1 /*
2  * SN Platform GRU Driver
3  *
4  *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
5  *
6  * This file contains code that handles TLB misses within the GRU.
7  * These misses are reported either via interrupts or user polling of
8  * the user CB.
9  *
10  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/spinlock.h>
30 #include <linux/mm.h>
31 #include <linux/hugetlb.h>
32 #include <linux/device.h>
33 #include <linux/io.h>
34 #include <linux/uaccess.h>
35 #include <linux/security.h>
36 #include <linux/prefetch.h>
37 #include <asm/pgtable.h>
38 #include "gru.h"
39 #include "grutables.h"
40 #include "grulib.h"
41 #include "gru_instructions.h"
42 #include <asm/uv/uv_hub.h>
43 
44 /* Return codes for vtop functions */
45 #define VTOP_SUCCESS               0
46 #define VTOP_INVALID               -1
47 #define VTOP_RETRY                 -2
48 
49 
50 /*
51  * Test if a physical address is a valid GRU GSEG address
52  */
is_gru_paddr(unsigned long paddr)53 static inline int is_gru_paddr(unsigned long paddr)
54 {
55 	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
56 }
57 
58 /*
59  * Find the vma of a GRU segment. Caller must hold mmap_sem.
60  */
gru_find_vma(unsigned long vaddr)61 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
62 {
63 	struct vm_area_struct *vma;
64 
65 	vma = find_vma(current->mm, vaddr);
66 	if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
67 		return vma;
68 	return NULL;
69 }
70 
71 /*
72  * Find and lock the gts that contains the specified user vaddr.
73  *
74  * Returns:
75  * 	- *gts with the mmap_sem locked for read and the GTS locked.
76  *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
77  */
78 
gru_find_lock_gts(unsigned long vaddr)79 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
80 {
81 	struct mm_struct *mm = current->mm;
82 	struct vm_area_struct *vma;
83 	struct gru_thread_state *gts = NULL;
84 
85 	down_read(&mm->mmap_sem);
86 	vma = gru_find_vma(vaddr);
87 	if (vma)
88 		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
89 	if (gts)
90 		mutex_lock(&gts->ts_ctxlock);
91 	else
92 		up_read(&mm->mmap_sem);
93 	return gts;
94 }
95 
gru_alloc_locked_gts(unsigned long vaddr)96 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
97 {
98 	struct mm_struct *mm = current->mm;
99 	struct vm_area_struct *vma;
100 	struct gru_thread_state *gts = ERR_PTR(-EINVAL);
101 
102 	down_write(&mm->mmap_sem);
103 	vma = gru_find_vma(vaddr);
104 	if (!vma)
105 		goto err;
106 
107 	gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
108 	if (IS_ERR(gts))
109 		goto err;
110 	mutex_lock(&gts->ts_ctxlock);
111 	downgrade_write(&mm->mmap_sem);
112 	return gts;
113 
114 err:
115 	up_write(&mm->mmap_sem);
116 	return gts;
117 }
118 
119 /*
120  * Unlock a GTS that was previously locked with gru_find_lock_gts().
121  */
gru_unlock_gts(struct gru_thread_state * gts)122 static void gru_unlock_gts(struct gru_thread_state *gts)
123 {
124 	mutex_unlock(&gts->ts_ctxlock);
125 	up_read(&current->mm->mmap_sem);
126 }
127 
128 /*
129  * Set a CB.istatus to active using a user virtual address. This must be done
130  * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
131  * If the line is evicted, the status may be lost. The in-cache update
132  * is necessary to prevent the user from seeing a stale cb.istatus that will
133  * change as soon as the TFH restart is complete. Races may cause an
134  * occasional failure to clear the cb.istatus, but that is ok.
135  */
gru_cb_set_istatus_active(struct gru_instruction_bits * cbk)136 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
137 {
138 	if (cbk) {
139 		cbk->istatus = CBS_ACTIVE;
140 	}
141 }
142 
143 /*
144  * Read & clear a TFM
145  *
146  * The GRU has an array of fault maps. A map is private to a cpu
147  * Only one cpu will be accessing a cpu's fault map.
148  *
149  * This function scans the cpu-private fault map & clears all bits that
150  * are set. The function returns a bitmap that indicates the bits that
151  * were cleared. Note that sense the maps may be updated asynchronously by
152  * the GRU, atomic operations must be used to clear bits.
