1 /*P:200 This contains all the /dev/lguest code, whereby the userspace
2  * launcher controls and communicates with the Guest.  For example,
3  * the first write will tell us the Guest's memory layout and entry
4  * point.  A read will run the Guest until something happens, such as
5  * a signal or the Guest doing a NOTIFY out to the Launcher.  There is
6  * also a way for the Launcher to attach eventfds to particular NOTIFY
7  * values instead of returning from the read() call.
8 :*/
9 #include <linux/uaccess.h>
10 #include <linux/miscdevice.h>
11 #include <linux/fs.h>
12 #include <linux/sched.h>
13 #include <linux/eventfd.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/export.h>
17 #include "lg.h"
18 
19 /*L:056
20  * Before we move on, let's jump ahead and look at what the kernel does when
21  * it needs to look up the eventfds.  That will complete our picture of how we
22  * use RCU.
23  *
24  * The notification value is in cpu->pending_notify: we return true if it went
25  * to an eventfd.
26  */
send_notify_to_eventfd(struct lg_cpu * cpu)27 bool send_notify_to_eventfd(struct lg_cpu *cpu)
28 {
29 	unsigned int i;
30 	struct lg_eventfd_map *map;
31 
32 	/*
33 	 * This "rcu_read_lock()" helps track when someone is still looking at
34 	 * the (RCU-using) eventfds array.  It's not actually a lock at all;
35 	 * indeed it's a noop in many configurations.  (You didn't expect me to
36 	 * explain all the RCU secrets here, did you?)
37 	 */
38 	rcu_read_lock();
39 	/*
40 	 * rcu_dereference is the counter-side of rcu_assign_pointer(); it
41 	 * makes sure we don't access the memory pointed to by
42 	 * cpu->lg->eventfds before cpu->lg->eventfds is set.  Sounds crazy,
43 	 * but Alpha allows this!  Paul McKenney points out that a really
44 	 * aggressive compiler could have the same effect:
45 	 *   http://lists.ozlabs.org/pipermail/lguest/2009-July/001560.html
46 	 *
47 	 * So play safe, use rcu_dereference to get the rcu-protected pointer:
48 	 */
49 	map = rcu_dereference(cpu->lg->eventfds);
50 	/*
51 	 * Simple array search: even if they add an eventfd while we do this,
52 	 * we'll continue to use the old array and just won't see the new one.
53 	 */
54 	for (i = 0; i < map->num; i++) {
55 		if (map->map[i].addr == cpu->pending_notify) {
56 			eventfd_signal(map->map[i].event, 1);
57 			cpu->pending_notify = 0;
58 			break;
59 		}
60 	}
61 	/* We're done with the rcu-protected variable cpu->lg->eventfds. */
62 	rcu_read_unlock();
63 
64 	/* If we cleared the notification, it's because we found a match. */
65 	return cpu->pending_notify == 0;
66 }
67 
68 /*L:055
69  * One of the more tricksy tricks in the Linux Kernel is a technique called
70  * Read Copy Update.  Since one point of lguest is to teach lguest journeyers
71  * about kernel coding, I use it here.  (In case you're curious, other purposes
72  * include learning about virtualization and instilling a deep appreciation for
73  * simplicity and puppies).
74  *
75  * We keep a simple array which maps LHCALL_NOTIFY values to eventfds, but we
76  * add new eventfds without ever blocking readers from accessing the array.
77  * The current Launcher only does this during boot, so that never happens.  But
78  * Read Copy Update is cool, and adding a lock risks damaging even more puppies
79  * than this code does.
80  *
81  * We allocate a brand new one-larger array, copy the old one and add our new
82  * element.  Then we make the lg eventfd pointer point to the new array.
83  * That's the easy part: now we need to free the old one, but we need to make
84  * sure no slow CPU somewhere is still looking at it.  That's what
85  * synchronize_rcu does for us: waits until every CPU has indicated that it has
86  * moved on to know it's no longer using the old one.
