1 /*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-thin-metadata.h"
8
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16
17 #define DM_MSG_PREFIX "thin"
18
19 /*
20 * Tunable constants
21 */
22 #define ENDIO_HOOK_POOL_SIZE 1024
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27
28 /*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
35 /*
36 * Device id is restricted to 24 bits.
37 */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39
40 /*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
66 * (process_prepared_mapping). This act of inserting breaks some
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98 /*----------------------------------------------------------------*/
99
100 /*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106 struct bio_prison;
107
108 struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112 };
113
114 struct cell {
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
118 struct bio *holder;
119 struct bio_list bios;
120 };
121
122 struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129 };
130
calc_nr_buckets(unsigned nr_cells)131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142 }
143
144 /*
145 * @nr_cells should be the number of cells you want in use _concurrently_.
146 * Don't confuse it with the number of distinct keys.
147 */
prison_create(unsigned nr_cells)148 static struct bio_prison *prison_create(unsigned nr_cells)
149 {
150 unsigned i;
151 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
152 size_t len = sizeof(struct bio_prison) +
153 (sizeof(struct hlist_head) * nr_buckets);
154 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
155
156 if (!prison)
157 return NULL;
158
159 spin_lock_init(&prison->lock);
160 prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
161 sizeof(struct cell));
162 if (!prison->cell_pool) {
163 kfree(prison);
164 return NULL;
165 }
166
167 prison->nr_buckets = nr_buckets;
168 prison->hash_mask = nr_buckets - 1;
169 prison->cells = (struct hlist_head *) (prison + 1);
170 for (i = 0; i < nr_buckets; i++)
171 INIT_HLIST_HEAD(prison->cells + i);
172
173 return prison;
174 }
175
prison_destroy(struct bio_prison * prison)176 static void prison_destroy(struct bio_prison *prison)
177 {
178 mempool_destroy(prison->cell_pool);
179 kfree(prison);
180 }
181
hash_key(struct bio_prison * prison,struct cell_key * key)182 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
183 {
184 const unsigned long BIG_PRIME = 4294967291UL;
185 uint64_t hash = key->block * BIG_PRIME;
186
187 return (uint32_t) (hash & prison->hash_mask);
188 }
189
keys_equal(struct cell_key * lhs,struct cell_key * rhs)190 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
191 {
192 return (lhs->virtual == rhs->virtual) &&
193 (lhs->dev == rhs->dev) &&
194 (lhs->block == rhs->block);
195 }
196
__search_bucket(struct hlist_head * bucket,struct cell_key * key)197 static struct cell *__search_bucket(struct hlist_head *bucket,
198 struct cell_key *key)
199 {
200 struct cell *cell;
201 struct hlist_node *tmp;
202
203 hlist_for_each_entry(cell, tmp, bucket, list)
204 if (keys_equal(&cell->key, key))
205 return cell;
206
207 return NULL;
208 }
209
210 /*
211 * This may block if a new cell needs allocating. You must ensure that
212 * cells will be unlocked even if the calling thread is blocked.
213 *
214 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
215 */
bio_detain(struct bio_prison * prison,struct cell_key * key,struct bio * inmate,struct cell ** ref)216 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
217 struct bio *inmate, struct cell **ref)
218 {
219 int r = 1;
220 unsigned long flags;
221 uint32_t hash = hash_key(prison, key);
222 struct cell *cell, *cell2;
223
224 BUG_ON(hash > prison->nr_buckets);
225
226 spin_lock_irqsave(&prison->lock, flags);
227
228 cell = __search_bucket(prison->cells + hash, key);
229 if (cell) {
230 bio_list_add(&cell->bios, inmate);
231 goto out;
232 }
233
234 /*
235 * Allocate a new cell
236 */
237 spin_unlock_irqrestore(&prison->lock, flags);
238 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
239 spin_lock_irqsave(&prison->lock, flags);
240
241 /*
242 * We've been unlocked, so we have to double check that
243 * nobody else has inserted this cell in the meantime.
244 */
245 cell = __search_bucket(prison->cells + hash, key);
246 if (cell) {
247 mempool_free(cell2, prison->cell_pool);
248 bio_list_add(&cell->bios, inmate);
249 goto out;
250 }
251
252 /*
253 * Use new cell.
254 */
255 cell = cell2;
256
257 cell->prison = prison;
258 memcpy(&cell->key, key, sizeof(cell->key));
259 cell->holder = inmate;
260 bio_list_init(&cell->bios);
261 hlist_add_head(&cell->list, prison->cells + hash);
262
263 r = 0;
264
265 out:
266 spin_unlock_irqrestore(&prison->lock, flags);
267
268 *ref = cell;
269
270 return r;
271 }
272
273 /*
274 * @inmates must have been initialised prior to this call
275 */
__cell_release(struct cell * cell,struct bio_list * inmates)276 static void __cell_release(struct cell *cell, struct bio_list *inmates)
277 {
278 struct bio_prison *prison = cell->prison;
279
280 hlist_del(&cell->list);
281
282 if (inmates) {
283 bio_list_add(inmates, cell->holder);
284 bio_list_merge(inmates, &cell->bios);
285 }
286
287 mempool_free(cell, prison->cell_pool);
288 }
289
cell_release(struct cell * cell,struct bio_list * bios)290 static void cell_release(struct cell *cell, struct bio_list *bios)
291 {
292 unsigned long flags;
293 struct bio_prison *prison = cell->prison;
294
295 spin_lock_irqsave(&prison->lock, flags);
296 __cell_release(cell, bios);
297 spin_unlock_irqrestore(&prison->lock, flags);
298 }
299
300 /*
301 * There are a couple of places where we put a bio into a cell briefly
302 * before taking it out again. In these situations we know that no other
303 * bio may be in the cell. This function releases the cell, and also does
304 * a sanity check.
305 */
__cell_release_singleton(struct cell * cell,struct bio * bio)306 static void __cell_release_singleton(struct cell *cell, struct bio *bio)
307 {
308 BUG_ON(cell->holder != bio);
309 BUG_ON(!bio_list_empty(&cell->bios));
310
311 __cell_release(cell, NULL);
312 }
313
cell_release_singleton(struct cell * cell,struct bio * bio)314 static void cell_release_singleton(struct cell *cell, struct bio *bio)
315 {
316 unsigned long flags;
317 struct bio_prison *prison = cell->prison;
318
319 spin_lock_irqsave(&prison->lock, flags);
320 __cell_release_singleton(cell, bio);
321 spin_unlock_irqrestore(&prison->lock, flags);
322 }
323
324 /*
325 * Sometimes we don't want the holder, just the additional bios.
326 */
__cell_release_no_holder(struct cell * cell,struct bio_list * inmates)327 static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
328 {
329 struct bio_prison *prison = cell->prison;
330
331 hlist_del(&cell->list);
332 bio_list_merge(inmates, &cell->bios);
333
334 mempool_free(cell, prison->cell_pool);
335 }
336
cell_release_no_holder(struct cell * cell,struct bio_list * inmates)337 static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
338 {
339 unsigned long flags;
340 struct bio_prison *prison = cell->prison;
341
342 spin_lock_irqsave(&prison->lock, flags);
343 __cell_release_no_holder(cell, inmates);
344 spin_unlock_irqrestore(&prison->lock, flags);
345 }
346
cell_error(struct cell * cell)347 static void cell_error(struct cell *cell)
348 {
349 struct bio_prison *prison = cell->prison;
350 struct bio_list bios;
351 struct bio *bio;
352 unsigned long flags;
353
354 bio_list_init(&bios);
355
356 spin_lock_irqsave(&prison->lock, flags);
357 __cell_release(cell, &bios);
358 spin_unlock_irqrestore(&prison->lock, flags);
359
360 while ((bio = bio_list_pop(&bios)))
361 bio_io_error(bio);
362 }
363
364 /*----------------------------------------------------------------*/
365
366 /*
367 * We use the deferred set to keep track of pending reads to shared blocks.
368 * We do this to ensure the new mapping caused by a write isn't performed
369 * until these prior reads have completed. Otherwise the insertion of the
370 * new mapping could free the old block that the read bios are mapped to.
371 */
372
373 struct deferred_set;
374 struct deferred_entry {
375 struct deferred_set *ds;
376 unsigned count;
377 struct list_head work_items;
378 };
379
380 struct deferred_set {
381 spinlock_t lock;
382 unsigned current_entry;
383 unsigned sweeper;
384 struct deferred_entry entries[DEFERRED_SET_SIZE];
385 };
386
ds_init(struct deferred_set * ds)387 static void ds_init(struct deferred_set *ds)
388 {
389 int i;
390
391 spin_lock_init(&ds->lock);
392 ds->current_entry = 0;
393 ds->sweeper = 0;
394 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
395 ds->entries[i].ds = ds;
396 ds->entries[i].count = 0;
397 INIT_LIST_HEAD(&ds->entries[i].work_items);
398 }
399 }
400
ds_inc(struct deferred_set * ds)401 static struct deferred_entry *ds_inc(struct deferred_set *ds)
402 {
403 unsigned long flags;
404 struct deferred_entry *entry;
405
406 spin_lock_irqsave(&ds->lock, flags);
407 entry = ds->entries + ds->current_entry;
408 entry->count++;
409 spin_unlock_irqrestore(&ds->lock, flags);
410
411 return entry;
412 }
413
ds_next(unsigned index)414 static unsigned ds_next(unsigned index)
415 {
416 return (index + 1) % DEFERRED_SET_SIZE;
417 }
418
__sweep(struct deferred_set * ds,struct list_head * head)419 static void __sweep(struct deferred_set *ds, struct list_head *head)
420 {
421 while ((ds->sweeper != ds->current_entry) &&
422 !ds->entries[ds->sweeper].count) {
423 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
424 ds->sweeper = ds_next(ds->sweeper);
425 }
426
427 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
428 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
429 }
430
ds_dec(struct deferred_entry * entry,struct list_head * head)431 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
432 {
433 unsigned long flags;
434
435 spin_lock_irqsave(&entry->ds->lock, flags);
436 BUG_ON(!entry->count);
437 --entry->count;
438 __sweep(entry->ds, head);
439 spin_unlock_irqrestore(&entry->ds->lock, flags);
440 }
441
442 /*
443 * Returns 1 if deferred or 0 if no pending items to delay job.