153  */
get_clear_fault_map(struct gru_state * gru,struct gru_tlb_fault_map * imap,struct gru_tlb_fault_map * dmap)154 static void get_clear_fault_map(struct gru_state *gru,
155 				struct gru_tlb_fault_map *imap,
156 				struct gru_tlb_fault_map *dmap)
157 {
158 	unsigned long i, k;
159 	struct gru_tlb_fault_map *tfm;
160 
161 	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
162 	prefetchw(tfm);		/* Helps on hardware, required for emulator */
163 	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
164 		k = tfm->fault_bits[i];
165 		if (k)
166 			k = xchg(&tfm->fault_bits[i], 0UL);
167 		imap->fault_bits[i] = k;
168 		k = tfm->done_bits[i];
169 		if (k)
170 			k = xchg(&tfm->done_bits[i], 0UL);
171 		dmap->fault_bits[i] = k;
172 	}
173 
174 	/*
175 	 * Not functionally required but helps performance. (Required
176 	 * on emulator)
177 	 */
178 	gru_flush_cache(tfm);
179 }
180 
181 /*
182  * Atomic (interrupt context) & non-atomic (user context) functions to
183  * convert a vaddr into a physical address. The size of the page
184  * is returned in pageshift.
185  * 	returns:
186  * 		  0 - successful
187  * 		< 0 - error code
188  * 		  1 - (atomic only) try again in non-atomic context
189  */
non_atomic_pte_lookup(struct vm_area_struct * vma,unsigned long vaddr,int write,unsigned long * paddr,int * pageshift)190 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
191 				 unsigned long vaddr, int write,
192 				 unsigned long *paddr, int *pageshift)
193 {
194 	struct page *page;
195 
196 #ifdef CONFIG_HUGETLB_PAGE
197 	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
198 #else
199 	*pageshift = PAGE_SHIFT;
200 #endif
201 	if (get_user_pages
202 	    (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
203 		return -EFAULT;
204 	*paddr = page_to_phys(page);
205 	put_page(page);
206 	return 0;
207 }
208 
209 /*
210  * atomic_pte_lookup
211  *
212  * Convert a user virtual address to a physical address
213  * Only supports Intel large pages (2MB only) on x86_64.
214  *	ZZZ - hugepage support is incomplete
215  *
216  * NOTE: mmap_sem is already held on entry to this function. This
217  * guarantees existence of the page tables.
218  */
atomic_pte_lookup(struct vm_area_struct * vma,unsigned long vaddr,int write,unsigned long * paddr,int * pageshift)219 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
220 	int write, unsigned long *paddr, int *pageshift)
221 {
222 	pgd_t *pgdp;
223 	pmd_t *pmdp;
224 	pud_t *pudp;
225 	pte_t pte;
226 
227 	pgdp = pgd_offset(vma->vm_mm, vaddr);
228 	if (unlikely(pgd_none(*pgdp)))
229 		goto err;
230 
231 	pudp = pud_offset(pgdp, vaddr);
232 	if (unlikely(pud_none(*pudp)))
233 		goto err;
234 
235 	pmdp = pmd_offset(pudp, vaddr);
236 	if (unlikely(pmd_none(*pmdp)))
237 		goto err;
238 #ifdef CONFIG_X86_64
239 	if (unlikely(pmd_large(*pmdp)))
240 		pte = *(pte_t *) pmdp;
241 	else
242 #endif
243 		pte = *pte_offset_kernel(pmdp, vaddr);
244 
245 	if (unlikely(!pte_present(pte) ||
246 		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
247 		return 1;
248 
249 	*paddr = pte_pfn(pte) << PAGE_SHIFT;
250 #ifdef CONFIG_HUGETLB_PAGE
251 	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
252 #else
253 	*pageshift = PAGE_SHIFT;
254 #endif
255 	return 0;
256 
257 err:
258 	return 1;
259 }
260 
gru_vtop(struct gru_thread_state * gts,unsigned long vaddr,int write,int atomic,unsigned long * gpa,int * pageshift)261 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
262 		    int write, int atomic, unsigned long *gpa, int *pageshift)
263 {
264 	struct mm_struct *mm = gts->ts_mm;
265 	struct vm_area_struct *vma;
266 	unsigned long paddr;
267 	int ret, ps;
268 
269 	vma = find_vma(mm, vaddr);
270 	if (!vma)
271 		goto inval;
272 
273 	/*
274 	 * Atomic lookup is faster & usually works even if called in non-atomic
275 	 * context.
