1 /*
2  *  intel_mid_dma.c - Intel Langwell DMA Drivers
3  *
4  *  Copyright (C) 2008-10 Intel Corp
5  *  Author: Vinod Koul <vinod.koul@intel.com>
6  *  The driver design is based on dw_dmac driver
7  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; version 2 of the License.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License along
19  *  with this program; if not, write to the Free Software Foundation, Inc.,
20  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  *
25  */
26 #include <linux/pci.h>
27 #include <linux/interrupt.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/intel_mid_dma.h>
30 #include <linux/module.h>
31 
32 #include "dmaengine.h"
33 
34 #define MAX_CHAN	4 /*max ch across controllers*/
35 #include "intel_mid_dma_regs.h"
36 
37 #define INTEL_MID_DMAC1_ID		0x0814
38 #define INTEL_MID_DMAC2_ID		0x0813
39 #define INTEL_MID_GP_DMAC2_ID		0x0827
40 #define INTEL_MFLD_DMAC1_ID		0x0830
41 #define LNW_PERIPHRAL_MASK_BASE		0xFFAE8008
42 #define LNW_PERIPHRAL_MASK_SIZE		0x10
43 #define LNW_PERIPHRAL_STATUS		0x0
44 #define LNW_PERIPHRAL_MASK		0x8
45 
46 struct intel_mid_dma_probe_info {
47 	u8 max_chan;
48 	u8 ch_base;
49 	u16 block_size;
50 	u32 pimr_mask;
51 };
52 
53 #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
54 	((kernel_ulong_t)&(struct intel_mid_dma_probe_info) {	\
55 		.max_chan = (_max_chan),			\
56 		.ch_base = (_ch_base),				\
57 		.block_size = (_block_size),			\
58 		.pimr_mask = (_pimr_mask),			\
59 	})
60 
61 /*****************************************************************************
62 Utility Functions*/
63 /**
64  * get_ch_index	-	convert status to channel
65  * @status: status mask
66  * @base: dma ch base value
67  *
68  * Modify the status mask and return the channel index needing
69  * attention (or -1 if neither)
70  */
get_ch_index(int * status,unsigned int base)71 static int get_ch_index(int *status, unsigned int base)
72 {
73 	int i;
74 	for (i = 0; i < MAX_CHAN; i++) {
75 		if (*status & (1 << (i + base))) {
76 			*status = *status & ~(1 << (i + base));
77 			pr_debug("MDMA: index %d New status %x\n", i, *status);
78 			return i;
79 		}
80 	}
81 	return -1;
82 }
83 
84 /**
85  * get_block_ts	-	calculates dma transaction length
86  * @len: dma transfer length
87  * @tx_width: dma transfer src width
88  * @block_size: dma controller max block size
89  *
90  * Based on src width calculate the DMA trsaction length in data items
91  * return data items or FFFF if exceeds max length for block
92  */
get_block_ts(int len,int tx_width,int block_size)93 static int get_block_ts(int len, int tx_width, int block_size)
94 {
95 	int byte_width = 0, block_ts = 0;
96 
97 	switch (tx_width) {
98 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
99 		byte_width = 1;
100 		break;
101 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
102 		byte_width = 2;
103 		break;
104 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
105 	default:
106 		byte_width = 4;
107 		break;
108 	}
109 
110 	block_ts = len/byte_width;
111 	if (block_ts > block_size)
112 		block_ts = 0xFFFF;
113 	return block_ts;
114 }
115 
116 /*****************************************************************************
117 DMAC1 interrupt Functions*/
118 
119 /**
120  * dmac1_mask_periphral_intr -	mask the periphral interrupt
121  * @mid: dma device for which masking is required
122  *
123  * Masks the DMA periphral interrupt
124  * this is valid for DMAC1 family controllers only
125  * This controller should have periphral mask registers already mapped
126  */
dmac1_mask_periphral_intr(struct middma_device * mid)127 static void dmac1_mask_periphral_intr(struct middma_device *mid)
128 {
129 	u32 pimr;
130 
131 	if (mid->pimr_mask) {
132 		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
133 		pimr |= mid->pimr_mask;
134 		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
135 	}