444 */
ds_add_work(struct deferred_set * ds,struct list_head * work)445 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
446 {
447 int r = 1;
448 unsigned long flags;
449 unsigned next_entry;
450
451 spin_lock_irqsave(&ds->lock, flags);
452 if ((ds->sweeper == ds->current_entry) &&
453 !ds->entries[ds->current_entry].count)
454 r = 0;
455 else {
456 list_add(work, &ds->entries[ds->current_entry].work_items);
457 next_entry = ds_next(ds->current_entry);
458 if (!ds->entries[next_entry].count)
459 ds->current_entry = next_entry;
460 }
461 spin_unlock_irqrestore(&ds->lock, flags);
462
463 return r;
464 }
465
466 /*----------------------------------------------------------------*/
467
468 /*
469 * Key building.
470 */
build_data_key(struct dm_thin_device * td,dm_block_t b,struct cell_key * key)471 static void build_data_key(struct dm_thin_device *td,
472 dm_block_t b, struct cell_key *key)
473 {
474 key->virtual = 0;
475 key->dev = dm_thin_dev_id(td);
476 key->block = b;
477 }
478
build_virtual_key(struct dm_thin_device * td,dm_block_t b,struct cell_key * key)479 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
480 struct cell_key *key)
481 {
482 key->virtual = 1;
483 key->dev = dm_thin_dev_id(td);
484 key->block = b;
485 }
486
487 /*----------------------------------------------------------------*/
488
489 /*
490 * A pool device ties together a metadata device and a data device. It
491 * also provides the interface for creating and destroying internal
492 * devices.
493 */
494 struct new_mapping;
495
496 struct pool_features {
497 unsigned zero_new_blocks:1;
498 unsigned discard_enabled:1;
499 unsigned discard_passdown:1;
500 };
501
502 struct pool {
503 struct list_head list;
504 struct dm_target *ti; /* Only set if a pool target is bound */
505
506 struct mapped_device *pool_md;
507 struct block_device *md_dev;
508 struct dm_pool_metadata *pmd;
509
510 uint32_t sectors_per_block;
511 unsigned block_shift;
512 dm_block_t offset_mask;
513 dm_block_t low_water_blocks;
514
515 struct pool_features pf;
516 unsigned low_water_triggered:1; /* A dm event has been sent */
517 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
518
519 struct bio_prison *prison;
520 struct dm_kcopyd_client *copier;
521
522 struct workqueue_struct *wq;
523 struct work_struct worker;
524 struct delayed_work waker;
525
526 unsigned ref_count;
527 unsigned long last_commit_jiffies;
528
529 spinlock_t lock;
530 struct bio_list deferred_bios;
531 struct bio_list deferred_flush_bios;
532 struct list_head prepared_mappings;
533 struct list_head prepared_discards;
534
535 struct bio_list retry_on_resume_list;
536
537 struct deferred_set shared_read_ds;
538 struct deferred_set all_io_ds;
539
540 struct new_mapping *next_mapping;
541 mempool_t *mapping_pool;
542 mempool_t *endio_hook_pool;
543 };
544
545 /*
546 * Target context for a pool.
547 */
548 struct pool_c {
549 struct dm_target *ti;
550 struct pool *pool;
551 struct dm_dev *data_dev;
552 struct dm_dev *metadata_dev;
553 struct dm_target_callbacks callbacks;
554
555 dm_block_t low_water_blocks;
556 struct pool_features pf;
557 };
558
559 /*
560 * Target context for a thin.
561 */
562 struct thin_c {
563 struct dm_dev *pool_dev;
564 struct dm_dev *origin_dev;
565 dm_thin_id dev_id;
566
567 struct pool *pool;
568 struct dm_thin_device *td;
569 };
570
571 /*----------------------------------------------------------------*/
572
573 /*
574 * A global list of pools that uses a struct mapped_device as a key.
575 */
576 static struct dm_thin_pool_table {
577 struct mutex mutex;
578 struct list_head pools;
579 } dm_thin_pool_table;
580
pool_table_init(void)581 static void pool_table_init(void)
582 {
583 mutex_init(&dm_thin_pool_table.mutex);
584 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
585 }
586
__pool_table_insert(struct pool * pool)587 static void __pool_table_insert(struct pool *pool)
588 {
589 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
590 list_add(&pool->list, &dm_thin_pool_table.pools);
591 }
592
__pool_table_remove(struct pool * pool)593 static void __pool_table_remove(struct pool *pool)
594 {
595 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
596 list_del(&pool->list);
597 }
598
__pool_table_lookup(struct mapped_device * md)599 static struct pool *__pool_table_lookup(struct mapped_device *md)
600 {
601 struct pool *pool = NULL, *tmp;
602
603 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
604
605 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
606 if (tmp->pool_md == md) {
607 pool = tmp;
608 break;
609 }
610 }
611
612 return pool;
613 }
614
__pool_table_lookup_metadata_dev(struct block_device * md_dev)615 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
616 {
617 struct pool *pool = NULL, *tmp;
618
619 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
620
621 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
622 if (tmp->md_dev == md_dev) {
623 pool = tmp;
624 break;
625 }
626 }
627
628 return pool;
629 }
630
631 /*----------------------------------------------------------------*/
632
633 struct endio_hook {
634 struct thin_c *tc;
635 struct deferred_entry *shared_read_entry;
636 struct deferred_entry *all_io_entry;
637 struct new_mapping *overwrite_mapping;
638 };
639
__requeue_bio_list(struct thin_c * tc,struct bio_list * master)640 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
641 {
642 struct bio *bio;
643 struct bio_list bios;
644
645 bio_list_init(&bios);
646 bio_list_merge(&bios, master);
647 bio_list_init(master);
648
649 while ((bio = bio_list_pop(&bios))) {
650 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
651 if (h->tc == tc)
652 bio_endio(bio, DM_ENDIO_REQUEUE);
653 else
654 bio_list_add(master, bio);
655 }
656 }
657
requeue_io(struct thin_c * tc)658 static void requeue_io(struct thin_c *tc)
659 {
660 struct pool *pool = tc->pool;
661 unsigned long flags;
662
663 spin_lock_irqsave(&pool->lock, flags);
664 __requeue_bio_list(tc, &pool->deferred_bios);
665 __requeue_bio_list(tc, &pool->retry_on_resume_list);
666 spin_unlock_irqrestore(&pool->lock, flags);
667 }
668
669 /*
670 * This section of code contains the logic for processing a thin device's IO.
671 * Much of the code depends on pool object resources (lists, workqueues, etc)
672 * but most is exclusively called from the thin target rather than the thin-pool
673 * target.
674 */
675
get_bio_block(struct thin_c * tc,struct bio * bio)676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
677 {
678 return bio->bi_sector >> tc->pool->block_shift;
679 }
680
remap(struct thin_c * tc,struct bio * bio,dm_block_t block)681 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
682 {
683 struct pool *pool = tc->pool;
684
685 bio->bi_bdev = tc->pool_dev->bdev;
686 bio->bi_sector = (block << pool->block_shift) +
687 (bio->bi_sector & pool->offset_mask);
688 }
689
remap_to_origin(struct thin_c * tc,struct bio * bio)690 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
691 {
692 bio->bi_bdev = tc->origin_dev->bdev;
693 }
694
issue(struct thin_c * tc,struct bio * bio)695 static void issue(struct thin_c *tc, struct bio *bio)
696 {
697 struct pool *pool = tc->pool;
698 unsigned long flags;
699
700 /*
701 * Batch together any FUA/FLUSH bios we find and then issue
702 * a single commit for them in process_deferred_bios().
703 */
704 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
705 spin_lock_irqsave(&pool->lock, flags);
706 bio_list_add(&pool->deferred_flush_bios, bio);
707 spin_unlock_irqrestore(&pool->lock, flags);
708 } else
709 generic_make_request(bio);
710 }
711
remap_to_origin_and_issue(struct thin_c * tc,struct bio * bio)712 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
713 {
714 remap_to_origin(tc, bio);
715 issue(tc, bio);
716 }
717
remap_and_issue(struct thin_c * tc,struct bio * bio,dm_block_t block)718 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
719 dm_block_t block)
720 {
721 remap(tc, bio, block);
722 issue(tc, bio);
723 }
724
725 /*
726 * wake_worker() is used when new work is queued and when pool_resume is
727 * ready to continue deferred IO processing.
728 */
wake_worker(struct pool * pool)729 static void wake_worker(struct pool *pool)
730 {
731 queue_work(pool->wq, &pool->worker);
732 }
733
734 /*----------------------------------------------------------------*/
735
736 /*
737 * Bio endio functions.
738 */
739 struct new_mapping {
740 struct list_head list;
741
742 unsigned quiesced:1;
743 unsigned prepared:1;
744 unsigned pass_discard:1;
745
746 struct thin_c *tc;
747 dm_block_t virt_block;
748 dm_block_t data_block;
749 struct cell *cell, *cell2;
750 int err;
751
752 /*
753 * If the bio covers the whole area of a block then we can avoid
754 * zeroing or copying. Instead this bio is hooked. The bio will
755 * still be in the cell, so care has to be taken to avoid issuing
756 * the bio twice.
757 */
758 struct bio *bio;
759 bio_end_io_t *saved_bi_end_io;
760 };
761
__maybe_add_mapping(struct new_mapping * m)762 static void __maybe_add_mapping(struct new_mapping *m)
763 {
764 struct pool *pool = m->tc->pool;
765
766 if (m->quiesced && m->prepared) {
767 list_add(&m->list, &pool->prepared_mappings);
768 wake_worker(pool);
769 }
770 }
771
copy_complete(int read_err,unsigned long write_err,void * context)772 static void copy_complete(int read_err, unsigned long write_err, void *context)
773 {
774 unsigned long flags;
775 struct new_mapping *m = context;
776 struct pool *pool = m->tc->pool;
777
778 m->err = read_err || write_err ? -EIO : 0;
779
780 spin_lock_irqsave(&pool->lock, flags);
781 m->prepared = 1;
782 __maybe_add_mapping(m);
783 spin_unlock_irqrestore(&pool->lock, flags);
784 }
785
overwrite_endio(struct bio * bio,int err)786 static void overwrite_endio(struct bio *bio, int err)
787 {
788 unsigned long flags;
789 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
790 struct new_mapping *m = h->overwrite_mapping;
791 struct pool *pool = m->tc->pool;
792
793 m->err = err;
794
795 spin_lock_irqsave(&pool->lock, flags);
796 m->prepared = 1;
797 __maybe_add_mapping(m);
798 spin_unlock_irqrestore(&pool->lock, flags);
799 }
800
801 /*----------------------------------------------------------------*/
802
803 /*
804 * Workqueue.