276 	 */
277 	rmb();	/* Must/check ms_range_active before loading PTEs */
278 	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
279 	if (ret) {
280 		if (atomic)
281 			goto upm;
282 		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
283 			goto inval;
284 	}
285 	if (is_gru_paddr(paddr))
286 		goto inval;
287 	paddr = paddr & ~((1UL << ps) - 1);
288 	*gpa = uv_soc_phys_ram_to_gpa(paddr);
289 	*pageshift = ps;
290 	return VTOP_SUCCESS;
291 
292 inval:
293 	return VTOP_INVALID;
294 upm:
295 	return VTOP_RETRY;
296 }
297 
298 
299 /*
300  * Flush a CBE from cache. The CBE is clean in the cache. Dirty the
301  * CBE cacheline so that the line will be written back to home agent.
302  * Otherwise the line may be silently dropped. This has no impact
303  * except on performance.
304  */
gru_flush_cache_cbe(struct gru_control_block_extended * cbe)305 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe)
306 {
307 	if (unlikely(cbe)) {
308 		cbe->cbrexecstatus = 0;         /* make CL dirty */
309 		gru_flush_cache(cbe);
310 	}
311 }
312 
313 /*
314  * Preload the TLB with entries that may be required. Currently, preloading
315  * is implemented only for BCOPY. Preload  <tlb_preload_count> pages OR to
316  * the end of the bcopy tranfer, whichever is smaller.
317  */
gru_preload_tlb(struct gru_state * gru,struct gru_thread_state * gts,int atomic,unsigned long fault_vaddr,int asid,int write,unsigned char tlb_preload_count,struct gru_tlb_fault_handle * tfh,struct gru_control_block_extended * cbe)318 static void gru_preload_tlb(struct gru_state *gru,
319 			struct gru_thread_state *gts, int atomic,
320 			unsigned long fault_vaddr, int asid, int write,
321 			unsigned char tlb_preload_count,
322 			struct gru_tlb_fault_handle *tfh,
323 			struct gru_control_block_extended *cbe)
324 {
325 	unsigned long vaddr = 0, gpa;
326 	int ret, pageshift;
327 
328 	if (cbe->opccpy != OP_BCOPY)
329 		return;
330 
331 	if (fault_vaddr == cbe->cbe_baddr0)
332 		vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1;
333 	else if (fault_vaddr == cbe->cbe_baddr1)
334 		vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1;
335 
336 	fault_vaddr &= PAGE_MASK;
337 	vaddr &= PAGE_MASK;
338 	vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE);
339 
340 	while (vaddr > fault_vaddr) {
341 		ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
342 		if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write,
343 					  GRU_PAGESIZE(pageshift)))
344 			return;
345 		gru_dbg(grudev,
346 			"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n",
347 			atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh,
348 			vaddr, asid, write, pageshift, gpa);
349 		vaddr -= PAGE_SIZE;
350 		STAT(tlb_preload_page);
351 	}
352 }
353 
354 /*
355  * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
356  *	Input:
357  *		cb    Address of user CBR. Null if not running in user context
358  * 	Return:
359  * 		  0 = dropin, exception, or switch to UPM successful
360  * 		  1 = range invalidate active
361  * 		< 0 = error code
362  *
363  */
gru_try_dropin(struct gru_state * gru,struct gru_thread_state * gts,struct gru_tlb_fault_handle * tfh,struct gru_instruction_bits * cbk)364 static int gru_try_dropin(struct gru_state *gru,
365 			  struct gru_thread_state *gts,
366 			  struct gru_tlb_fault_handle *tfh,
367 			  struct gru_instruction_bits *cbk)
368 {
369 	struct gru_control_block_extended *cbe = NULL;
370 	unsigned char tlb_preload_count = gts->ts_tlb_preload_count;
371 	int pageshift = 0, asid, write, ret, atomic = !cbk, indexway;
372 	unsigned long gpa = 0, vaddr = 0;
373 
374 	/*
375 	 * NOTE: The GRU contains magic hardware that eliminates races between
376 	 * TLB invalidates and TLB dropins. If an invalidate occurs
377 	 * in the window between reading the TFH and the subsequent TLB dropin,
378 	 * the dropin is ignored. This eliminates the need for additional locks.
