 	if (ret) {
525 		dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
526 		goto out3;
527 	}
528 
529 	mtd_device_register(&ctx->info, pd->parts, pd->num_parts);
530 
531 	return 0;
532 
533 out3:
534 	iounmap(ctx->base);
535 out2:
536 	release_mem_region(r->start, resource_size(r));
537 out1:
538 	kfree(ctx);
539 	return ret;
540 }
541 
au1550nd_remove(struct platform_device * pdev)542 static int __devexit au1550nd_remove(struct platform_device *pdev)
543 {
544 	struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
545 	struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
546 
547 	nand_release(&ctx->info);
548 	iounmap(ctx->base);
549 	release_mem_region(r->start, 0x1000);
550 	kfree(ctx);
551 	return 0;
552 }
553 
554 static struct platform_driver au1550nd_driver = {
555 	.driver = {
556 		.name	= "au1550-nand",
557 		.owner	= THIS_MODULE,
558 	},
559 	.probe		= au1550nd_probe,
560 	.remove		= __devexit_p(au1550nd_remove),
561 };
562 
563 module_platform_driver(au1550nd_driver);
564 
565 MODULE_LICENSE("GPL");
566 MODULE_AUTHOR("Embedded Edge, LLC");
567 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
568