805 */
806
807 /*
808 * Prepared mapping jobs.
809 */
810
811 /*
812 * This sends the bios in the cell back to the deferred_bios list.
813 */
cell_defer(struct thin_c * tc,struct cell * cell,dm_block_t data_block)814 static void cell_defer(struct thin_c *tc, struct cell *cell,
815 dm_block_t data_block)
816 {
817 struct pool *pool = tc->pool;
818 unsigned long flags;
819
820 spin_lock_irqsave(&pool->lock, flags);
821 cell_release(cell, &pool->deferred_bios);
822 spin_unlock_irqrestore(&tc->pool->lock, flags);
823
824 wake_worker(pool);
825 }
826
827 /*
828 * Same as cell_defer above, except it omits one particular detainee,
829 * a write bio that covers the block and has already been processed.
830 */
cell_defer_except(struct thin_c * tc,struct cell * cell)831 static void cell_defer_except(struct thin_c *tc, struct cell *cell)
832 {
833 struct bio_list bios;
834 struct pool *pool = tc->pool;
835 unsigned long flags;
836
837 bio_list_init(&bios);
838
839 spin_lock_irqsave(&pool->lock, flags);
840 cell_release_no_holder(cell, &pool->deferred_bios);
841 spin_unlock_irqrestore(&pool->lock, flags);
842
843 wake_worker(pool);
844 }
845
process_prepared_mapping(struct new_mapping * m)846 static void process_prepared_mapping(struct new_mapping *m)
847 {
848 struct thin_c *tc = m->tc;
849 struct bio *bio;
850 int r;
851
852 bio = m->bio;
853 if (bio)
854 bio->bi_end_io = m->saved_bi_end_io;
855
856 if (m->err) {
857 cell_error(m->cell);
858 goto out;
859 }
860
861 /*
862 * Commit the prepared block into the mapping btree.
863 * Any I/O for this block arriving after this point will get
864 * remapped to it directly.
865 */
866 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
867 if (r) {
868 DMERR("dm_thin_insert_block() failed");
869 cell_error(m->cell);
870 goto out;
871 }
872
873 /*
874 * Release any bios held while the block was being provisioned.
875 * If we are processing a write bio that completely covers the block,
876 * we already processed it so can ignore it now when processing
877 * the bios in the cell.
878 */
879 if (bio) {
880 cell_defer_except(tc, m->cell);
881 bio_endio(bio, 0);
882 } else
883 cell_defer(tc, m->cell, m->data_block);
884
885 out:
886 list_del(&m->list);
887 mempool_free(m, tc->pool->mapping_pool);
888 }
889
process_prepared_discard(struct new_mapping * m)890 static void process_prepared_discard(struct new_mapping *m)
891 {
892 int r;
893 struct thin_c *tc = m->tc;
894
895 r = dm_thin_remove_block(tc->td, m->virt_block);
896 if (r)
897 DMERR("dm_thin_remove_block() failed");
898
899 /*
900 * Pass the discard down to the underlying device?
901 */
902 if (m->pass_discard)
903 remap_and_issue(tc, m->bio, m->data_block);
904 else
905 bio_endio(m->bio, 0);
906
907 cell_defer_except(tc, m->cell);
908 cell_defer_except(tc, m->cell2);
909 mempool_free(m, tc->pool->mapping_pool);
910 }
911
process_prepared(struct pool * pool,struct list_head * head,void (* fn)(struct new_mapping *))912 static void process_prepared(struct pool *pool, struct list_head *head,
913 void (*fn)(struct new_mapping *))
914 {
915 unsigned long flags;
916 struct list_head maps;
917 struct new_mapping *m, *tmp;
918
919 INIT_LIST_HEAD(&maps);
920 spin_lock_irqsave(&pool->lock, flags);
921 list_splice_init(head, &maps);
922 spin_unlock_irqrestore(&pool->lock, flags);
923
924 list_for_each_entry_safe(m, tmp, &maps, list)
925 fn(m);
926 }
927
928 /*
929 * Deferred bio jobs.
930 */
io_overlaps_block(struct pool * pool,struct bio * bio)931 static int io_overlaps_block(struct pool *pool, struct bio *bio)
932 {
933 return !(bio->bi_sector & pool->offset_mask) &&
934 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
935
936 }
937
io_overwrites_block(struct pool * pool,struct bio * bio)938 static int io_overwrites_block(struct pool *pool, struct bio *bio)
939 {
940 return (bio_data_dir(bio) == WRITE) &&
941 io_overlaps_block(pool, bio);
942 }
943
save_and_set_endio(struct bio * bio,bio_end_io_t ** save,bio_end_io_t * fn)944 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
945 bio_end_io_t *fn)
946 {
947 *save = bio->bi_end_io;
948 bio->bi_end_io = fn;
949 }
950
ensure_next_mapping(struct pool * pool)951 static int ensure_next_mapping(struct pool *pool)
952 {
953 if (pool->next_mapping)
954 return 0;
955
956 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
957
958 return pool->next_mapping ? 0 : -ENOMEM;
959 }
960
get_next_mapping(struct pool * pool)961 static struct new_mapping *get_next_mapping(struct pool *pool)
962 {
963 struct new_mapping *r = pool->next_mapping;
964
965 BUG_ON(!pool->next_mapping);
966
967 pool->next_mapping = NULL;
968
969 return r;
970 }
971
schedule_copy(struct thin_c * tc,dm_block_t virt_block,struct dm_dev * origin,dm_block_t data_origin,dm_block_t data_dest,struct cell * cell,struct bio * bio)972 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
973 struct dm_dev *origin, dm_block_t data_origin,
974 dm_block_t data_dest,
975 struct cell *cell, struct bio *bio)
976 {
977 int r;
978 struct pool *pool = tc->pool;
979 struct new_mapping *m = get_next_mapping(pool);
980
981 INIT_LIST_HEAD(&m->list);
982 m->quiesced = 0;
983 m->prepared = 0;
984 m->tc = tc;
985 m->virt_block = virt_block;
986 m->data_block = data_dest;
987 m->cell = cell;
988 m->err = 0;
989 m->bio = NULL;
990
991 if (!ds_add_work(&pool->shared_read_ds, &m->list))
992 m->quiesced = 1;
993
994 /*
995 * IO to pool_dev remaps to the pool target's data_dev.
996 *
997 * If the whole block of data is being overwritten, we can issue the
998 * bio immediately. Otherwise we use kcopyd to clone the data first.
999 */
1000 if (io_overwrites_block(pool, bio)) {
1001 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1002 h->overwrite_mapping = m;
1003 m->bio = bio;
1004 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1005 remap_and_issue(tc, bio, data_dest);
1006 } else {
1007 struct dm_io_region from, to;
1008
1009 from.bdev = origin->bdev;
1010 from.sector = data_origin * pool->sectors_per_block;
1011 from.count = pool->sectors_per_block;
1012
1013 to.bdev = tc->pool_dev->bdev;
1014 to.sector = data_dest * pool->sectors_per_block;
1015 to.count = pool->sectors_per_block;
1016
1017 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1018 0, copy_complete, m);
1019 if (r < 0) {
1020 mempool_free(m, pool->mapping_pool);
1021 DMERR("dm_kcopyd_copy() failed");
1022 cell_error(cell);
1023 }
1024 }
1025 }
1026
schedule_internal_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_origin,dm_block_t data_dest,struct cell * cell,struct bio * bio)1027 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1028 dm_block_t data_origin, dm_block_t data_dest,
1029 struct cell *cell, struct bio *bio)
1030 {
1031 schedule_copy(tc, virt_block, tc->pool_dev,
1032 data_origin, data_dest, cell, bio);
1033 }
1034
schedule_external_copy(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_dest,struct cell * cell,struct bio * bio)1035 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1036 dm_block_t data_dest,
1037 struct cell *cell, struct bio *bio)
1038 {
1039 schedule_copy(tc, virt_block, tc->origin_dev,
1040 virt_block, data_dest, cell, bio);
1041 }
1042
schedule_zero(struct thin_c * tc,dm_block_t virt_block,dm_block_t data_block,struct cell * cell,struct bio * bio)1043 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1044 dm_block_t data_block, struct cell *cell,
1045 struct bio *bio)
1046 {
1047 struct pool *pool = tc->pool;
1048 struct new_mapping *m = get_next_mapping(pool);
1049
1050 INIT_LIST_HEAD(&m->list);
1051 m->quiesced = 1;
1052 m->prepared = 0;
1053 m->tc = tc;
1054 m->virt_block = virt_block;
1055 m->data_block = data_block;
1056 m->cell = cell;
1057 m->err = 0;
1058 m->bio = NULL;
1059
1060 /*
1061 * If the whole block of data is being overwritten or we are not
1062 * zeroing pre-existing data, we can issue the bio immediately.
1063 * Otherwise we use kcopyd to zero the data first.
1064 */
1065 if (!pool->pf.zero_new_blocks)
1066 process_prepared_mapping(m);
1067
1068 else if (io_overwrites_block(pool, bio)) {
1069 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1070 h->overwrite_mapping = m;
1071 m->bio = bio;
1072 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1073 remap_and_issue(tc, bio, data_block);
1074
1075 } else {
1076 int r;
1077 struct dm_io_region to;
1078
1079 to.bdev = tc->pool_dev->bdev;
1080 to.sector = data_block * pool->sectors_per_block;
1081 to.count = pool->sectors_per_block;
1082
1083 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1084 if (r < 0) {
1085 mempool_free(m, pool->mapping_pool);
1086 DMERR("dm_kcopyd_zero() failed");
1087 cell_error(cell);
1088 }
1089 }
1090 }
1091
alloc_data_block(struct thin_c * tc,dm_block_t * result)1092 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1093 {
1094 int r;
1095 dm_block_t free_blocks;
1096 unsigned long flags;
1097 struct pool *pool = tc->pool;
1098
1099 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1100 if (r)
1101 return r;
1102
1103 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1104 DMWARN("%s: reached low water mark, sending event.",
1105 dm_device_name(pool->pool_md));
1106 spin_lock_irqsave(&pool->lock, flags);
1107 pool->low_water_triggered = 1;
1108 spin_unlock_irqrestore(&pool->lock, flags);
1109 dm_table_event(pool->ti->table);
1110 }
1111
1112 if (!free_blocks) {
1113 if (pool->no_free_space)
1114 return -ENOSPC;
1115 else {
1116 /*
1117 * Try to commit to see if that will free up some
1118 * more space.