379 	 */
380 
381 	/*
382 	 * Prefetch the CBE if doing TLB preloading
383 	 */
384 	if (unlikely(tlb_preload_count)) {
385 		cbe = gru_tfh_to_cbe(tfh);
386 		prefetchw(cbe);
387 	}
388 
389 	/*
390 	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
391 	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
392 	 * is a transient state.
393 	 */
394 	if (tfh->status != TFHSTATUS_EXCEPTION) {
395 		gru_flush_cache(tfh);
396 		sync_core();
397 		if (tfh->status != TFHSTATUS_EXCEPTION)
398 			goto failnoexception;
399 		STAT(tfh_stale_on_fault);
400 	}
401 	if (tfh->state == TFHSTATE_IDLE)
402 		goto failidle;
403 	if (tfh->state == TFHSTATE_MISS_FMM && cbk)
404 		goto failfmm;
405 
406 	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
407 	vaddr = tfh->missvaddr;
408 	asid = tfh->missasid;
409 	indexway = tfh->indexway;
410 	if (asid == 0)
411 		goto failnoasid;
412 
413 	rmb();	/* TFH must be cache resident before reading ms_range_active */
414 
415 	/*
416 	 * TFH is cache resident - at least briefly. Fail the dropin
417 	 * if a range invalidate is active.
418 	 */
419 	if (atomic_read(&gts->ts_gms->ms_range_active))
420 		goto failactive;
421 
422 	ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
423 	if (ret == VTOP_INVALID)
424 		goto failinval;
425 	if (ret == VTOP_RETRY)
426 		goto failupm;
427 
428 	if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
429 		gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
430 		if (atomic || !gru_update_cch(gts)) {
431 			gts->ts_force_cch_reload = 1;
432 			goto failupm;
433 		}
434 	}
435 
436 	if (unlikely(cbe) && pageshift == PAGE_SHIFT) {
437 		gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe);
438 		gru_flush_cache_cbe(cbe);
439 	}
440 
441 	gru_cb_set_istatus_active(cbk);
442 	gts->ustats.tlbdropin++;
443 	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
444 			  GRU_PAGESIZE(pageshift));
445 	gru_dbg(grudev,
446 		"%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x,"
447 		" rw %d, ps %d, gpa 0x%lx\n",
448 		atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid,
449 		indexway, write, pageshift, gpa);
450 	STAT(tlb_dropin);
451 	return 0;
452 
453 failnoasid:
454 	/* No asid (delayed unload). */
455 	STAT(tlb_dropin_fail_no_asid);
456 	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
457 	if (!cbk)
458 		tfh_user_polling_mode(tfh);
459 	else
460 		gru_flush_cache(tfh);
461 	gru_flush_cache_cbe(cbe);
462 	return -EAGAIN;
463 
464 failupm:
465 	/* Atomic failure switch CBR to UPM */
466 	tfh_user_polling_mode(tfh);
467 	gru_flush_cache_cbe(cbe);
468 	STAT(tlb_dropin_fail_upm);
469 	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
470 	return 1;
471 
472 failfmm:
473 	/* FMM state on UPM call */
474 	gru_flush_cache(tfh);
475 	gru_flush_cache_cbe(cbe);
476 	STAT(tlb_dropin_fail_fmm);
477 	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
478 	return 0;
479 
480 failnoexception:
481 	/* TFH status did not show exception pending */
482 	gru_flush_cache(tfh);
483 	gru_flush_cache_cbe(cbe);
484 	if (cbk)
485 		gru_flush_cache(cbk);
486 	STAT(tlb_dropin_fail_no_exception);
487 	gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
488 		tfh, tfh->status, tfh->state);
489 	return 0;
490 
491 failidle:
492 	/* TFH state was idle  - no miss pending */
493 	gru_flush_cache(tfh);
494 	gru_flush_cache_cbe(cbe);
495 	if (cbk)
496 		gru_flush_cache(cbk);
497 	STAT(tlb_dropin_fail_idle);
498 	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
499 	return 0;
500 
501 failinval:
502 	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
503 	tfh_exception(tfh);
504 	gru_flush_cache_cbe(cbe);
505 	STAT(tlb_dropin_fail_invalid);
506 	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
507 	return -EFAULT;
508 
509 failactive:
510 	/* Range invalidate active. Switch to UPM iff atomic */
511 	if (!cbk)
512 		tfh_user_polling_mode(tfh);
513 	else
514 		gru_flush_cache(tfh);
515 	gru_flush_cache_cbe(cbe);
516 	STAT(tlb_dropin_fail_range_active);
517 	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
518 		tfh, vaddr);
519 	return 1;
520 }
521 
522 /*
523  * Process an external interrupt from the GRU. This interrupt is
524  * caused by a TLB miss.
