1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/partitions.h>
42
43 #include "mtdcore.h"
44 /*
45 * backing device capabilities for non-mappable devices (such as NAND flash)
46 * - permits private mappings, copies are taken of the data
47 */
48 static struct backing_dev_info mtd_bdi_unmappable = {
49 .capabilities = BDI_CAP_MAP_COPY,
50 };
51
52 /*
53 * backing device capabilities for R/O mappable devices (such as ROM)
54 * - permits private mappings, copies are taken of the data
55 * - permits non-writable shared mappings
56 */
57 static struct backing_dev_info mtd_bdi_ro_mappable = {
58 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
59 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
60 };
61
62 /*
63 * backing device capabilities for writable mappable devices (such as RAM)
64 * - permits private mappings, copies are taken of the data
65 * - permits non-writable shared mappings
66 */
67 static struct backing_dev_info mtd_bdi_rw_mappable = {
68 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
69 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
70 BDI_CAP_WRITE_MAP),
71 };
72
73 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74 static int mtd_cls_resume(struct device *dev);
75
76 static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .suspend = mtd_cls_suspend,
80 .resume = mtd_cls_resume,
81 };
82
83 static DEFINE_IDR(mtd_idr);
84
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86 should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89
__mtd_next_device(int i)90 struct mtd_info *__mtd_next_device(int i)
91 {
92 return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95
96 static LIST_HEAD(mtd_notifiers);
97
98
99 #if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101 #else
102 #define MTD_DEVT(index) 0
103 #endif
104
105 /* REVISIT once MTD uses the driver model better, whoever allocates
106 * the mtd_info will probably want to use the release() hook...
107 */
mtd_release(struct device * dev)108 static void mtd_release(struct device *dev)
109 {
110 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111 dev_t index = MTD_DEVT(mtd->index);
112
113 /* remove /dev/mtdXro node if needed */
114 if (index)
115 device_destroy(&mtd_class, index + 1);
116 }
117
mtd_cls_suspend(struct device * dev,pm_message_t state)118 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119 {
120 struct mtd_info *mtd = dev_get_drvdata(dev);
121
122 return mtd ? mtd_suspend(mtd) : 0;
123 }
124
mtd_cls_resume(struct device * dev)125 static int mtd_cls_resume(struct device *dev)
126 {
127 struct mtd_info *mtd = dev_get_drvdata(dev);
128
129 if (mtd)
130 mtd_resume(mtd);
131 return 0;
132 }
133
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)134 static ssize_t mtd_type_show(struct device *dev,
135 struct device_attribute *attr, char *buf)
136 {
137 struct mtd_info *mtd = dev_get_drvdata(dev);
138 char *type;
139
140 switch (mtd->type) {
141 case MTD_ABSENT:
142 type = "absent";
143 break;
144 case MTD_RAM:
145 type = "ram";
146 break;
147 case MTD_ROM:
148 type = "rom";
149 break;
150 case MTD_NORFLASH:
151 type = "nor";
152 break;
153 case MTD_NANDFLASH:
154 type = "nand";
155 break;
156 case MTD_DATAFLASH:
157 type = "dataflash";
158 break;
159 case MTD_UBIVOLUME:
160 type = "ubi";
161 break;
162 default:
163 type = "unknown";
164 }
165
166 return snprintf(buf, PAGE_SIZE, "%s\n", type);
167 }
168 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)170 static ssize_t mtd_flags_show(struct device *dev,
171 struct device_attribute *attr, char *buf)
172 {
173 struct mtd_info *mtd = dev_get_drvdata(dev);
174
175 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176
177 }
178 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)180 static ssize_t mtd_size_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182 {
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184
185 return snprintf(buf, PAGE_SIZE, "%llu\n",
186 (unsigned long long)mtd->size);
187
188 }
189 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)191 static ssize_t mtd_erasesize_show(struct device *dev,