87  *
88  * If that's unclear, see http://en.wikipedia.org/wiki/Read-copy-update.
89  */
add_eventfd(struct lguest * lg,unsigned long addr,int fd)90 static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
91 {
92 	struct lg_eventfd_map *new, *old = lg->eventfds;
93 
94 	/*
95 	 * We don't allow notifications on value 0 anyway (pending_notify of
96 	 * 0 means "nothing pending").
97 	 */
98 	if (!addr)
99 		return -EINVAL;
100 
101 	/*
102 	 * Replace the old array with the new one, carefully: others can
103 	 * be accessing it at the same time.
104 	 */
105 	new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
106 		      GFP_KERNEL);
107 	if (!new)
108 		return -ENOMEM;
109 
110 	/* First make identical copy. */
111 	memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
112 	new->num = old->num;
113 
114 	/* Now append new entry. */
115 	new->map[new->num].addr = addr;
116 	new->map[new->num].event = eventfd_ctx_fdget(fd);
117 	if (IS_ERR(new->map[new->num].event)) {
118 		int err =  PTR_ERR(new->map[new->num].event);
119 		kfree(new);
120 		return err;
121 	}
122 	new->num++;
123 
124 	/*
125 	 * Now put new one in place: rcu_assign_pointer() is a fancy way of
126 	 * doing "lg->eventfds = new", but it uses memory barriers to make
127 	 * absolutely sure that the contents of "new" written above is nailed
128 	 * down before we actually do the assignment.
129 	 *
130 	 * We have to think about these kinds of things when we're operating on
131 	 * live data without locks.
132 	 */
133 	rcu_assign_pointer(lg->eventfds, new);
134 
135 	/*
136 	 * We're not in a big hurry.  Wait until no one's looking at old
137 	 * version, then free it.
138 	 */
139 	synchronize_rcu();
140 	kfree(old);
141 
142 	return 0;
143 }
144 
145 /*L:052
146  * Receiving notifications from the Guest is usually done by attaching a
147  * particular LHCALL_NOTIFY value to an event filedescriptor.  The eventfd will
148  * become readable when the Guest does an LHCALL_NOTIFY with that value.
149  *
150  * This is really convenient for processing each virtqueue in a separate
151  * thread.
152  */
attach_eventfd(struct lguest * lg,const unsigned long __user * input)153 static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
154 {
155 	unsigned long addr, fd;
156 	int err;
157 
158 	if (get_user(addr, input) != 0)
159 		return -EFAULT;
160 	input++;
161 	if (get_user(fd, input) != 0)
162 		return -EFAULT;
163 
164 	/*
165 	 * Just make sure two callers don't add eventfds at once.  We really
166 	 * only need to lock against callers adding to the same Guest, so using
167 	 * the Big Lguest Lock is overkill.  But this is setup, not a fast path.
168 	 */
169 	mutex_lock(&lguest_lock);
170 	err = add_eventfd(lg, addr, fd);
171 	mutex_unlock(&lguest_lock);
172 
173 	return err;
174 }
175 
176 /*L:050
177  * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
178  * number to /dev/lguest.
179  */
user_send_irq(struct lg_cpu * cpu,const unsigned long __user * input)180 static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
181 {
182 	unsigned long irq;
183 
184 	if (get_user(irq, input) != 0)
185 		return -EFAULT;
186 	if (irq >= LGUEST_IRQS)
187 		return -EINVAL;
188 
189 	/*
190 	 * Next time the Guest runs, the core code will see if it can deliver
191 	 * this interrupt.
192 	 */
193 	set_interrupt(cpu, irq);
194 	return 0;
195 }
196 
197 /*L:040
198  * Once our Guest is initialized, the Launcher makes it run by reading
199  * from /dev/lguest.