1119 */
1120 r = dm_pool_commit_metadata(pool->pmd);
1121 if (r) {
1122 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1123 __func__, r);
1124 return r;
1125 }
1126
1127 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1128 if (r)
1129 return r;
1130
1131 /*
1132 * If we still have no space we set a flag to avoid
1133 * doing all this checking and return -ENOSPC.
1134 */
1135 if (!free_blocks) {
1136 DMWARN("%s: no free space available.",
1137 dm_device_name(pool->pool_md));
1138 spin_lock_irqsave(&pool->lock, flags);
1139 pool->no_free_space = 1;
1140 spin_unlock_irqrestore(&pool->lock, flags);
1141 return -ENOSPC;
1142 }
1143 }
1144 }
1145
1146 r = dm_pool_alloc_data_block(pool->pmd, result);
1147 if (r)
1148 return r;
1149
1150 return 0;
1151 }
1152
1153 /*
1154 * If we have run out of space, queue bios until the device is
1155 * resumed, presumably after having been reloaded with more space.
1156 */
retry_on_resume(struct bio * bio)1157 static void retry_on_resume(struct bio *bio)
1158 {
1159 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1160 struct thin_c *tc = h->tc;
1161 struct pool *pool = tc->pool;
1162 unsigned long flags;
1163
1164 spin_lock_irqsave(&pool->lock, flags);
1165 bio_list_add(&pool->retry_on_resume_list, bio);
1166 spin_unlock_irqrestore(&pool->lock, flags);
1167 }
1168
no_space(struct cell * cell)1169 static void no_space(struct cell *cell)
1170 {
1171 struct bio *bio;
1172 struct bio_list bios;
1173
1174 bio_list_init(&bios);
1175 cell_release(cell, &bios);
1176
1177 while ((bio = bio_list_pop(&bios)))
1178 retry_on_resume(bio);
1179 }
1180
process_discard(struct thin_c * tc,struct bio * bio)1181 static void process_discard(struct thin_c *tc, struct bio *bio)
1182 {
1183 int r;
1184 unsigned long flags;
1185 struct pool *pool = tc->pool;
1186 struct cell *cell, *cell2;
1187 struct cell_key key, key2;
1188 dm_block_t block = get_bio_block(tc, bio);
1189 struct dm_thin_lookup_result lookup_result;
1190 struct new_mapping *m;
1191
1192 build_virtual_key(tc->td, block, &key);
1193 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1194 return;
1195
1196 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1197 switch (r) {
1198 case 0:
1199 /*
1200 * Check nobody is fiddling with this pool block. This can
1201 * happen if someone's in the process of breaking sharing
1202 * on this block.
1203 */
1204 build_data_key(tc->td, lookup_result.block, &key2);
1205 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1206 cell_release_singleton(cell, bio);
1207 break;
1208 }
1209
1210 if (io_overlaps_block(pool, bio)) {
1211 /*
1212 * IO may still be going to the destination block. We must
1213 * quiesce before we can do the removal.
1214 */
1215 m = get_next_mapping(pool);
1216 m->tc = tc;
1217 m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1218 m->virt_block = block;
1219 m->data_block = lookup_result.block;
1220 m->cell = cell;
1221 m->cell2 = cell2;
1222 m->err = 0;
1223 m->bio = bio;
1224
1225 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1226 spin_lock_irqsave(&pool->lock, flags);
1227 list_add(&m->list, &pool->prepared_discards);
1228 spin_unlock_irqrestore(&pool->lock, flags);
1229 wake_worker(pool);
1230 }
1231 } else {
1232 /*
1233 * This path is hit if people are ignoring
1234 * limits->discard_granularity. It ignores any
1235 * part of the discard that is in a subsequent
1236 * block.
1237 */
1238 sector_t offset = bio->bi_sector - (block << pool->block_shift);
1239 unsigned remaining = (pool->sectors_per_block - offset) << 9;
1240 bio->bi_size = min(bio->bi_size, remaining);
1241
1242 cell_release_singleton(cell, bio);
1243 cell_release_singleton(cell2, bio);
1244 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1245 remap_and_issue(tc, bio, lookup_result.block);
1246 else
1247 bio_endio(bio, 0);
1248 }
1249 break;
1250
1251 case -ENODATA:
1252 /*
1253 * It isn't provisioned, just forget it.
1254 */
1255 cell_release_singleton(cell, bio);
1256 bio_endio(bio, 0);
1257 break;
1258
1259 default:
1260 DMERR("discard: find block unexpectedly returned %d", r);
1261 cell_release_singleton(cell, bio);
1262 bio_io_error(bio);
1263 break;
1264 }
1265 }
1266
break_sharing(struct thin_c * tc,struct bio * bio,dm_block_t block,struct cell_key * key,struct dm_thin_lookup_result * lookup_result,struct cell * cell)1267 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1268 struct cell_key *key,
1269 struct dm_thin_lookup_result *lookup_result,
1270 struct cell *cell)
1271 {
1272 int r;
1273 dm_block_t data_block;
1274
1275 r = alloc_data_block(tc, &data_block);
1276 switch (r) {
1277 case 0:
1278 schedule_internal_copy(tc, block, lookup_result->block,
1279 data_block, cell, bio);
1280 break;
1281
1282 case -ENOSPC:
1283 no_space(cell);
1284 break;
1285
1286 default:
1287 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1288 cell_error(cell);
1289 break;
1290 }
1291 }
1292
process_shared_bio(struct thin_c * tc,struct bio * bio,dm_block_t block,struct dm_thin_lookup_result * lookup_result)1293 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1294 dm_block_t block,
1295 struct dm_thin_lookup_result *lookup_result)
1296 {
1297 struct cell *cell;
1298 struct pool *pool = tc->pool;
1299 struct cell_key key;
1300
1301 /*
1302 * If cell is already occupied, then sharing is already in the process
1303 * of being broken so we have nothing further to do here.
1304 */
1305 build_data_key(tc->td, lookup_result->block, &key);
1306 if (bio_detain(pool->prison, &key, bio, &cell))
1307 return;
1308
1309 if (bio_data_dir(bio) == WRITE)
1310 break_sharing(tc, bio, block, &key, lookup_result, cell);
1311 else {
1312 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1313
1314 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1315
1316 cell_release_singleton(cell, bio);
1317 remap_and_issue(tc, bio, lookup_result->block);
1318 }
1319 }
1320
provision_block(struct thin_c * tc,struct bio * bio,dm_block_t block,struct cell * cell)1321 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1322 struct cell *cell)
1323 {
1324 int r;
1325 dm_block_t data_block;
1326
1327 /*
1328 * Remap empty bios (flushes) immediately, without provisioning.
1329 */
1330 if (!bio->bi_size) {
1331 cell_release_singleton(cell, bio);
1332 remap_and_issue(tc, bio, 0);
1333 return;
1334 }
1335
1336 /*
1337 * Fill read bios with zeroes and complete them immediately.
1338 */
1339 if (bio_data_dir(bio) == READ) {
1340 zero_fill_bio(bio);
1341 cell_release_singleton(cell, bio);
1342 bio_endio(bio, 0);
1343 return;
1344 }
1345
1346 r = alloc_data_block(tc, &data_block);
1347 switch (r) {
1348 case 0:
1349 if (tc->origin_dev)
1350 schedule_external_copy(tc, block, data_block, cell, bio);
1351 else
1352 schedule_zero(tc, block, data_block, cell, bio);
1353 break;
1354
1355 case -ENOSPC:
1356 no_space(cell);
1357 break;
1358
1359 default:
1360 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1361 cell_error(cell);
1362 break;
1363 }
1364 }
1365
process_bio(struct thin_c * tc,struct bio * bio)1366 static void process_bio(struct thin_c *tc, struct bio *bio)
1367 {
1368 int r;
1369 dm_block_t block = get_bio_block(tc, bio);
1370 struct cell *cell;
1371 struct cell_key key;
1372 struct dm_thin_lookup_result lookup_result;
1373
1374 /*
1375 * If cell is already occupied, then the block is already
1376 * being provisioned so we have nothing further to do here.
1377 */
1378 build_virtual_key(tc->td, block, &key);
1379 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1380 return;
1381
1382 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1383 switch (r) {
1384 case 0:
1385 /*
1386 * We can release this cell now. This thread is the only
1387 * one that puts bios into a cell, and we know there were
1388 * no preceding bios.
1389 */
1390 /*
1391 * TODO: this will probably have to change when discard goes
1392 * back in.
1393 */
1394 cell_release_singleton(cell, bio);
1395
1396 if (lookup_result.shared)
1397 process_shared_bio(tc, bio, block, &lookup_result);
1398 else
1399 remap_and_issue(tc, bio, lookup_result.block);
1400 break;
1401
1402 case -ENODATA:
1403 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1404 cell_release_singleton(cell, bio);
1405 remap_to_origin_and_issue(tc, bio);
1406 } else
1407 provision_block(tc, bio, block, cell);
1408 break;
1409
1410 default:
1411 DMERR("dm_thin_find_block() failed, error = %d", r);
1412 cell_release_singleton(cell, bio);
1413 bio_io_error(bio);
1414 break;
1415 }
1416 }
1417
need_commit_due_to_time(struct pool * pool)1418 static int need_commit_due_to_time(struct pool *pool)
1419 {
1420 return jiffies < pool->last_commit_jiffies ||
1421 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1422 }
1423
process_deferred_bios(struct pool * pool)1424 static void process_deferred_bios(struct pool *pool)
1425 {
1426 unsigned long flags;
1427 struct bio *bio;
1428 struct bio_list bios;
1429 int r;
1430
1431 bio_list_init(&bios);
1432
1433 spin_lock_irqsave(&pool->lock, flags);
1434 bio_list_merge(&bios, &pool->deferred_bios);
1435 bio_list_init(&pool->deferred_bios);
1436 spin_unlock_irqrestore(&pool->lock, flags);
1437
1438 while ((bio = bio_list_pop(&bios))) {
1439 struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1440 struct thin_c *tc = h->tc;
1441
1442 /*
1443 * If we've got no free new_mapping structs, and processing
1444 * this bio might require one, we pause until there are some
1445 * prepared mappings to process.