192 struct device_attribute *attr, char *buf)
193 {
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195
196 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197
198 }
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t mtd_writesize_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203 {
204 struct mtd_info *mtd = dev_get_drvdata(dev);
205
206 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207
208 }
209 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213 {
214 struct mtd_info *mtd = dev_get_drvdata(dev);
215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218
219 }
220 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)222 static ssize_t mtd_oobsize_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224 {
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228
229 }
230 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)232 static ssize_t mtd_numeraseregions_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234 {
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238
239 }
240 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241 NULL);
242
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)243 static ssize_t mtd_name_show(struct device *dev,
244 struct device_attribute *attr, char *buf)
245 {
246 struct mtd_info *mtd = dev_get_drvdata(dev);
247
248 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249
250 }
251 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
252
253 static struct attribute *mtd_attrs[] = {
254 &dev_attr_type.attr,
255 &dev_attr_flags.attr,
256 &dev_attr_size.attr,
257 &dev_attr_erasesize.attr,
258 &dev_attr_writesize.attr,
259 &dev_attr_subpagesize.attr,
260 &dev_attr_oobsize.attr,
261 &dev_attr_numeraseregions.attr,
262 &dev_attr_name.attr,
263 NULL,
264 };
265
266 static struct attribute_group mtd_group = {
267 .attrs = mtd_attrs,
268 };
269
270 static const struct attribute_group *mtd_groups[] = {
271 &mtd_group,
272 NULL,
273 };
274
275 static struct device_type mtd_devtype = {
276 .name = "mtd",
277 .groups = mtd_groups,
278 .release = mtd_release,
279 };
280
281 /**
282 * add_mtd_device - register an MTD device
283 * @mtd: pointer to new MTD device info structure
284 *
285 * Add a device to the list of MTD devices present in the system, and
286 * notify each currently active MTD 'user' of its arrival. Returns
287 * zero on success or 1 on failure, which currently will only happen
288 * if there is insufficient memory or a sysfs error.
289 */
290
add_mtd_device(struct mtd_info * mtd)291 int add_mtd_device(struct mtd_info *mtd)
292 {
293 struct mtd_notifier *not;
294 int i, error;
295
296 if (!mtd->backing_dev_info) {
297 switch (mtd->type) {
298 case MTD_RAM:
299 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
300 break;
301 case MTD_ROM:
302 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
303 break;
304 default:
305 mtd->backing_dev_info = &mtd_bdi_unmappable;
306 break;
307 }
308 }
309
310 BUG_ON(mtd->writesize == 0);
311 mutex_lock(&mtd_table_mutex);
312
313 do {
314 if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
315 goto fail_locked;
316 error = idr_get_new(&mtd_idr, mtd, &i);
317 } while (error == -EAGAIN);
318
319 if (error)
320 goto fail_locked;
321
322 mtd->index = i;
323 mtd->usecount = 0;
324
325 if (is_power_of_2(mtd->erasesize))
326 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
327 else
328 mtd->erasesize_shift = 0;
329
330 if (is_power_of_2(mtd->writesize))
331 mtd->writesize_shift = ffs(mtd->writesize) - 1;
332 else
333 mtd->writesize_shift = 0;
334
335 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
336 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
337
338 /* Some chips always power up locked. Unlock them now */
339 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
340 error = mtd_unlock(mtd, 0, mtd->size);
341 if (error && error != -EOPNOTSUPP)
342 printk(KERN_WARNING
343 "%s: unlock failed, writes may not work\n",
344 mtd->name);
345 }
346
347 /* Caller should have set dev.parent to match the
348 * physical device.