200  */
read(struct file * file,char __user * user,size_t size,loff_t * o)201 static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
202 {
203 	struct lguest *lg = file->private_data;
204 	struct lg_cpu *cpu;
205 	unsigned int cpu_id = *o;
206 
207 	/* You must write LHREQ_INITIALIZE first! */
208 	if (!lg)
209 		return -EINVAL;
210 
211 	/* Watch out for arbitrary vcpu indexes! */
212 	if (cpu_id >= lg->nr_cpus)
213 		return -EINVAL;
214 
215 	cpu = &lg->cpus[cpu_id];
216 
217 	/* If you're not the task which owns the Guest, go away. */
218 	if (current != cpu->tsk)
219 		return -EPERM;
220 
221 	/* If the Guest is already dead, we indicate why */
222 	if (lg->dead) {
223 		size_t len;
224 
225 		/* lg->dead either contains an error code, or a string. */
226 		if (IS_ERR(lg->dead))
227 			return PTR_ERR(lg->dead);
228 
229 		/* We can only return as much as the buffer they read with. */
230 		len = min(size, strlen(lg->dead)+1);
231 		if (copy_to_user(user, lg->dead, len) != 0)
232 			return -EFAULT;
233 		return len;
234 	}
235 
236 	/*
237 	 * If we returned from read() last time because the Guest sent I/O,
238 	 * clear the flag.
239 	 */
240 	if (cpu->pending_notify)
241 		cpu->pending_notify = 0;
242 
243 	/* Run the Guest until something interesting happens. */
244 	return run_guest(cpu, (unsigned long __user *)user);
245 }
246 
247 /*L:025
248  * This actually initializes a CPU.  For the moment, a Guest is only
249  * uniprocessor, so "id" is always 0.
250  */
lg_cpu_start(struct lg_cpu * cpu,unsigned id,unsigned long start_ip)251 static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
252 {
253 	/* We have a limited number the number of CPUs in the lguest struct. */
254 	if (id >= ARRAY_SIZE(cpu->lg->cpus))
255 		return -EINVAL;
256 
257 	/* Set up this CPU's id, and pointer back to the lguest struct. */
258 	cpu->id = id;
259 	cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
260 	cpu->lg->nr_cpus++;
261 
262 	/* Each CPU has a timer it can set. */
263 	init_clockdev(cpu);
264 
265 	/*
266 	 * We need a complete page for the Guest registers: they are accessible
267 	 * to the Guest and we can only grant it access to whole pages.
268 	 */
269 	cpu->regs_page = get_zeroed_page(GFP_KERNEL);
270 	if (!cpu->regs_page)
271 		return -ENOMEM;
272 
273 	/* We actually put the registers at the bottom of the page. */
274 	cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
275 
276 	/*
277 	 * Now we initialize the Guest's registers, handing it the start
278 	 * address.
279 	 */
280 	lguest_arch_setup_regs(cpu, start_ip);
281 
282 	/*
283 	 * We keep a pointer to the Launcher task (ie. current task) for when
284 	 * other Guests want to wake this one (eg. console input).
285 	 */
286 	cpu->tsk = current;
287 
288 	/*
289 	 * We need to keep a pointer to the Launcher's memory map, because if
290 	 * the Launcher dies we need to clean it up.  If we don't keep a
291 	 * reference, it is destroyed before close() is called.
292 	 */
293 	cpu->mm = get_task_mm(cpu->tsk);
294 
295 	/*
296 	 * We remember which CPU's pages this Guest used last, for optimization
297 	 * when the same Guest runs on the same CPU twice.
298 	 */
299 	cpu->last_pages = NULL;
300 
301 	/* No error == success. */
302 	return 0;
303 }
304 
305 /*L:020
306  * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
307  * addition to the LHREQ_INITIALIZE value).  These are:
308  *
309  * base: The start of the Guest-physical memory inside the Launcher memory.
310  *
311  * pfnlimit: The highest (Guest-physical) page number the Guest should be
312  * allowed to access.  The Guest memory lives inside the Launcher, so it sets
313  * this to ensure the Guest can only reach its own memory.
314  *
315  * start: The first instruction to execute ("eip" in x86-speak).