1446 */
1447 if (ensure_next_mapping(pool)) {
1448 spin_lock_irqsave(&pool->lock, flags);
1449 bio_list_add(&pool->deferred_bios, bio);
1450 bio_list_merge(&pool->deferred_bios, &bios);
1451 spin_unlock_irqrestore(&pool->lock, flags);
1452 break;
1453 }
1454
1455 if (bio->bi_rw & REQ_DISCARD)
1456 process_discard(tc, bio);
1457 else
1458 process_bio(tc, bio);
1459 }
1460
1461 /*
1462 * If there are any deferred flush bios, we must commit
1463 * the metadata before issuing them.
1464 */
1465 bio_list_init(&bios);
1466 spin_lock_irqsave(&pool->lock, flags);
1467 bio_list_merge(&bios, &pool->deferred_flush_bios);
1468 bio_list_init(&pool->deferred_flush_bios);
1469 spin_unlock_irqrestore(&pool->lock, flags);
1470
1471 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1472 return;
1473
1474 r = dm_pool_commit_metadata(pool->pmd);
1475 if (r) {
1476 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1477 __func__, r);
1478 while ((bio = bio_list_pop(&bios)))
1479 bio_io_error(bio);
1480 return;
1481 }
1482 pool->last_commit_jiffies = jiffies;
1483
1484 while ((bio = bio_list_pop(&bios)))
1485 generic_make_request(bio);
1486 }
1487
do_worker(struct work_struct * ws)1488 static void do_worker(struct work_struct *ws)
1489 {
1490 struct pool *pool = container_of(ws, struct pool, worker);
1491
1492 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1493 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1494 process_deferred_bios(pool);
1495 }
1496
1497 /*
1498 * We want to commit periodically so that not too much
1499 * unwritten data builds up.
1500 */
do_waker(struct work_struct * ws)1501 static void do_waker(struct work_struct *ws)
1502 {
1503 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1504 wake_worker(pool);
1505 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1506 }
1507
1508 /*----------------------------------------------------------------*/
1509
1510 /*
1511 * Mapping functions.
1512 */
1513
1514 /*
1515 * Called only while mapping a thin bio to hand it over to the workqueue.
1516 */
thin_defer_bio(struct thin_c * tc,struct bio * bio)1517 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1518 {
1519 unsigned long flags;
1520 struct pool *pool = tc->pool;
1521
1522 spin_lock_irqsave(&pool->lock, flags);
1523 bio_list_add(&pool->deferred_bios, bio);
1524 spin_unlock_irqrestore(&pool->lock, flags);
1525
1526 wake_worker(pool);
1527 }
1528
thin_hook_bio(struct thin_c * tc,struct bio * bio)1529 static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1530 {
1531 struct pool *pool = tc->pool;
1532 struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1533
1534 h->tc = tc;
1535 h->shared_read_entry = NULL;
1536 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1537 h->overwrite_mapping = NULL;
1538
1539 return h;
1540 }
1541
1542 /*
1543 * Non-blocking function called from the thin target's map function.
1544 */
thin_bio_map(struct dm_target * ti,struct bio * bio,union map_info * map_context)1545 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1546 union map_info *map_context)
1547 {
1548 int r;
1549 struct thin_c *tc = ti->private;
1550 dm_block_t block = get_bio_block(tc, bio);
1551 struct dm_thin_device *td = tc->td;
1552 struct dm_thin_lookup_result result;
1553
1554 map_context->ptr = thin_hook_bio(tc, bio);
1555 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1556 thin_defer_bio(tc, bio);
1557 return DM_MAPIO_SUBMITTED;
1558 }
1559
1560 r = dm_thin_find_block(td, block, 0, &result);
1561
1562 /*
1563 * Note that we defer readahead too.
1564 */
1565 switch (r) {
1566 case 0:
1567 if (unlikely(result.shared)) {
1568 /*
1569 * We have a race condition here between the
1570 * result.shared value returned by the lookup and
1571 * snapshot creation, which may cause new
1572 * sharing.
1573 *
1574 * To avoid this always quiesce the origin before
1575 * taking the snap. You want to do this anyway to
1576 * ensure a consistent application view
1577 * (i.e. lockfs).
1578 *
1579 * More distant ancestors are irrelevant. The
1580 * shared flag will be set in their case.
1581 */
1582 thin_defer_bio(tc, bio);
1583 r = DM_MAPIO_SUBMITTED;
1584 } else {
1585 remap(tc, bio, result.block);
1586 r = DM_MAPIO_REMAPPED;
1587 }
1588 break;
1589
1590 case -ENODATA:
1591 /*
1592 * In future, the failed dm_thin_find_block above could
1593 * provide the hint to load the metadata into cache.
1594 */
1595 case -EWOULDBLOCK:
1596 thin_defer_bio(tc, bio);
1597 r = DM_MAPIO_SUBMITTED;
1598 break;
1599 }
1600
1601 return r;
1602 }
1603
pool_is_congested(struct dm_target_callbacks * cb,int bdi_bits)1604 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1605 {
1606 int r;
1607 unsigned long flags;
1608 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1609
1610 spin_lock_irqsave(&pt->pool->lock, flags);
1611 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1612 spin_unlock_irqrestore(&pt->pool->lock, flags);
1613
1614 if (!r) {
1615 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1616 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1617 }
1618
1619 return r;
1620 }
1621
__requeue_bios(struct pool * pool)1622 static void __requeue_bios(struct pool *pool)
1623 {
1624 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1625 bio_list_init(&pool->retry_on_resume_list);
1626 }
1627
1628 /*----------------------------------------------------------------
1629 * Binding of control targets to a pool object
1630 *--------------------------------------------------------------*/
bind_control_target(struct pool * pool,struct dm_target * ti)1631 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1632 {
1633 struct pool_c *pt = ti->private;
1634
1635 pool->ti = ti;
1636 pool->low_water_blocks = pt->low_water_blocks;
1637 pool->pf = pt->pf;
1638
1639 /*
1640 * If discard_passdown was enabled verify that the data device
1641 * supports discards. Disable discard_passdown if not; otherwise
1642 * -EOPNOTSUPP will be returned.
1643 */
1644 if (pt->pf.discard_passdown) {
1645 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1646 if (!q || !blk_queue_discard(q)) {
1647 char buf[BDEVNAME_SIZE];
1648 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1649 bdevname(pt->data_dev->bdev, buf));
1650 pool->pf.discard_passdown = 0;
1651 }
1652 }
1653
1654 return 0;
1655 }
1656
unbind_control_target(struct pool * pool,struct dm_target * ti)1657 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1658 {
1659 if (pool->ti == ti)
1660 pool->ti = NULL;
1661 }
1662
1663 /*----------------------------------------------------------------
1664 * Pool creation
1665 *--------------------------------------------------------------*/
1666 /* Initialize pool features. */
pool_features_init(struct pool_features * pf)1667 static void pool_features_init(struct pool_features *pf)
1668 {
1669 pf->zero_new_blocks = 1;
1670 pf->discard_enabled = 1;
1671 pf->discard_passdown = 1;
1672 }
1673
__pool_destroy(struct pool * pool)1674 static void __pool_destroy(struct pool *pool)
1675 {
1676 __pool_table_remove(pool);
1677
1678 if (dm_pool_metadata_close(pool->pmd) < 0)
1679 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1680
1681 prison_destroy(pool->prison);
1682 dm_kcopyd_client_destroy(pool->copier);
1683
1684 if (pool->wq)
1685 destroy_workqueue(pool->wq);
1686
1687 if (pool->next_mapping)
1688 mempool_free(pool->next_mapping, pool->mapping_pool);
1689 mempool_destroy(pool->mapping_pool);
1690 mempool_destroy(pool->endio_hook_pool);
1691 kfree(pool);
1692 }
1693
pool_create(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,char ** error)1694 static struct pool *pool_create(struct mapped_device *pool_md,
1695 struct block_device *metadata_dev,
1696 unsigned long block_size, char **error)
1697 {
1698 int r;
1699 void *err_p;
1700 struct pool *pool;
1701 struct dm_pool_metadata *pmd;
1702
1703 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1704 if (IS_ERR(pmd)) {
1705 *error = "Error creating metadata object";
1706 return (struct pool *)pmd;
1707 }
1708
1709 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1710 if (!pool) {
1711 *error = "Error allocating memory for pool";
1712 err_p = ERR_PTR(-ENOMEM);
1713 goto bad_pool;
1714 }
1715
1716 pool->pmd = pmd;
1717 pool->sectors_per_block = block_size;
1718 pool->block_shift = ffs(block_size) - 1;
1719 pool->offset_mask = block_size - 1;
1720 pool->low_water_blocks = 0;
1721 pool_features_init(&pool->pf);
1722 pool->prison = prison_create(PRISON_CELLS);
1723 if (!pool->prison) {
1724 *error = "Error creating pool's bio prison";
1725 err_p = ERR_PTR(-ENOMEM);
1726 goto bad_prison;
1727 }
1728
1729 pool->copier = dm_kcopyd_client_create();
1730 if (IS_ERR(pool->copier)) {
1731 r = PTR_ERR(pool->copier);
1732 *error = "Error creating pool's kcopyd client";
1733 err_p = ERR_PTR(r);
1734 goto bad_kcopyd_client;
1735 }
1736
1737 /*
1738 * Create singlethreaded workqueue that will service all devices
1739 * that use this metadata.