349 */
350 mtd->dev.type = &mtd_devtype;
351 mtd->dev.class = &mtd_class;
352 mtd->dev.devt = MTD_DEVT(i);
353 dev_set_name(&mtd->dev, "mtd%d", i);
354 dev_set_drvdata(&mtd->dev, mtd);
355 if (device_register(&mtd->dev) != 0)
356 goto fail_added;
357
358 if (MTD_DEVT(i))
359 device_create(&mtd_class, mtd->dev.parent,
360 MTD_DEVT(i) + 1,
361 NULL, "mtd%dro", i);
362
363 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
364 /* No need to get a refcount on the module containing
365 the notifier, since we hold the mtd_table_mutex */
366 list_for_each_entry(not, &mtd_notifiers, list)
367 not->add(mtd);
368
369 mutex_unlock(&mtd_table_mutex);
370 /* We _know_ we aren't being removed, because
371 our caller is still holding us here. So none
372 of this try_ nonsense, and no bitching about it
373 either. :) */
374 __module_get(THIS_MODULE);
375 return 0;
376
377 fail_added:
378 idr_remove(&mtd_idr, i);
379 fail_locked:
380 mutex_unlock(&mtd_table_mutex);
381 return 1;
382 }
383
384 /**
385 * del_mtd_device - unregister an MTD device
386 * @mtd: pointer to MTD device info structure
387 *
388 * Remove a device from the list of MTD devices present in the system,
389 * and notify each currently active MTD 'user' of its departure.
390 * Returns zero on success or 1 on failure, which currently will happen
391 * if the requested device does not appear to be present in the list.
392 */
393
del_mtd_device(struct mtd_info * mtd)394 int del_mtd_device(struct mtd_info *mtd)
395 {
396 int ret;
397 struct mtd_notifier *not;
398
399 mutex_lock(&mtd_table_mutex);
400
401 if (idr_find(&mtd_idr, mtd->index) != mtd) {
402 ret = -ENODEV;
403 goto out_error;
404 }
405
406 /* No need to get a refcount on the module containing
407 the notifier, since we hold the mtd_table_mutex */
408 list_for_each_entry(not, &mtd_notifiers, list)
409 not->remove(mtd);
410
411 if (mtd->usecount) {
412 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
413 mtd->index, mtd->name, mtd->usecount);
414 ret = -EBUSY;
415 } else {
416 device_unregister(&mtd->dev);
417
418 idr_remove(&mtd_idr, mtd->index);
419
420 module_put(THIS_MODULE);
421 ret = 0;
422 }
423
424 out_error:
425 mutex_unlock(&mtd_table_mutex);
426 return ret;
427 }
428
429 /**
430 * mtd_device_parse_register - parse partitions and register an MTD device.
431 *
432 * @mtd: the MTD device to register
433 * @types: the list of MTD partition probes to try, see
434 * 'parse_mtd_partitions()' for more information
435 * @parser_data: MTD partition parser-specific data
436 * @parts: fallback partition information to register, if parsing fails;
437 * only valid if %nr_parts > %0
438 * @nr_parts: the number of partitions in parts, if zero then the full
439 * MTD device is registered if no partition info is found
440 *
441 * This function aggregates MTD partitions parsing (done by
442 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
443 * basically follows the most common pattern found in many MTD drivers:
444 *
445 * * It first tries to probe partitions on MTD device @mtd using parsers
446 * specified in @types (if @types is %NULL, then the default list of parsers
447 * is used, see 'parse_mtd_partitions()' for more information). If none are
448 * found this functions tries to fallback to information specified in
449 * @parts/@nr_parts.
450 * * If any partitioning info was found, this function registers the found
451 * partitions.
452 * * If no partitions were found this function just registers the MTD device
453 * @mtd and exits.
454 *
455 * Returns zero in case of success and a negative error code in case of failure.
456 */
mtd_device_parse_register(struct mtd_info * mtd,const char ** types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)457 int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
458 struct mtd_part_parser_data *parser_data,
459 const struct mtd_partition *parts,
460 int nr_parts)
461 {
462 int err;
463 struct mtd_partition *real_parts;
464
465 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
466 if (err <= 0 && nr_parts && parts) {
467 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
468 GFP_KERNEL);
469 if (!real_parts)
470 err = -ENOMEM;
471 else
472 err = nr_parts;
473 }
474
475 if (err > 0) {
476 err = add_mtd_partitions(mtd, real_parts, err);
477 kfree(real_parts);
478 } else if (err == 0) {
479 err = add_mtd_device(mtd);
480 if (err == 1)
481 err = -ENODEV;
482 }
483
484 return err;
485 }
486 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
487
488 /**
489 * mtd_device_unregister - unregister an existing MTD device.