316  */
initialize(struct file * file,const unsigned long __user * input)317 static int initialize(struct file *file, const unsigned long __user *input)
318 {
319 	/* "struct lguest" contains all we (the Host) know about a Guest. */
320 	struct lguest *lg;
321 	int err;
322 	unsigned long args[3];
323 
324 	/*
325 	 * We grab the Big Lguest lock, which protects against multiple
326 	 * simultaneous initializations.
327 	 */
328 	mutex_lock(&lguest_lock);
329 	/* You can't initialize twice!  Close the device and start again... */
330 	if (file->private_data) {
331 		err = -EBUSY;
332 		goto unlock;
333 	}
334 
335 	if (copy_from_user(args, input, sizeof(args)) != 0) {
336 		err = -EFAULT;
337 		goto unlock;
338 	}
339 
340 	lg = kzalloc(sizeof(*lg), GFP_KERNEL);
341 	if (!lg) {
342 		err = -ENOMEM;
343 		goto unlock;
344 	}
345 
346 	lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
347 	if (!lg->eventfds) {
348 		err = -ENOMEM;
349 		goto free_lg;
350 	}
351 	lg->eventfds->num = 0;
352 
353 	/* Populate the easy fields of our "struct lguest" */
354 	lg->mem_base = (void __user *)args[0];
355 	lg->pfn_limit = args[1];
356 
357 	/* This is the first cpu (cpu 0) and it will start booting at args[2] */
358 	err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
359 	if (err)
360 		goto free_eventfds;
361 
362 	/*
363 	 * Initialize the Guest's shadow page tables.  This allocates
364 	 * memory, so can fail.
365 	 */
366 	err = init_guest_pagetable(lg);
367 	if (err)
368 		goto free_regs;
369 
370 	/* We keep our "struct lguest" in the file's private_data. */
371 	file->private_data = lg;
372 
373 	mutex_unlock(&lguest_lock);
374 
375 	/* And because this is a write() call, we return the length used. */
376 	return sizeof(args);
377 
378 free_regs:
379 	/* FIXME: This should be in free_vcpu */
380 	free_page(lg->cpus[0].regs_page);
381 free_eventfds:
382 	kfree(lg->eventfds);
383 free_lg:
384 	kfree(lg);
385 unlock:
386 	mutex_unlock(&lguest_lock);
387 	return err;
388 }
389 
390 /*L:010
391  * The first operation the Launcher does must be a write.  All writes
392  * start with an unsigned long number: for the first write this must be
393  * LHREQ_INITIALIZE to set up the Guest.  After that the Launcher can use
394  * writes of other values to send interrupts or set up receipt of notifications.
395  *
396  * Note that we overload the "offset" in the /dev/lguest file to indicate what
397  * CPU number we're dealing with.  Currently this is always 0 since we only
398  * support uniprocessor Guests, but you can see the beginnings of SMP support
399  * here.
400  */
write(struct file * file,const char __user * in,size_t size,loff_t * off)401 static ssize_t write(struct file *file, const char __user *in,
402 		     size_t size, loff_t *off)
403 {
404 	/*
405 	 * Once the Guest is initialized, we hold the "struct lguest" in the
406 	 * file private data.
407 	 */
408 	struct lguest *lg = file->private_data;
409 	const unsigned long __user *input = (const unsigned long __user *)in;
410 	unsigned long req;
411 	struct lg_cpu *uninitialized_var(cpu);
412 	unsigned int cpu_id = *off;
413 
414 	/* The first value tells us what this request is. */
415 	if (get_user(req, input) != 0)
416 		return -EFAULT;
417 	input++;
418 
419 	/* If you haven't initialized, you must do that first. */
420 	if (req != LHREQ_INITIALIZE) {
421 		if (!lg || (cpu_id >= lg->nr_cpus))
422 			return -EINVAL;
423 		cpu = &lg->cpus[cpu_id];
424 
425 		/* Once the Guest is dead, you can only read() why it died. */
426 		if (lg->dead)
427 			return -ENOENT;
428 	}
429 
430 	switch (req) {
431 	case LHREQ_INITIALIZE:
432 		return initialize(file, input);
433 	case LHREQ_IRQ:
434 		return user_send_irq(cpu, input);
435 	case LHREQ_EVENTFD:
436 		return attach_eventfd(lg, input);
437 	default:
438 		return -EINVAL;
439 	}
440 }
441 
442 /*L:060
443  * The final piece of interface code is the close() routine.  It reverses
444  * everything done in initialize().  This is usually called because the
445  * Launcher exited.