136 	return;
137 }
138 
139 /**
140  * dmac1_unmask_periphral_intr -	unmask the periphral interrupt
141  * @midc: dma channel for which masking is required
142  *
143  * UnMasks the DMA periphral interrupt,
144  * this is valid for DMAC1 family controllers only
145  * This controller should have periphral mask registers already mapped
146  */
dmac1_unmask_periphral_intr(struct intel_mid_dma_chan * midc)147 static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
148 {
149 	u32 pimr;
150 	struct middma_device *mid = to_middma_device(midc->chan.device);
151 
152 	if (mid->pimr_mask) {
153 		pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
154 		pimr &= ~mid->pimr_mask;
155 		writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
156 	}
157 	return;
158 }
159 
160 /**
161  * enable_dma_interrupt -	enable the periphral interrupt
162  * @midc: dma channel for which enable interrupt is required
163  *
164  * Enable the DMA periphral interrupt,
165  * this is valid for DMAC1 family controllers only
166  * This controller should have periphral mask registers already mapped
167  */
enable_dma_interrupt(struct intel_mid_dma_chan * midc)168 static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
169 {
170 	dmac1_unmask_periphral_intr(midc);
171 
172 	/*en ch interrupts*/
173 	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
174 	iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
175 	return;
176 }
177 
178 /**
179  * disable_dma_interrupt -	disable the periphral interrupt
180  * @midc: dma channel for which disable interrupt is required
181  *
182  * Disable the DMA periphral interrupt,
183  * this is valid for DMAC1 family controllers only
184  * This controller should have periphral mask registers already mapped
185  */
disable_dma_interrupt(struct intel_mid_dma_chan * midc)186 static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
187 {
188 	/*Check LPE PISR, make sure fwd is disabled*/
189 	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
190 	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
191 	iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
192 	return;
193 }
194 
195 /*****************************************************************************
196 DMA channel helper Functions*/
197 /**
198  * mid_desc_get		-	get a descriptor
199  * @midc: dma channel for which descriptor is required
200  *
201  * Obtain a descriptor for the channel. Returns NULL if none are free.
202  * Once the descriptor is returned it is private until put on another
203  * list or freed
204  */
midc_desc_get(struct intel_mid_dma_chan * midc)205 static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
206 {
207 	struct intel_mid_dma_desc *desc, *_desc;
208 	struct intel_mid_dma_desc *ret = NULL;
209 
210 	spin_lock_bh(&midc->lock);
211 	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
212 		if (async_tx_test_ack(&desc->txd)) {
213 			list_del(&desc->desc_node);
214 			ret = desc;
215 			break;
216 		}
217 	}
218 	spin_unlock_bh(&midc->lock);
219 	return ret;
220 }
221 
222 /**
223  * mid_desc_put		-	put a descriptor
224  * @midc: dma channel for which descriptor is required
225  * @desc: descriptor to put
226  *
227  * Return a descriptor from lwn_desc_get back to the free pool
228  */
midc_desc_put(struct intel_mid_dma_chan * midc,struct intel_mid_dma_desc * desc)229 static void midc_desc_put(struct intel_mid_dma_chan *midc,
230 			struct intel_mid_dma_desc *desc)
231 {
232 	if (desc) {
233 		spin_lock_bh(&midc->lock);
234 		list_add_tail(&desc->desc_node, &midc->free_list);
235 		spin_unlock_bh(&midc->lock);
236 	}
237 }
238 /**
239  * midc_dostart		-		begin a DMA transaction
240  * @midc: channel for which txn is to be started
241  * @first: first descriptor of series
242  *
243  * Load a transaction into the engine. This must be called with midc->lock
244  * held and bh disabled.