1740 */
1741 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1742 if (!pool->wq) {
1743 *error = "Error creating pool's workqueue";
1744 err_p = ERR_PTR(-ENOMEM);
1745 goto bad_wq;
1746 }
1747
1748 INIT_WORK(&pool->worker, do_worker);
1749 INIT_DELAYED_WORK(&pool->waker, do_waker);
1750 spin_lock_init(&pool->lock);
1751 bio_list_init(&pool->deferred_bios);
1752 bio_list_init(&pool->deferred_flush_bios);
1753 INIT_LIST_HEAD(&pool->prepared_mappings);
1754 INIT_LIST_HEAD(&pool->prepared_discards);
1755 pool->low_water_triggered = 0;
1756 pool->no_free_space = 0;
1757 bio_list_init(&pool->retry_on_resume_list);
1758 ds_init(&pool->shared_read_ds);
1759 ds_init(&pool->all_io_ds);
1760
1761 pool->next_mapping = NULL;
1762 pool->mapping_pool =
1763 mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1764 if (!pool->mapping_pool) {
1765 *error = "Error creating pool's mapping mempool";
1766 err_p = ERR_PTR(-ENOMEM);
1767 goto bad_mapping_pool;
1768 }
1769
1770 pool->endio_hook_pool =
1771 mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1772 if (!pool->endio_hook_pool) {
1773 *error = "Error creating pool's endio_hook mempool";
1774 err_p = ERR_PTR(-ENOMEM);
1775 goto bad_endio_hook_pool;
1776 }
1777 pool->ref_count = 1;
1778 pool->last_commit_jiffies = jiffies;
1779 pool->pool_md = pool_md;
1780 pool->md_dev = metadata_dev;
1781 __pool_table_insert(pool);
1782
1783 return pool;
1784
1785 bad_endio_hook_pool:
1786 mempool_destroy(pool->mapping_pool);
1787 bad_mapping_pool:
1788 destroy_workqueue(pool->wq);
1789 bad_wq:
1790 dm_kcopyd_client_destroy(pool->copier);
1791 bad_kcopyd_client:
1792 prison_destroy(pool->prison);
1793 bad_prison:
1794 kfree(pool);
1795 bad_pool:
1796 if (dm_pool_metadata_close(pmd))
1797 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1798
1799 return err_p;
1800 }
1801
__pool_inc(struct pool * pool)1802 static void __pool_inc(struct pool *pool)
1803 {
1804 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1805 pool->ref_count++;
1806 }
1807
__pool_dec(struct pool * pool)1808 static void __pool_dec(struct pool *pool)
1809 {
1810 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1811 BUG_ON(!pool->ref_count);
1812 if (!--pool->ref_count)
1813 __pool_destroy(pool);
1814 }
1815
__pool_find(struct mapped_device * pool_md,struct block_device * metadata_dev,unsigned long block_size,char ** error,int * created)1816 static struct pool *__pool_find(struct mapped_device *pool_md,
1817 struct block_device *metadata_dev,
1818 unsigned long block_size, char **error,
1819 int *created)
1820 {
1821 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1822
1823 if (pool) {
1824 if (pool->pool_md != pool_md)
1825 return ERR_PTR(-EBUSY);
1826 __pool_inc(pool);
1827
1828 } else {
1829 pool = __pool_table_lookup(pool_md);
1830 if (pool) {
1831 if (pool->md_dev != metadata_dev)
1832 return ERR_PTR(-EINVAL);
1833 __pool_inc(pool);
1834
1835 } else {
1836 pool = pool_create(pool_md, metadata_dev, block_size, error);
1837 *created = 1;
1838 }
1839 }
1840
1841 return pool;
1842 }
1843
1844 /*----------------------------------------------------------------
1845 * Pool target methods
1846 *--------------------------------------------------------------*/
pool_dtr(struct dm_target * ti)1847 static void pool_dtr(struct dm_target *ti)
1848 {
1849 struct pool_c *pt = ti->private;
1850
1851 mutex_lock(&dm_thin_pool_table.mutex);
1852
1853 unbind_control_target(pt->pool, ti);
1854 __pool_dec(pt->pool);
1855 dm_put_device(ti, pt->metadata_dev);
1856 dm_put_device(ti, pt->data_dev);
1857 kfree(pt);
1858
1859 mutex_unlock(&dm_thin_pool_table.mutex);
1860 }
1861
parse_pool_features(struct dm_arg_set * as,struct pool_features * pf,struct dm_target * ti)1862 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1863 struct dm_target *ti)
1864 {
1865 int r;
1866 unsigned argc;
1867 const char *arg_name;
1868
1869 static struct dm_arg _args[] = {
1870 {0, 3, "Invalid number of pool feature arguments"},
1871 };
1872
1873 /*
1874 * No feature arguments supplied.
1875 */
1876 if (!as->argc)
1877 return 0;
1878
1879 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1880 if (r)
1881 return -EINVAL;
1882
1883 while (argc && !r) {
1884 arg_name = dm_shift_arg(as);
1885 argc--;
1886
1887 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1888 pf->zero_new_blocks = 0;
1889 continue;
1890 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1891 pf->discard_enabled = 0;
1892 continue;
1893 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1894 pf->discard_passdown = 0;
1895 continue;
1896 }
1897
1898 ti->error = "Unrecognised pool feature requested";
1899 r = -EINVAL;
1900 }
1901
1902 return r;
1903 }
1904
1905 /*
1906 * thin-pool <metadata dev> <data dev>
1907 * <data block size (sectors)>
1908 * <low water mark (blocks)>
1909 * [<#feature args> [<arg>]*]
1910 *
1911 * Optional feature arguments are:
1912 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1913 * ignore_discard: disable discard
1914 * no_discard_passdown: don't pass discards down to the data device
1915 */
pool_ctr(struct dm_target * ti,unsigned argc,char ** argv)1916 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1917 {
1918 int r, pool_created = 0;
1919 struct pool_c *pt;
1920 struct pool *pool;
1921 struct pool_features pf;
1922 struct dm_arg_set as;
1923 struct dm_dev *data_dev;
1924 unsigned long block_size;
1925 dm_block_t low_water_blocks;
1926 struct dm_dev *metadata_dev;
1927 sector_t metadata_dev_size;
1928 char b[BDEVNAME_SIZE];
1929
1930 /*
1931 * FIXME Remove validation from scope of lock.
1932 */
1933 mutex_lock(&dm_thin_pool_table.mutex);
1934
1935 if (argc < 4) {
1936 ti->error = "Invalid argument count";
1937 r = -EINVAL;
1938 goto out_unlock;
1939 }
1940 as.argc = argc;
1941 as.argv = argv;
1942
1943 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1944 if (r) {
1945 ti->error = "Error opening metadata block device";
1946 goto out_unlock;
1947 }
1948
1949 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1950 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1951 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1952 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1953
1954 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1955 if (r) {
1956 ti->error = "Error getting data device";
1957 goto out_metadata;
1958 }
1959
1960 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1961 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1962 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1963 !is_power_of_2(block_size)) {
1964 ti->error = "Invalid block size";
1965 r = -EINVAL;
1966 goto out;
1967 }
1968
1969 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1970 ti->error = "Invalid low water mark";
1971 r = -EINVAL;
1972 goto out;
1973 }
1974
1975 /*
1976 * Set default pool features.
1977 */
1978 pool_features_init(&pf);
1979
1980 dm_consume_args(&as, 4);
1981 r = parse_pool_features(&as, &pf, ti);
1982 if (r)
1983 goto out;
1984
1985 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1986 if (!pt) {
1987 r = -ENOMEM;
1988 goto out;
1989 }
1990
1991 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1992 block_size, &ti->error, &pool_created);
1993 if (IS_ERR(pool)) {
1994 r = PTR_ERR(pool);
1995 goto out_free_pt;
1996 }
1997
1998 /*
1999 * 'pool_created' reflects whether this is the first table load.
2000 * Top level discard support is not allowed to be changed after
2001 * initial load. This would require a pool reload to trigger thin
2002 * device changes.
2003 */
2004 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2005 ti->error = "Discard support cannot be disabled once enabled";
2006 r = -EINVAL;
2007 goto out_flags_changed;
2008 }
2009
2010 pt->pool = pool;
2011 pt->ti = ti;
2012 pt->metadata_dev = metadata_dev;
2013 pt->data_dev = data_dev;
2014 pt->low_water_blocks = low_water_blocks;
2015 pt->pf = pf;
2016 ti->num_flush_requests = 1;
2017 /*
2018 * Only need to enable discards if the pool should pass
2019 * them down to the data device. The thin device's discard
2020 * processing will cause mappings to be removed from the btree.
2021 */
2022 if (pf.discard_enabled && pf.discard_passdown) {
2023 ti->num_discard_requests = 1;
2024 /*
2025 * Setting 'discards_supported' circumvents the normal
2026 * stacking of discard limits (this keeps the pool and
2027 * thin devices' discard limits consistent).
2028 */
2029 ti->discards_supported = 1;
2030 ti->discard_zeroes_data_unsupported = 1;
2031 }
2032 ti->private = pt;
2033
2034 pt->callbacks.congested_fn = pool_is_congested;
2035 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2036
2037 mutex_unlock(&dm_thin_pool_table.mutex);
2038
2039 return 0;
2040
2041 out_flags_changed:
2042 __pool_dec(pool);
2043 out_free_pt:
2044 kfree(pt);
2045 out:
2046 dm_put_device(ti, data_dev);
2047 out_metadata:
2048 dm_put_device(ti, metadata_dev);
2049 out_unlock:
2050 mutex_unlock(&dm_thin_pool_table.mutex);
2051
2052 return r;
2053 }
2054
pool_map(struct dm_target * ti,struct bio * bio,union map_info * map_context)2055 static int pool_map(struct dm_target *ti, struct bio *bio,
2056 union map_info *map_context)
2057 {
2058 int r;
2059 struct pool_c *pt = ti->private;
2060 struct pool *pool = pt->pool;
2061 unsigned long flags;
2062
2063 /*
2064 * As this is a singleton target, ti->begin is always zero.
2065 */
2066 spin_lock_irqsave(&pool->lock, flags);
2067 bio->bi_bdev = pt->data_dev->bdev;
2068 r = DM_MAPIO_REMAPPED;
2069 spin_unlock_irqrestore(&pool->lock, flags);
2070
2071 return r;
2072 }
2073
2074 /*
2075 * Retrieves the number of blocks of the data device from
2076 * the superblock and compares it to the actual device size,
2077 * thus resizing the data device in case it has grown.
2078 *
2079 * This both copes with opening preallocated data devices in the ctr
2080 * being followed by a resume
2081 * -and-
2082 * calling the resume method individually after userspace has
2083 * grown the data device in reaction to a table event.
2084 */
pool_preresume(struct dm_target * ti)2085 static int pool_preresume(struct dm_target *ti)
2086 {
2087 int r;
2088 struct pool_c *pt = ti->private;
2089 struct pool *pool = pt->pool;
2090 dm_block_t data_size, sb_data_size;
2091
2092 /*
2093 * Take control of the pool object.