525  * Note that this is the interrupt handler that is registered with linux
526  * interrupt handlers.
527  */
gru_intr(int chiplet,int blade)528 static irqreturn_t gru_intr(int chiplet, int blade)
529 {
530 	struct gru_state *gru;
531 	struct gru_tlb_fault_map imap, dmap;
532 	struct gru_thread_state *gts;
533 	struct gru_tlb_fault_handle *tfh = NULL;
534 	struct completion *cmp;
535 	int cbrnum, ctxnum;
536 
537 	STAT(intr);
538 
539 	gru = &gru_base[blade]->bs_grus[chiplet];
540 	if (!gru) {
541 		dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n",
542 			raw_smp_processor_id(), chiplet);
543 		return IRQ_NONE;
544 	}
545 	get_clear_fault_map(gru, &imap, &dmap);
546 	gru_dbg(grudev,
547 		"cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n",
548 		smp_processor_id(), chiplet, gru->gs_gid,
549 		imap.fault_bits[0], imap.fault_bits[1],
550 		dmap.fault_bits[0], dmap.fault_bits[1]);
551 
552 	for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
553 		STAT(intr_cbr);
554 		cmp = gru->gs_blade->bs_async_wq;
555 		if (cmp)
556 			complete(cmp);
557 		gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
558 			gru->gs_gid, cbrnum, cmp ? cmp->done : -1);
559 	}
560 
561 	for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
562 		STAT(intr_tfh);
563 		tfh = get_tfh_by_index(gru, cbrnum);
564 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
565 
566 		/*
567 		 * When hardware sets a bit in the faultmap, it implicitly
568 		 * locks the GRU context so that it cannot be unloaded.
569 		 * The gts cannot change until a TFH start/writestart command
570 		 * is issued.
571 		 */
572 		ctxnum = tfh->ctxnum;
573 		gts = gru->gs_gts[ctxnum];
574 
575 		/* Spurious interrupts can cause this. Ignore. */
576 		if (!gts) {
577 			STAT(intr_spurious);
578 			continue;
579 		}
580 
581 		/*
582 		 * This is running in interrupt context. Trylock the mmap_sem.
583 		 * If it fails, retry the fault in user context.
584 		 */
585 		gts->ustats.fmm_tlbmiss++;
586 		if (!gts->ts_force_cch_reload &&
587 					down_read_trylock(&gts->ts_mm->mmap_sem)) {
588 			gru_try_dropin(gru, gts, tfh, NULL);
589 			up_read(&gts->ts_mm->mmap_sem);
590 		} else {
591 			tfh_user_polling_mode(tfh);
592 			STAT(intr_mm_lock_failed);
593 		}
594 	}
595 	return IRQ_HANDLED;
596 }
597 
gru0_intr(int irq,void * dev_id)598 irqreturn_t gru0_intr(int irq, void *dev_id)
599 {
600 	return gru_intr(0, uv_numa_blade_id());
601 }
602 
gru1_intr(int irq,void * dev_id)603 irqreturn_t gru1_intr(int irq, void *dev_id)
604 {
605 	return gru_intr(1, uv_numa_blade_id());
606 }
607 
gru_intr_mblade(int irq,void * dev_id)608 irqreturn_t gru_intr_mblade(int irq, void *dev_id)
609 {
610 	int blade;
611 
612 	for_each_possible_blade(blade) {
613 		if (uv_blade_nr_possible_cpus(blade))
614 			continue;
615 		 gru_intr(0, blade);
616 		 gru_intr(1, blade);
617 	}
618 	return IRQ_HANDLED;
619 }
620 
621 
gru_user_dropin(struct gru_thread_state * gts,struct gru_tlb_fault_handle * tfh,void * cb)622 static int gru_user_dropin(struct gru_thread_state *gts,
623 			   struct gru_tlb_fault_handle *tfh,
624 			   void *cb)
625 {
626 	struct gru_mm_struct *gms = gts->ts_gms;
627 	int ret;
628 
629 	gts->ustats.upm_tlbmiss++;
630 	while (1) {
631 		wait_event(gms->ms_wait_queue,
632 			   atomic_read(&gms->ms_range_active) == 0);
633 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
634 		ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb);
635 		if (ret <= 0)
636 			return ret;
637 		STAT(call_os_wait_queue);
638 	}
639 }
640 
641 /*
642  * This interface is called as a result of a user detecting a "call OS" bit
643  * in a user CB. Normally means that a TLB fault has occurred.