245  */
midc_dostart(struct intel_mid_dma_chan * midc,struct intel_mid_dma_desc * first)246 static void midc_dostart(struct intel_mid_dma_chan *midc,
247 			struct intel_mid_dma_desc *first)
248 {
249 	struct middma_device *mid = to_middma_device(midc->chan.device);
250 
251 	/*  channel is idle */
252 	if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
253 		/*error*/
254 		pr_err("ERR_MDMA: channel is busy in start\n");
255 		/* The tasklet will hopefully advance the queue... */
256 		return;
257 	}
258 	midc->busy = true;
259 	/*write registers and en*/
260 	iowrite32(first->sar, midc->ch_regs + SAR);
261 	iowrite32(first->dar, midc->ch_regs + DAR);
262 	iowrite32(first->lli_phys, midc->ch_regs + LLP);
263 	iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
264 	iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
265 	iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
266 	iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
267 	pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
268 		(int)first->sar, (int)first->dar, first->cfg_hi,
269 		first->cfg_lo, first->ctl_hi, first->ctl_lo);
270 	first->status = DMA_IN_PROGRESS;
271 
272 	iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
273 }
274 
275 /**
276  * midc_descriptor_complete	-	process completed descriptor
277  * @midc: channel owning the descriptor
278  * @desc: the descriptor itself
279  *
280  * Process a completed descriptor and perform any callbacks upon
281  * the completion. The completion handling drops the lock during the
282  * callbacks but must be called with the lock held.
283  */
midc_descriptor_complete(struct intel_mid_dma_chan * midc,struct intel_mid_dma_desc * desc)284 static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
285 		struct intel_mid_dma_desc *desc)
286 		__releases(&midc->lock) __acquires(&midc->lock)
287 {
288 	struct dma_async_tx_descriptor	*txd = &desc->txd;
289 	dma_async_tx_callback callback_txd = NULL;
290 	struct intel_mid_dma_lli	*llitem;
291 	void *param_txd = NULL;
292 
293 	dma_cookie_complete(txd);
294 	callback_txd = txd->callback;
295 	param_txd = txd->callback_param;
296 
297 	if (desc->lli != NULL) {
298 		/*clear the DONE bit of completed LLI in memory*/
299 		llitem = desc->lli + desc->current_lli;
300 		llitem->ctl_hi &= CLEAR_DONE;
301 		if (desc->current_lli < desc->lli_length-1)
302 			(desc->current_lli)++;
303 		else
304 			desc->current_lli = 0;
305 	}
306 	spin_unlock_bh(&midc->lock);
307 	if (callback_txd) {
308 		pr_debug("MDMA: TXD callback set ... calling\n");
309 		callback_txd(param_txd);
310 	}
311 	if (midc->raw_tfr) {
312 		desc->status = DMA_SUCCESS;
313 		if (desc->lli != NULL) {
314 			pci_pool_free(desc->lli_pool, desc->lli,
315 						desc->lli_phys);
316 			pci_pool_destroy(desc->lli_pool);
317 			desc->lli = NULL;
318 		}
319 		list_move(&desc->desc_node, &midc->free_list);
320 		midc->busy = false;
321 	}
322 	spin_lock_bh(&midc->lock);
323 
324 }
325 /**
326  * midc_scan_descriptors -		check the descriptors in channel
327  *					mark completed when tx is completete
328  * @mid: device
329  * @midc: channel to scan
330  *
331  * Walk the descriptor chain for the device and process any entries
332  * that are complete.
333  */
midc_scan_descriptors(struct middma_device * mid,struct intel_mid_dma_chan * midc)334 static void midc_scan_descriptors(struct middma_device *mid,
335 				struct intel_mid_dma_chan *midc)
336 {
337 	struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
338 
339 	/*tx is complete*/
340 	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
341 		if (desc->status == DMA_IN_PROGRESS)
342 			midc_descriptor_complete(midc, desc);
343 	}
344 	return;
345 	}
346 /**
347  * midc_lli_fill_sg -		Helper function to convert
348  *				SG list to Linked List Items.
349  *@midc: Channel
350  *@desc: DMA descriptor
351  *@sglist: Pointer to SG list
352  *@sglen: SG list length
353  *@flags: DMA transaction flags
354  *
355  * Walk through the SG list and convert the SG list into Linked
356  * List Items (LLI).