490 *
491 * @master: the MTD device to unregister. This will unregister both the master
492 * and any partitions if registered.
493 */
mtd_device_unregister(struct mtd_info * master)494 int mtd_device_unregister(struct mtd_info *master)
495 {
496 int err;
497
498 err = del_mtd_partitions(master);
499 if (err)
500 return err;
501
502 if (!device_is_registered(&master->dev))
503 return 0;
504
505 return del_mtd_device(master);
506 }
507 EXPORT_SYMBOL_GPL(mtd_device_unregister);
508
509 /**
510 * register_mtd_user - register a 'user' of MTD devices.
511 * @new: pointer to notifier info structure
512 *
513 * Registers a pair of callbacks function to be called upon addition
514 * or removal of MTD devices. Causes the 'add' callback to be immediately
515 * invoked for each MTD device currently present in the system.
516 */
register_mtd_user(struct mtd_notifier * new)517 void register_mtd_user (struct mtd_notifier *new)
518 {
519 struct mtd_info *mtd;
520
521 mutex_lock(&mtd_table_mutex);
522
523 list_add(&new->list, &mtd_notifiers);
524
525 __module_get(THIS_MODULE);
526
527 mtd_for_each_device(mtd)
528 new->add(mtd);
529
530 mutex_unlock(&mtd_table_mutex);
531 }
532 EXPORT_SYMBOL_GPL(register_mtd_user);
533
534 /**
535 * unregister_mtd_user - unregister a 'user' of MTD devices.
536 * @old: pointer to notifier info structure
537 *
538 * Removes a callback function pair from the list of 'users' to be
539 * notified upon addition or removal of MTD devices. Causes the
540 * 'remove' callback to be immediately invoked for each MTD device
541 * currently present in the system.
542 */
unregister_mtd_user(struct mtd_notifier * old)543 int unregister_mtd_user (struct mtd_notifier *old)
544 {
545 struct mtd_info *mtd;
546
547 mutex_lock(&mtd_table_mutex);
548
549 module_put(THIS_MODULE);
550
551 mtd_for_each_device(mtd)
552 old->remove(mtd);
553
554 list_del(&old->list);
555 mutex_unlock(&mtd_table_mutex);
556 return 0;
557 }
558 EXPORT_SYMBOL_GPL(unregister_mtd_user);
559
560 /**
561 * get_mtd_device - obtain a validated handle for an MTD device
562 * @mtd: last known address of the required MTD device
563 * @num: internal device number of the required MTD device
564 *
565 * Given a number and NULL address, return the num'th entry in the device
566 * table, if any. Given an address and num == -1, search the device table
567 * for a device with that address and return if it's still present. Given
568 * both, return the num'th driver only if its address matches. Return
569 * error code if not.
570 */
get_mtd_device(struct mtd_info * mtd,int num)571 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
572 {
573 struct mtd_info *ret = NULL, *other;
574 int err = -ENODEV;
575
576 mutex_lock(&mtd_table_mutex);
577
578 if (num == -1) {
579 mtd_for_each_device(other) {
580 if (other == mtd) {
581 ret = mtd;
582 break;
583 }
584 }
585 } else if (num >= 0) {
586 ret = idr_find(&mtd_idr, num);
587 if (mtd && mtd != ret)
588 ret = NULL;
589 }
590
591 if (!ret) {
592 ret = ERR_PTR(err);
593 goto out;
594 }
595
596 err = __get_mtd_device(ret);
597 if (err)
598 ret = ERR_PTR(err);
599 out:
600 mutex_unlock(&mtd_table_mutex);
601 return ret;
602 }
603 EXPORT_SYMBOL_GPL(get_mtd_device);
604
605
__get_mtd_device(struct mtd_info * mtd)606 int __get_mtd_device(struct mtd_info *mtd)
607 {
608 int err;
609
610 if (!try_module_get(mtd->owner))
611 return -ENODEV;
612
613 if (mtd->_get_device) {
614 err = mtd->_get_device(mtd);
615
616 if (err) {
617 module_put(mtd->owner);
618 return err;
619 }
620 }
621 mtd->usecount++;
622 return 0;
623 }
624 EXPORT_SYMBOL_GPL(__get_mtd_device);
625
626 /**
627 * get_mtd_device_nm - obtain a validated handle for an MTD device by
628 * device name
629 * @name: MTD device name to open
630 *
631 * This function returns MTD device description structure in case of
632 * success and an error code in case of failure.