2094 */
2095 r = bind_control_target(pool, ti);
2096 if (r)
2097 return r;
2098
2099 data_size = ti->len >> pool->block_shift;
2100 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2101 if (r) {
2102 DMERR("failed to retrieve data device size");
2103 return r;
2104 }
2105
2106 if (data_size < sb_data_size) {
2107 DMERR("pool target too small, is %llu blocks (expected %llu)",
2108 data_size, sb_data_size);
2109 return -EINVAL;
2110
2111 } else if (data_size > sb_data_size) {
2112 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2113 if (r) {
2114 DMERR("failed to resize data device");
2115 return r;
2116 }
2117
2118 r = dm_pool_commit_metadata(pool->pmd);
2119 if (r) {
2120 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2121 __func__, r);
2122 return r;
2123 }
2124 }
2125
2126 return 0;
2127 }
2128
pool_resume(struct dm_target * ti)2129 static void pool_resume(struct dm_target *ti)
2130 {
2131 struct pool_c *pt = ti->private;
2132 struct pool *pool = pt->pool;
2133 unsigned long flags;
2134
2135 spin_lock_irqsave(&pool->lock, flags);
2136 pool->low_water_triggered = 0;
2137 pool->no_free_space = 0;
2138 __requeue_bios(pool);
2139 spin_unlock_irqrestore(&pool->lock, flags);
2140
2141 do_waker(&pool->waker.work);
2142 }
2143
pool_postsuspend(struct dm_target * ti)2144 static void pool_postsuspend(struct dm_target *ti)
2145 {
2146 int r;
2147 struct pool_c *pt = ti->private;
2148 struct pool *pool = pt->pool;
2149
2150 cancel_delayed_work(&pool->waker);
2151 flush_workqueue(pool->wq);
2152
2153 r = dm_pool_commit_metadata(pool->pmd);
2154 if (r < 0) {
2155 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2156 __func__, r);
2157 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2158 }
2159 }
2160
check_arg_count(unsigned argc,unsigned args_required)2161 static int check_arg_count(unsigned argc, unsigned args_required)
2162 {
2163 if (argc != args_required) {
2164 DMWARN("Message received with %u arguments instead of %u.",
2165 argc, args_required);
2166 return -EINVAL;
2167 }
2168
2169 return 0;
2170 }
2171
read_dev_id(char * arg,dm_thin_id * dev_id,int warning)2172 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2173 {
2174 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2175 *dev_id <= MAX_DEV_ID)
2176 return 0;
2177
2178 if (warning)
2179 DMWARN("Message received with invalid device id: %s", arg);
2180
2181 return -EINVAL;
2182 }
2183
process_create_thin_mesg(unsigned argc,char ** argv,struct pool * pool)2184 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2185 {
2186 dm_thin_id dev_id;
2187 int r;
2188
2189 r = check_arg_count(argc, 2);
2190 if (r)
2191 return r;
2192
2193 r = read_dev_id(argv[1], &dev_id, 1);
2194 if (r)
2195 return r;
2196
2197 r = dm_pool_create_thin(pool->pmd, dev_id);
2198 if (r) {
2199 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2200 argv[1]);
2201 return r;
2202 }
2203
2204 return 0;
2205 }
2206
process_create_snap_mesg(unsigned argc,char ** argv,struct pool * pool)2207 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2208 {
2209 dm_thin_id dev_id;
2210 dm_thin_id origin_dev_id;
2211 int r;
2212
2213 r = check_arg_count(argc, 3);
2214 if (r)
2215 return r;
2216
2217 r = read_dev_id(argv[1], &dev_id, 1);
2218 if (r)
2219 return r;
2220
2221 r = read_dev_id(argv[2], &origin_dev_id, 1);
2222 if (r)
2223 return r;
2224
2225 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2226 if (r) {
2227 DMWARN("Creation of new snapshot %s of device %s failed.",
2228 argv[1], argv[2]);
2229 return r;
2230 }
2231
2232 return 0;
2233 }
2234
process_delete_mesg(unsigned argc,char ** argv,struct pool * pool)2235 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2236 {
2237 dm_thin_id dev_id;
2238 int r;
2239
2240 r = check_arg_count(argc, 2);
2241 if (r)
2242 return r;
2243
2244 r = read_dev_id(argv[1], &dev_id, 1);
2245 if (r)
2246 return r;
2247
2248 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2249 if (r)
2250 DMWARN("Deletion of thin device %s failed.", argv[1]);
2251
2252 return r;
2253 }
2254
process_set_transaction_id_mesg(unsigned argc,char ** argv,struct pool * pool)2255 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2256 {
2257 dm_thin_id old_id, new_id;
2258 int r;
2259
2260 r = check_arg_count(argc, 3);
2261 if (r)
2262 return r;
2263
2264 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2265 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2266 return -EINVAL;
2267 }
2268
2269 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2270 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2271 return -EINVAL;
2272 }
2273
2274 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2275 if (r) {
2276 DMWARN("Failed to change transaction id from %s to %s.",
2277 argv[1], argv[2]);
2278 return r;
2279 }
2280
2281 return 0;
2282 }
2283
2284 /*
2285 * Messages supported:
2286 * create_thin <dev_id>
2287 * create_snap <dev_id> <origin_id>
2288 * delete <dev_id>
2289 * trim <dev_id> <new_size_in_sectors>
2290 * set_transaction_id <current_trans_id> <new_trans_id>
2291 */
pool_message(struct dm_target * ti,unsigned argc,char ** argv)2292 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2293 {
2294 int r = -EINVAL;
2295 struct pool_c *pt = ti->private;
2296 struct pool *pool = pt->pool;
2297
2298 if (!strcasecmp(argv[0], "create_thin"))
2299 r = process_create_thin_mesg(argc, argv, pool);
2300
2301 else if (!strcasecmp(argv[0], "create_snap"))
2302 r = process_create_snap_mesg(argc, argv, pool);
2303
2304 else if (!strcasecmp(argv[0], "delete"))
2305 r = process_delete_mesg(argc, argv, pool);
2306
2307 else if (!strcasecmp(argv[0], "set_transaction_id"))
2308 r = process_set_transaction_id_mesg(argc, argv, pool);
2309
2310 else
2311 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2312
2313 if (!r) {
2314 r = dm_pool_commit_metadata(pool->pmd);
2315 if (r)
2316 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2317 argv[0], r);
2318 }
2319
2320 return r;
2321 }
2322
2323 /*
2324 * Status line is:
2325 * <transaction id> <used metadata sectors>/<total metadata sectors>
2326 * <used data sectors>/<total data sectors> <held metadata root>
2327 */
pool_status(struct dm_target * ti,status_type_t type,char * result,unsigned maxlen)2328 static void pool_status(struct dm_target *ti, status_type_t type,
2329 char *result, unsigned maxlen)
2330 {
2331 int r, count;
2332 unsigned sz = 0;
2333 uint64_t transaction_id;
2334 dm_block_t nr_free_blocks_data;
2335 dm_block_t nr_free_blocks_metadata;
2336 dm_block_t nr_blocks_data;
2337 dm_block_t nr_blocks_metadata;
2338 dm_block_t held_root;
2339 char buf[BDEVNAME_SIZE];
2340 char buf2[BDEVNAME_SIZE];
2341 struct pool_c *pt = ti->private;
2342 struct pool *pool = pt->pool;
2343
2344 switch (type) {
2345 case STATUSTYPE_INFO:
2346 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2347 if (r) {
2348 DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2349 goto err;
2350 }
2351
2352 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2353 if (r) {
2354 DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2355 goto err;
2356 }
2357
2358 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2359 if (r) {
2360 DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2361 goto err;
2362 }
2363
2364 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2365 if (r) {
2366 DMERR("dm_pool_get_free_block_count returned %d", r);
2367 goto err;
2368 }
2369
2370 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2371 if (r) {
2372 DMERR("dm_pool_get_data_dev_size returned %d", r);
2373 goto err;
2374 }
2375
2376 r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2377 if (r) {
2378 DMERR("dm_pool_get_metadata_snap returned %d", r);
2379 goto err;
2380 }
2381
2382 DMEMIT("%llu %llu/%llu %llu/%llu ",
2383 (unsigned long long)transaction_id,
2384 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2385 (unsigned long long)nr_blocks_metadata,
2386 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2387 (unsigned long long)nr_blocks_data);
2388
2389 if (held_root)
2390 DMEMIT("%llu", held_root);
2391 else
2392 DMEMIT("-");
2393
2394 break;
2395
2396 case STATUSTYPE_TABLE:
2397 DMEMIT("%s %s %lu %llu ",
2398 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2399 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2400 (unsigned long)pool->sectors_per_block,
2401 (unsigned long long)pt->low_water_blocks);
2402
2403 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2404 !pt->pf.discard_passdown;
2405 DMEMIT("%u ", count);
2406
2407 if (!pool->pf.zero_new_blocks)
2408 DMEMIT("skip_block_zeroing ");
2409
2410 if (!pool->pf.discard_enabled)
2411 DMEMIT("ignore_discard ");
2412
2413 if (!pt->pf.discard_passdown)
2414 DMEMIT("no_discard_passdown ");
2415
2416 break;
2417 }
2418 return;
2419
2420 err:
2421 DMEMIT("Error");
2422 }
2423
pool_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2424 static int pool_iterate_devices(struct dm_target *ti,
2425 iterate_devices_callout_fn fn, void *data)
2426 {
2427 struct pool_c *pt = ti->private;
2428
2429 return fn(ti, pt->data_dev, 0, ti->len, data);
2430 }
2431
pool_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)2432 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2433 struct bio_vec *biovec, int max_size)
2434 {
2435 struct pool_c *pt = ti->private;
2436 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2437
2438 if (!q->merge_bvec_fn)
2439 return max_size;
2440
2441 bvm->bi_bdev = pt->data_dev->bdev;
2442
2443 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2444 }
2445
set_discard_limits(struct pool * pool,struct queue_limits * limits)2446 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2447 {
2448 /*
2449 * FIXME: these limits may be incompatible with the pool's data device
2450 */
2451 limits->max_discard_sectors = pool->sectors_per_block;
2452
2453 /*
2454 * This is just a hint, and not enforced. We have to cope with
2455 * bios that overlap 2 blocks.