644  * 	cb - user virtual address of the CB
645  */
gru_handle_user_call_os(unsigned long cb)646 int gru_handle_user_call_os(unsigned long cb)
647 {
648 	struct gru_tlb_fault_handle *tfh;
649 	struct gru_thread_state *gts;
650 	void *cbk;
651 	int ucbnum, cbrnum, ret = -EINVAL;
652 
653 	STAT(call_os);
654 
655 	/* sanity check the cb pointer */
656 	ucbnum = get_cb_number((void *)cb);
657 	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
658 		return -EINVAL;
659 
660 	gts = gru_find_lock_gts(cb);
661 	if (!gts)
662 		return -EINVAL;
663 	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
664 
665 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
666 		goto exit;
667 
668 	gru_check_context_placement(gts);
669 
670 	/*
671 	 * CCH may contain stale data if ts_force_cch_reload is set.
672 	 */
673 	if (gts->ts_gru && gts->ts_force_cch_reload) {
674 		gts->ts_force_cch_reload = 0;
675 		gru_update_cch(gts);
676 	}
677 
678 	ret = -EAGAIN;
679 	cbrnum = thread_cbr_number(gts, ucbnum);
680 	if (gts->ts_gru) {
681 		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
682 		cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
683 				gts->ts_ctxnum, ucbnum);
684 		ret = gru_user_dropin(gts, tfh, cbk);
685 	}
686 exit:
687 	gru_unlock_gts(gts);
688 	return ret;
689 }
690 
691 /*
692  * Fetch the exception detail information for a CB that terminated with
693  * an exception.
694  */
gru_get_exception_detail(unsigned long arg)695 int gru_get_exception_detail(unsigned long arg)
696 {
697 	struct control_block_extended_exc_detail excdet;
698 	struct gru_control_block_extended *cbe;
699 	struct gru_thread_state *gts;
700 	int ucbnum, cbrnum, ret;
701 
702 	STAT(user_exception);
703 	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
704 		return -EFAULT;
705 
706 	gts = gru_find_lock_gts(excdet.cb);
707 	if (!gts)
708 		return -EINVAL;
709 
710 	gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts);
711 	ucbnum = get_cb_number((void *)excdet.cb);
712 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
713 		ret = -EINVAL;
714 	} else if (gts->ts_gru) {
715 		cbrnum = thread_cbr_number(gts, ucbnum);
716 		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
717 		gru_flush_cache(cbe);	/* CBE not coherent */
718 		sync_core();		/* make sure we are have current data */
719 		excdet.opc = cbe->opccpy;
720 		excdet.exopc = cbe->exopccpy;
721 		excdet.ecause = cbe->ecause;
722 		excdet.exceptdet0 = cbe->idef1upd;
723 		excdet.exceptdet1 = cbe->idef3upd;
724 		excdet.cbrstate = cbe->cbrstate;
725 		excdet.cbrexecstatus = cbe->cbrexecstatus;
726 		gru_flush_cache_cbe(cbe);
727 		ret = 0;
728 	} else {
729 		ret = -EAGAIN;
730 	}
731 	gru_unlock_gts(gts);
732 
733 	gru_dbg(grudev,
734 		"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
735 		"exdet0 0x%lx, exdet1 0x%x\n",
736 		excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
737 		excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
738 	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
739 		ret = -EFAULT;
740 	return ret;
741 }
742 
743 /*
744  * User request to unload a context. Content is saved for possible reload.