633 */
get_mtd_device_nm(const char * name)634 struct mtd_info *get_mtd_device_nm(const char *name)
635 {
636 int err = -ENODEV;
637 struct mtd_info *mtd = NULL, *other;
638
639 mutex_lock(&mtd_table_mutex);
640
641 mtd_for_each_device(other) {
642 if (!strcmp(name, other->name)) {
643 mtd = other;
644 break;
645 }
646 }
647
648 if (!mtd)
649 goto out_unlock;
650
651 err = __get_mtd_device(mtd);
652 if (err)
653 goto out_unlock;
654
655 mutex_unlock(&mtd_table_mutex);
656 return mtd;
657
658 out_unlock:
659 mutex_unlock(&mtd_table_mutex);
660 return ERR_PTR(err);
661 }
662 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
663
put_mtd_device(struct mtd_info * mtd)664 void put_mtd_device(struct mtd_info *mtd)
665 {
666 mutex_lock(&mtd_table_mutex);
667 __put_mtd_device(mtd);
668 mutex_unlock(&mtd_table_mutex);
669
670 }
671 EXPORT_SYMBOL_GPL(put_mtd_device);
672
__put_mtd_device(struct mtd_info * mtd)673 void __put_mtd_device(struct mtd_info *mtd)
674 {
675 --mtd->usecount;
676 BUG_ON(mtd->usecount < 0);
677
678 if (mtd->_put_device)
679 mtd->_put_device(mtd);
680
681 module_put(mtd->owner);
682 }
683 EXPORT_SYMBOL_GPL(__put_mtd_device);
684
685 /*
686 * Erase is an asynchronous operation. Device drivers are supposed
687 * to call instr->callback() whenever the operation completes, even
688 * if it completes with a failure.
689 * Callers are supposed to pass a callback function and wait for it
690 * to be called before writing to the block.
691 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)692 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
693 {
694 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
695 return -EINVAL;
696 if (!(mtd->flags & MTD_WRITEABLE))
697 return -EROFS;
698 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
699 if (!instr->len) {
700 instr->state = MTD_ERASE_DONE;
701 mtd_erase_callback(instr);
702 return 0;
703 }
704 return mtd->_erase(mtd, instr);
705 }
706 EXPORT_SYMBOL_GPL(mtd_erase);
707
708 /*
709 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
710 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)711 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
712 void **virt, resource_size_t *phys)
713 {
714 *retlen = 0;
715 *virt = NULL;
716 if (phys)
717 *phys = 0;
718 if (!mtd->_point)
719 return -EOPNOTSUPP;
720 if (from < 0 || from > mtd->size || len > mtd->size - from)
721 return -EINVAL;
722 if (!len)
723 return 0;
724 return mtd->_point(mtd, from, len, retlen, virt, phys);
725 }
726 EXPORT_SYMBOL_GPL(mtd_point);
727
728 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)729 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
730 {
731 if (!mtd->_point)
732 return -EOPNOTSUPP;
733 if (from < 0 || from > mtd->size || len > mtd->size - from)
734 return -EINVAL;
735 if (!len)
736 return 0;
737 return mtd->_unpoint(mtd, from, len);
738 }
739 EXPORT_SYMBOL_GPL(mtd_unpoint);
740
741 /*
742 * Allow NOMMU mmap() to directly map the device (if not NULL)
743 * - return the address to which the offset maps
744 * - return -ENOSYS to indicate refusal to do the mapping
745 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)746 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
747 unsigned long offset, unsigned long flags)
748 {
749 if (!mtd->_get_unmapped_area)
750 return -EOPNOTSUPP;
751 if (offset > mtd->size || len > mtd->size - offset)
752 return -EINVAL;
753 return mtd->_get_unmapped_area(mtd, len, offset, flags);
754 }
755 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
756
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)757 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
758 u_char *buf)
759 {
760 *retlen = 0;
761 if (from < 0 || from > mtd->size || len > mtd->size - from)
762 return -EINVAL;
763 if (!len)
764 return 0;
765 return mtd->_read(mtd, from, len, retlen, buf);
766 }
767 EXPORT_SYMBOL_GPL(mtd_read);
768
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)769 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
770 const u_char *buf)
771 {
772 *retlen = 0;
773 if (to < 0 || to > mtd->size || len > mtd->size - to)
774 return -EINVAL;