446  *
447  * Note that the close routine returns 0 or a negative error number: it can't
448  * really fail, but it can whine.  I blame Sun for this wart, and K&R C for
449  * letting them do it.
450 :*/
close(struct inode * inode,struct file * file)451 static int close(struct inode *inode, struct file *file)
452 {
453 	struct lguest *lg = file->private_data;
454 	unsigned int i;
455 
456 	/* If we never successfully initialized, there's nothing to clean up */
457 	if (!lg)
458 		return 0;
459 
460 	/*
461 	 * We need the big lock, to protect from inter-guest I/O and other
462 	 * Launchers initializing guests.
463 	 */
464 	mutex_lock(&lguest_lock);
465 
466 	/* Free up the shadow page tables for the Guest. */
467 	free_guest_pagetable(lg);
468 
469 	for (i = 0; i < lg->nr_cpus; i++) {
470 		/* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
471 		hrtimer_cancel(&lg->cpus[i].hrt);
472 		/* We can free up the register page we allocated. */
473 		free_page(lg->cpus[i].regs_page);
474 		/*
475 		 * Now all the memory cleanups are done, it's safe to release
476 		 * the Launcher's memory management structure.
477 		 */
478 		mmput(lg->cpus[i].mm);
479 	}
480 
481 	/* Release any eventfds they registered. */
482 	for (i = 0; i < lg->eventfds->num; i++)
483 		eventfd_ctx_put(lg->eventfds->map[i].event);
484 	kfree(lg->eventfds);
485 
486 	/*
487 	 * If lg->dead doesn't contain an error code it will be NULL or a
488 	 * kmalloc()ed string, either of which is ok to hand to kfree().
489 	 */
490 	if (!IS_ERR(lg->dead))
491 		kfree(lg->dead);
492 	/* Free the memory allocated to the lguest_struct */
493 	kfree(lg);
494 	/* Release lock and exit. */
495 	mutex_unlock(&lguest_lock);
496 
497 	return 0;
498 }
499 
500 /*L:000
501  * Welcome to our journey through the Launcher!
502  *
503  * The Launcher is the Host userspace program which sets up, runs and services
504  * the Guest.  In fact, many comments in the Drivers which refer to "the Host"
505  * doing things are inaccurate: the Launcher does all the device handling for
506  * the Guest, but the Guest can't know that.
507  *
508  * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
509  * shall see more of that later.
510  *
511  * We begin our understanding with the Host kernel interface which the Launcher
512  * uses: reading and writing a character device called /dev/lguest.  All the
513  * work happens in the read(), write() and close() routines:
514  */
515 static const struct file_operations lguest_fops = {
516 	.owner	 = THIS_MODULE,
517 	.release = close,
518 	.write	 = write,
519 	.read	 = read,
520 	.llseek  = default_llseek,
521 };
522 /*:*/
523 
524 /*
525  * This is a textbook example of a "misc" character device.  Populate a "struct
526  * miscdevice" and register it with misc_register().
527  */
528 static struct miscdevice lguest_dev = {
529 	.minor	= MISC_DYNAMIC_MINOR,
530 	.name	= "lguest",
531 	.fops	= &lguest_fops,
532 };
533 
lguest_device_init(void)534 int __init lguest_device_init(void)
535 {
536 	return misc_register(&lguest_dev);
537 }
538 
lguest_device_remove(void)539 void __exit lguest_device_remove(void)
540 {
541 	misc_deregister(&lguest_dev);
542 }
543