745  */
gru_unload_all_contexts(void)746 static int gru_unload_all_contexts(void)
747 {
748 	struct gru_thread_state *gts;
749 	struct gru_state *gru;
750 	int gid, ctxnum;
751 
752 	if (!capable(CAP_SYS_ADMIN))
753 		return -EPERM;
754 	foreach_gid(gid) {
755 		gru = GID_TO_GRU(gid);
756 		spin_lock(&gru->gs_lock);
757 		for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
758 			gts = gru->gs_gts[ctxnum];
759 			if (gts && mutex_trylock(&gts->ts_ctxlock)) {
760 				spin_unlock(&gru->gs_lock);
761 				gru_unload_context(gts, 1);
762 				mutex_unlock(&gts->ts_ctxlock);
763 				spin_lock(&gru->gs_lock);
764 			}
765 		}
766 		spin_unlock(&gru->gs_lock);
767 	}
768 	return 0;
769 }
770 
gru_user_unload_context(unsigned long arg)771 int gru_user_unload_context(unsigned long arg)
772 {
773 	struct gru_thread_state *gts;
774 	struct gru_unload_context_req req;
775 
776 	STAT(user_unload_context);
777 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
778 		return -EFAULT;
779 
780 	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
781 
782 	if (!req.gseg)
783 		return gru_unload_all_contexts();
784 
785 	gts = gru_find_lock_gts(req.gseg);
786 	if (!gts)
787 		return -EINVAL;
788 
789 	if (gts->ts_gru)
790 		gru_unload_context(gts, 1);
791 	gru_unlock_gts(gts);
792 
793 	return 0;
794 }
795 
796 /*
797  * User request to flush a range of virtual addresses from the GRU TLB
798  * (Mainly for testing).
799  */
gru_user_flush_tlb(unsigned long arg)800 int gru_user_flush_tlb(unsigned long arg)
801 {
802 	struct gru_thread_state *gts;
803 	struct gru_flush_tlb_req req;
804 	struct gru_mm_struct *gms;
805 
806 	STAT(user_flush_tlb);
807 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
808 		return -EFAULT;
809 
810 	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
811 		req.vaddr, req.len);
812 
813 	gts = gru_find_lock_gts(req.gseg);
814 	if (!gts)
815 		return -EINVAL;
816 
817 	gms = gts->ts_gms;
818 	gru_unlock_gts(gts);
819 	gru_flush_tlb_range(gms, req.vaddr, req.len);
820 
821 	return 0;
822 }
823 
824 /*
825  * Fetch GSEG statisticss
826  */
gru_get_gseg_statistics(unsigned long arg)827 long gru_get_gseg_statistics(unsigned long arg)
828 {
829 	struct gru_thread_state *gts;
830 	struct gru_get_gseg_statistics_req req;
831 
832 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
833 		return -EFAULT;
834 
835 	/*
836 	 * The library creates arrays of contexts for threaded programs.
837 	 * If no gts exists in the array, the context has never been used & all
838 	 * statistics are implicitly 0.
839 	 */
840 	gts = gru_find_lock_gts(req.gseg);
841 	if (gts) {
842 		memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
843 		gru_unlock_gts(gts);
844 	} else {
845 		memset(&req.stats, 0, sizeof(gts->ustats));
846 	}
847 
848 	if (copy_to_user((void __user *)arg, &req, sizeof(req)))
849 		return -EFAULT;
850 
851 	return 0;
852 }
853 
854 /*
855  * Register the current task as the user of the GSEG slice.
856  * Needed for TLB fault interrupt targeting.
857  */
gru_set_context_option(unsigned long arg)858 int gru_set_context_option(unsigned long arg)
859 {
860 	struct gru_thread_state *gts;
861 	struct gru_set_context_option_req req;
862 	int ret = 0;
863 
864 	STAT(set_context_option);
865 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
866 		return -EFAULT;
867 	gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
868 
869 	gts = gru_find_lock_gts(req.gseg);
870 	if (!gts) {
871 		gts = gru_alloc_locked_gts(req.gseg);
872 		if (IS_ERR(gts))
873 			return PTR_ERR(gts);
874 	}
875 
876 	switch (req.op) {
877 	case sco_blade_chiplet:
878 		/* Select blade/chiplet for GRU context */
879 		if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] ||
880 		    req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) {
881 			ret = -EINVAL;
882 		} else {
883 			gts->ts_user_blade_id = req.val1;
884 			gts->ts_user_chiplet_id = req.val0;
885 			gru_check_context_placement(gts);
886 		}
887 		break;
888 	case sco_gseg_owner:
889  		/* Register the current task as the GSEG owner */
890 		gts->ts_tgid_owner = current->tgid;
891 		break;
892 	case sco_cch_req_slice:
893  		/* Set the CCH slice option */
894 		gts->ts_cch_req_slice = req.val1 & 3;
895 		break;
896 	default:
897 		ret = -EINVAL;
898 	}
899 	gru_unlock_gts(gts);
900 
901 	return ret;
902 }
903