775 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
776 return -EROFS;
777 if (!len)
778 return 0;
779 return mtd->_write(mtd, to, len, retlen, buf);
780 }
781 EXPORT_SYMBOL_GPL(mtd_write);
782
783 /*
784 * In blackbox flight recorder like scenarios we want to make successful writes
785 * in interrupt context. panic_write() is only intended to be called when its
786 * known the kernel is about to panic and we need the write to succeed. Since
787 * the kernel is not going to be running for much longer, this function can
788 * break locks and delay to ensure the write succeeds (but not sleep).
789 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)790 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
791 const u_char *buf)
792 {
793 *retlen = 0;
794 if (!mtd->_panic_write)
795 return -EOPNOTSUPP;
796 if (to < 0 || to > mtd->size || len > mtd->size - to)
797 return -EINVAL;
798 if (!(mtd->flags & MTD_WRITEABLE))
799 return -EROFS;
800 if (!len)
801 return 0;
802 return mtd->_panic_write(mtd, to, len, retlen, buf);
803 }
804 EXPORT_SYMBOL_GPL(mtd_panic_write);
805
806 /*
807 * Method to access the protection register area, present in some flash
808 * devices. The user data is one time programmable but the factory data is read
809 * only.
810 */
mtd_get_fact_prot_info(struct mtd_info * mtd,struct otp_info * buf,size_t len)811 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
812 size_t len)
813 {
814 if (!mtd->_get_fact_prot_info)
815 return -EOPNOTSUPP;
816 if (!len)
817 return 0;
818 return mtd->_get_fact_prot_info(mtd, buf, len);
819 }
820 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
821
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)822 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
823 size_t *retlen, u_char *buf)
824 {
825 *retlen = 0;
826 if (!mtd->_read_fact_prot_reg)
827 return -EOPNOTSUPP;
828 if (!len)
829 return 0;
830 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
831 }
832 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
833
mtd_get_user_prot_info(struct mtd_info * mtd,struct otp_info * buf,size_t len)834 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
835 size_t len)
836 {
837 if (!mtd->_get_user_prot_info)
838 return -EOPNOTSUPP;
839 if (!len)
840 return 0;
841 return mtd->_get_user_prot_info(mtd, buf, len);
842 }
843 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
844
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)845 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
846 size_t *retlen, u_char *buf)
847 {
848 *retlen = 0;
849 if (!mtd->_read_user_prot_reg)
850 return -EOPNOTSUPP;
851 if (!len)
852 return 0;
853 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
854 }
855 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
856
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)857 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
858 size_t *retlen, u_char *buf)
859 {
860 *retlen = 0;
861 if (!mtd->_write_user_prot_reg)
862 return -EOPNOTSUPP;
863 if (!len)
864 return 0;
865 return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
866 }
867 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
868
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)869 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
870 {
871 if (!mtd->_lock_user_prot_reg)
872 return -EOPNOTSUPP;
873 if (!len)
874 return 0;
875 return mtd->_lock_user_prot_reg(mtd, from, len);
876 }
877 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
878
879 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)880 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
881 {
882 if (!mtd->_lock)
883 return -EOPNOTSUPP;
884 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
885 return -EINVAL;
886 if (!len)
887 return 0;
888 return mtd->_lock(mtd, ofs, len);
889 }
890 EXPORT_SYMBOL_GPL(mtd_lock);
891
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)892 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
893 {
894 if (!mtd->_unlock)
895 return -EOPNOTSUPP;
896 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
897 return -EINVAL;
898 if (!len)