2456 */
2457 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2458 }
2459
pool_io_hints(struct dm_target * ti,struct queue_limits * limits)2460 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2461 {
2462 struct pool_c *pt = ti->private;
2463 struct pool *pool = pt->pool;
2464
2465 blk_limits_io_min(limits, 0);
2466 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2467 if (pool->pf.discard_enabled)
2468 set_discard_limits(pool, limits);
2469 }
2470
2471 static struct target_type pool_target = {
2472 .name = "thin-pool",
2473 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2474 DM_TARGET_IMMUTABLE,
2475 .version = {1, 1, 1},
2476 .module = THIS_MODULE,
2477 .ctr = pool_ctr,
2478 .dtr = pool_dtr,
2479 .map = pool_map,
2480 .postsuspend = pool_postsuspend,
2481 .preresume = pool_preresume,
2482 .resume = pool_resume,
2483 .message = pool_message,
2484 .status = pool_status,
2485 .merge = pool_merge,
2486 .iterate_devices = pool_iterate_devices,
2487 .io_hints = pool_io_hints,
2488 };
2489
2490 /*----------------------------------------------------------------
2491 * Thin target methods
2492 *--------------------------------------------------------------*/
thin_dtr(struct dm_target * ti)2493 static void thin_dtr(struct dm_target *ti)
2494 {
2495 struct thin_c *tc = ti->private;
2496
2497 mutex_lock(&dm_thin_pool_table.mutex);
2498
2499 __pool_dec(tc->pool);
2500 dm_pool_close_thin_device(tc->td);
2501 dm_put_device(ti, tc->pool_dev);
2502 if (tc->origin_dev)
2503 dm_put_device(ti, tc->origin_dev);
2504 kfree(tc);
2505
2506 mutex_unlock(&dm_thin_pool_table.mutex);
2507 }
2508
2509 /*
2510 * Thin target parameters:
2511 *
2512 * <pool_dev> <dev_id> [origin_dev]
2513 *
2514 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2515 * dev_id: the internal device identifier
2516 * origin_dev: a device external to the pool that should act as the origin
2517 *
2518 * If the pool device has discards disabled, they get disabled for the thin
2519 * device as well.
2520 */
thin_ctr(struct dm_target * ti,unsigned argc,char ** argv)2521 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2522 {
2523 int r;
2524 struct thin_c *tc;
2525 struct dm_dev *pool_dev, *origin_dev;
2526 struct mapped_device *pool_md;
2527
2528 mutex_lock(&dm_thin_pool_table.mutex);
2529
2530 if (argc != 2 && argc != 3) {
2531 ti->error = "Invalid argument count";
2532 r = -EINVAL;
2533 goto out_unlock;
2534 }
2535
2536 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2537 if (!tc) {
2538 ti->error = "Out of memory";
2539 r = -ENOMEM;
2540 goto out_unlock;
2541 }
2542
2543 if (argc == 3) {
2544 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2545 if (r) {
2546 ti->error = "Error opening origin device";
2547 goto bad_origin_dev;
2548 }
2549 tc->origin_dev = origin_dev;
2550 }
2551
2552 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2553 if (r) {
2554 ti->error = "Error opening pool device";
2555 goto bad_pool_dev;
2556 }
2557 tc->pool_dev = pool_dev;
2558
2559 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2560 ti->error = "Invalid device id";
2561 r = -EINVAL;
2562 goto bad_common;
2563 }
2564
2565 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2566 if (!pool_md) {
2567 ti->error = "Couldn't get pool mapped device";
2568 r = -EINVAL;
2569 goto bad_common;
2570 }
2571
2572 tc->pool = __pool_table_lookup(pool_md);
2573 if (!tc->pool) {
2574 ti->error = "Couldn't find pool object";
2575 r = -EINVAL;
2576 goto bad_pool_lookup;
2577 }
2578 __pool_inc(tc->pool);
2579
2580 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2581 if (r) {
2582 ti->error = "Couldn't open thin internal device";
2583 goto bad_thin_open;
2584 }
2585
2586 ti->split_io = tc->pool->sectors_per_block;
2587 ti->num_flush_requests = 1;
2588
2589 /* In case the pool supports discards, pass them on. */
2590 if (tc->pool->pf.discard_enabled) {
2591 ti->discards_supported = 1;
2592 ti->num_discard_requests = 1;
2593 ti->discard_zeroes_data_unsupported = 1;
2594 }
2595
2596 dm_put(pool_md);
2597
2598 mutex_unlock(&dm_thin_pool_table.mutex);
2599
2600 return 0;
2601
2602 bad_thin_open:
2603 __pool_dec(tc->pool);
2604 bad_pool_lookup:
2605 dm_put(pool_md);
2606 bad_common:
2607 dm_put_device(ti, tc->pool_dev);
2608 bad_pool_dev:
2609 if (tc->origin_dev)
2610 dm_put_device(ti, tc->origin_dev);
2611 bad_origin_dev:
2612 kfree(tc);
2613 out_unlock:
2614 mutex_unlock(&dm_thin_pool_table.mutex);
2615
2616 return r;
2617 }
2618
thin_map(struct dm_target * ti,struct bio * bio,union map_info * map_context)2619 static int thin_map(struct dm_target *ti, struct bio *bio,
2620 union map_info *map_context)
2621 {
2622 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2623
2624 return thin_bio_map(ti, bio, map_context);
2625 }
2626
thin_endio(struct dm_target * ti,struct bio * bio,int err,union map_info * map_context)2627 static int thin_endio(struct dm_target *ti,
2628 struct bio *bio, int err,
2629 union map_info *map_context)
2630 {
2631 unsigned long flags;
2632 struct endio_hook *h = map_context->ptr;
2633 struct list_head work;
2634 struct new_mapping *m, *tmp;
2635 struct pool *pool = h->tc->pool;
2636
2637 if (h->shared_read_entry) {
2638 INIT_LIST_HEAD(&work);
2639 ds_dec(h->shared_read_entry, &work);
2640
2641 spin_lock_irqsave(&pool->lock, flags);
2642 list_for_each_entry_safe(m, tmp, &work, list) {
2643 list_del(&m->list);
2644 m->quiesced = 1;
2645 __maybe_add_mapping(m);
2646 }
2647 spin_unlock_irqrestore(&pool->lock, flags);
2648 }
2649
2650 if (h->all_io_entry) {
2651 INIT_LIST_HEAD(&work);
2652 ds_dec(h->all_io_entry, &work);
2653 spin_lock_irqsave(&pool->lock, flags);
2654 list_for_each_entry_safe(m, tmp, &work, list)
2655 list_add(&m->list, &pool->prepared_discards);
2656 spin_unlock_irqrestore(&pool->lock, flags);
2657 }
2658
2659 mempool_free(h, pool->endio_hook_pool);
2660
2661 return 0;
2662 }
2663
thin_postsuspend(struct dm_target * ti)2664 static void thin_postsuspend(struct dm_target *ti)
2665 {
2666 if (dm_noflush_suspending(ti))
2667 requeue_io((struct thin_c *)ti->private);
2668 }
2669
2670 /*
2671 * <nr mapped sectors> <highest mapped sector>
2672 */
thin_status(struct dm_target * ti,status_type_t type,char * result,unsigned maxlen)2673 static void thin_status(struct dm_target *ti, status_type_t type,
2674 char *result, unsigned maxlen)
2675 {
2676 int r;
2677 ssize_t sz = 0;
2678 dm_block_t mapped, highest;
2679 char buf[BDEVNAME_SIZE];
2680 struct thin_c *tc = ti->private;
2681
2682 if (!tc->td)
2683 DMEMIT("-");
2684 else {
2685 switch (type) {
2686 case STATUSTYPE_INFO:
2687 r = dm_thin_get_mapped_count(tc->td, &mapped);
2688 if (r) {
2689 DMERR("dm_thin_get_mapped_count returned %d", r);
2690 goto err;
2691 }
2692
2693 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2694 if (r < 0) {
2695 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2696 goto err;
2697 }
2698
2699 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2700 if (r)
2701 DMEMIT("%llu", ((highest + 1) *
2702 tc->pool->sectors_per_block) - 1);
2703 else
2704 DMEMIT("-");
2705 break;
2706
2707 case STATUSTYPE_TABLE:
2708 DMEMIT("%s %lu",
2709 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2710 (unsigned long) tc->dev_id);
2711 if (tc->origin_dev)
2712 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2713 break;
2714 }
2715 }
2716
2717 return;
2718
2719 err:
2720 DMEMIT("Error");
2721 }
2722
thin_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2723 static int thin_iterate_devices(struct dm_target *ti,
2724 iterate_devices_callout_fn fn, void *data)
2725 {
2726 dm_block_t blocks;
2727 struct thin_c *tc = ti->private;
2728
2729 /*
2730 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2731 * we follow a more convoluted path through to the pool's target.
2732 */
2733 if (!tc->pool->ti)
2734 return 0; /* nothing is bound */
2735
2736 blocks = tc->pool->ti->len >> tc->pool->block_shift;
2737 if (blocks)
2738 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2739
2740 return 0;
2741 }
2742
thin_io_hints(struct dm_target * ti,struct queue_limits * limits)2743 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2744 {
2745 struct thin_c *tc = ti->private;
2746 struct pool *pool = tc->pool;
2747
2748 blk_limits_io_min(limits, 0);
2749 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2750 set_discard_limits(pool, limits);
2751 }
2752
2753 static struct target_type thin_target = {
2754 .name = "thin",
2755 .version = {1, 1, 1},
2756 .module = THIS_MODULE,
2757 .ctr = thin_ctr,
2758 .dtr = thin_dtr,
2759 .map = thin_map,
2760 .end_io = thin_endio,
2761 .postsuspend = thin_postsuspend,
2762 .status = thin_status,
2763 .iterate_devices = thin_iterate_devices,
2764 .io_hints = thin_io_hints,
2765 };
2766
2767 /*----------------------------------------------------------------*/
2768
dm_thin_init(void)2769 static int __init dm_thin_init(void)
2770 {
2771 int r;
2772
2773 pool_table_init();
2774
2775 r = dm_register_target(&thin_target);
2776 if (r)
2777 return r;
2778
2779 r = dm_register_target(&pool_target);
2780 if (r)
2781 dm_unregister_target(&thin_target);
2782
2783 return r;
2784 }
2785
dm_thin_exit(void)2786 static void dm_thin_exit(void)
2787 {
2788 dm_unregister_target(&thin_target);
2789 dm_unregister_target(&pool_target);
2790 }
2791
2792 module_init(dm_thin_init);
2793 module_exit(dm_thin_exit);
2794
2795 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2796 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2797 MODULE_LICENSE("GPL");
2798