899 return 0;
900 return mtd->_unlock(mtd, ofs, len);
901 }
902 EXPORT_SYMBOL_GPL(mtd_unlock);
903
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)904 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
905 {
906 if (!mtd->_is_locked)
907 return -EOPNOTSUPP;
908 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
909 return -EINVAL;
910 if (!len)
911 return 0;
912 return mtd->_is_locked(mtd, ofs, len);
913 }
914 EXPORT_SYMBOL_GPL(mtd_is_locked);
915
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)916 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
917 {
918 if (!mtd->_block_isbad)
919 return 0;
920 if (ofs < 0 || ofs > mtd->size)
921 return -EINVAL;
922 return mtd->_block_isbad(mtd, ofs);
923 }
924 EXPORT_SYMBOL_GPL(mtd_block_isbad);
925
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)926 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
927 {
928 if (!mtd->_block_markbad)
929 return -EOPNOTSUPP;
930 if (ofs < 0 || ofs > mtd->size)
931 return -EINVAL;
932 if (!(mtd->flags & MTD_WRITEABLE))
933 return -EROFS;
934 return mtd->_block_markbad(mtd, ofs);
935 }
936 EXPORT_SYMBOL_GPL(mtd_block_markbad);
937
938 /*
939 * default_mtd_writev - the default writev method
940 * @mtd: mtd device description object pointer
941 * @vecs: the vectors to write
942 * @count: count of vectors in @vecs
943 * @to: the MTD device offset to write to
944 * @retlen: on exit contains the count of bytes written to the MTD device.
945 *
946 * This function returns zero in case of success and a negative error code in
947 * case of failure.
948 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)949 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
950 unsigned long count, loff_t to, size_t *retlen)
951 {
952 unsigned long i;
953 size_t totlen = 0, thislen;
954 int ret = 0;
955
956 for (i = 0; i < count; i++) {
957 if (!vecs[i].iov_len)
958 continue;
959 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
960 vecs[i].iov_base);
961 totlen += thislen;
962 if (ret || thislen != vecs[i].iov_len)
963 break;
964 to += vecs[i].iov_len;
965 }
966 *retlen = totlen;
967 return ret;
968 }
969
970 /*
971 * mtd_writev - the vector-based MTD write method
972 * @mtd: mtd device description object pointer
973 * @vecs: the vectors to write
974 * @count: count of vectors in @vecs
975 * @to: the MTD device offset to write to
976 * @retlen: on exit contains the count of bytes written to the MTD device.
977 *
978 * This function returns zero in case of success and a negative error code in
979 * case of failure.
980 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)981 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
982 unsigned long count, loff_t to, size_t *retlen)
983 {
984 *retlen = 0;
985 if (!(mtd->flags & MTD_WRITEABLE))
986 return -EROFS;
987 if (!mtd->_writev)
988 return default_mtd_writev(mtd, vecs, count, to, retlen);
989 return mtd->_writev(mtd, vecs, count, to, retlen);
990 }
991 EXPORT_SYMBOL_GPL(mtd_writev);
992
993 /**
994 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
995 * @mtd: mtd device description object pointer
996 * @size: a pointer to the ideal or maximum size of the allocation, points
997 * to the actual allocation size on success.
998 *
999 * This routine attempts to allocate a contiguous kernel buffer up to
1000 * the specified size, backing off the size of the request exponentially
1001 * until the request succeeds or until the allocation size falls below
1002 * the system page size. This attempts to make sure it does not adversely
1003 * impact system performance, so when allocating more than one page, we
1004 * ask the memory allocator to avoid re-trying, swapping, writing back
1005 * or performing I/O.
1006 *
1007 * Note, this function also makes sure that the allocated buffer is aligned to
1008 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1009 *
1010 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1011 * to handle smaller (i.e. degraded) buffer allocations under low- or
1012 * fragmented-memory situations where such reduced allocations, from a
1013 * requested ideal, are allowed.
1014 *
1015 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1016 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1017 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1018 {
1019 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1020 __GFP_NORETRY | __GFP_NO_KSWAPD;
1021 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1022 void *kbuf;
1023
1024 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1025
1026 while (*size > min_alloc) {
1027 kbuf = kmalloc(*size, flags);
1028 if (kbuf)
1029 return kbuf;
1030
1031 *size >>= 1;
1032 *size = ALIGN(*size, mtd->writesize);
1033 }
1034
1035 /*
1036 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1037 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1038 */
1039 return kmalloc(*size, GFP_KERNEL);
1040 }
1041 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1042
1043 #ifdef CONFIG_PROC_FS
1044
1045 /*====================================================================*/
1046 /* Support for /proc/mtd */
1047
1048 static struct proc_dir_entry *proc_mtd;
1049
mtd_proc_show(struct seq_file * m,void * v)1050 static int mtd_proc_show(struct seq_file *m, void *v)
1051 {
1052 struct mtd_info *mtd;
1053
1054 seq_puts(m, "dev: size erasesize name\n");
1055 mutex_lock(&mtd_table_mutex);
1056 mtd_for_each_device(mtd) {
1057 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1058 mtd->index, (unsigned long long)mtd->size,
1059 mtd->erasesize, mtd->name);
1060 }
1061 mutex_unlock(&mtd_table_mutex);
1062 return 0;
1063 }
1064
mtd_proc_open(struct inode * inode,struct file * file)1065 static int mtd_proc_open(struct inode *inode, struct file *file)
1066 {
1067 return single_open(file, mtd_proc_show, NULL);
1068 }
1069
1070 static const struct file_operations mtd_proc_ops = {
1071 .open = mtd_proc_open,
1072 .read = seq_read,
1073 .llseek = seq_lseek,
1074 .release = single_release,
1075 };
1076 #endif /* CONFIG_PROC_FS */
1077
1078 /*====================================================================*/
1079 /* Init code */
1080
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1081 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1082 {
1083 int ret;
1084
1085 ret = bdi_init(bdi);
1086 if (!ret)
1087 ret = bdi_register(bdi, NULL, name);
1088
1089 if (ret)
1090 bdi_destroy(bdi);
1091
1092 return ret;
1093 }
1094
init_mtd(void)1095 static int __init init_mtd(void)
1096 {
1097 int ret;
1098
1099 ret = class_register(&mtd_class);
1100 if (ret)
1101 goto err_reg;
1102
1103 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1104 if (ret)
1105 goto err_bdi1;
1106
1107 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1108 if (ret)
1109 goto err_bdi2;
1110
1111 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1112 if (ret)
1113 goto err_bdi3;
1114
1115 #ifdef CONFIG_PROC_FS
1116 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1117 #endif /* CONFIG_PROC_FS */
1118 return 0;
1119
1120 err_bdi3:
1121 bdi_destroy(&mtd_bdi_ro_mappable);
1122 err_bdi2:
1123 bdi_destroy(&mtd_bdi_unmappable);
1124 err_bdi1:
1125 class_unregister(&mtd_class);
1126 err_reg:
1127 pr_err("Error registering mtd class or bdi: %d\n", ret);
1128 return ret;
1129 }
1130
cleanup_mtd(void)1131 static void __exit cleanup_mtd(void)
1132 {
1133 #ifdef CONFIG_PROC_FS
1134 if (proc_mtd)
1135 remove_proc_entry( "mtd", NULL);
1136 #endif /* CONFIG_PROC_FS */
1137 class_unregister(&mtd_class);
1138 bdi_destroy(&mtd_bdi_unmappable);
1139 bdi_destroy(&mtd_bdi_ro_mappable);
1140 bdi_destroy(&mtd_bdi_rw_mappable);
1141 }
1142
1143 module_init(init_mtd);
1144 module_exit(cleanup_mtd);
1145
1146 MODULE_LICENSE("GPL");
1147 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1148 MODULE_DESCRIPTION("Core MTD registration and access routines");
1149