357  */
midc_lli_fill_sg(struct intel_mid_dma_chan * midc,struct intel_mid_dma_desc * desc,struct scatterlist * sglist,unsigned int sglen,unsigned int flags)358 static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
359 				struct intel_mid_dma_desc *desc,
360 				struct scatterlist *sglist,
361 				unsigned int sglen,
362 				unsigned int flags)
363 {
364 	struct intel_mid_dma_slave *mids;
365 	struct scatterlist  *sg;
366 	dma_addr_t lli_next, sg_phy_addr;
367 	struct intel_mid_dma_lli *lli_bloc_desc;
368 	union intel_mid_dma_ctl_lo ctl_lo;
369 	union intel_mid_dma_ctl_hi ctl_hi;
370 	int i;
371 
372 	pr_debug("MDMA: Entered midc_lli_fill_sg\n");
373 	mids = midc->mid_slave;
374 
375 	lli_bloc_desc = desc->lli;
376 	lli_next = desc->lli_phys;
377 
378 	ctl_lo.ctl_lo = desc->ctl_lo;
379 	ctl_hi.ctl_hi = desc->ctl_hi;
380 	for_each_sg(sglist, sg, sglen, i) {
381 		/*Populate CTL_LOW and LLI values*/
382 		if (i != sglen - 1) {
383 			lli_next = lli_next +
384 				sizeof(struct intel_mid_dma_lli);
385 		} else {
386 		/*Check for circular list, otherwise terminate LLI to ZERO*/
387 			if (flags & DMA_PREP_CIRCULAR_LIST) {
388 				pr_debug("MDMA: LLI is configured in circular mode\n");
389 				lli_next = desc->lli_phys;
390 			} else {
391 				lli_next = 0;
392 				ctl_lo.ctlx.llp_dst_en = 0;
393 				ctl_lo.ctlx.llp_src_en = 0;
394 			}
395 		}
396 		/*Populate CTL_HI values*/
397 		ctl_hi.ctlx.block_ts = get_block_ts(sg->length,
398 							desc->width,
399 							midc->dma->block_size);
400 		/*Populate SAR and DAR values*/
401 		sg_phy_addr = sg_phys(sg);
402 		if (desc->dirn ==  DMA_MEM_TO_DEV) {
403 			lli_bloc_desc->sar  = sg_phy_addr;
404 			lli_bloc_desc->dar  = mids->dma_slave.dst_addr;
405 		} else if (desc->dirn ==  DMA_DEV_TO_MEM) {
406 			lli_bloc_desc->sar  = mids->dma_slave.src_addr;
407 			lli_bloc_desc->dar  = sg_phy_addr;
408 		}
409 		/*Copy values into block descriptor in system memroy*/
410 		lli_bloc_desc->llp = lli_next;
411 		lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
412 		lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
413 
414 		lli_bloc_desc++;
415 	}
416 	/*Copy very first LLI values to descriptor*/
417 	desc->ctl_lo = desc->lli->ctl_lo;
418 	desc->ctl_hi = desc->lli->ctl_hi;
419 	desc->sar = desc->lli->sar;
420 	desc->dar = desc->lli->dar;
421 
422 	return 0;
423 }
424 /*****************************************************************************
425 DMA engine callback Functions*/
426 /**
427  * intel_mid_dma_tx_submit -	callback to submit DMA transaction
428  * @tx: dma engine descriptor
429  *
430  * Submit the DMA trasaction for this descriptor, start if ch idle
431  */
intel_mid_dma_tx_submit(struct dma_async_tx_descriptor * tx)432 static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
433 {
434 	struct intel_mid_dma_desc	*desc = to_intel_mid_dma_desc(tx);
435 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(tx->chan);
436 	dma_cookie_t		cookie;
437 
438 	spin_lock_bh(&midc->lock);
439 	cookie = dma_cookie_assign(tx);
440 
441 	if (list_empty(&midc->active_list))
442 		list_add_tail(&desc->desc_node, &midc->active_list);
443 	else
444 		list_add_tail(&desc->desc_node, &midc->queue);
445 
446 	midc_dostart(midc, desc);
447 	spin_unlock_bh(&midc->lock);
448 
449 	return cookie;
450 }
451 
452 /**
453  * intel_mid_dma_issue_pending -	callback to issue pending txn
454  * @chan: chan where pending trascation needs to be checked and submitted
455  *
456  * Call for scan to issue pending descriptors
457  */
intel_mid_dma_issue_pending(struct dma_chan * chan)458 static void intel_mid_dma_issue_pending(struct dma_chan *chan)
459 {
460 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
461 
462 	spin_lock_bh(&midc->lock);
463 	if (!list_empty(&midc->queue))
464 		midc_scan_descriptors(to_middma_device(chan->device), midc);
465 	spin_unlock_bh(&midc->lock);
466 }
467 
468 /**
469  * intel_mid_dma_tx_status -	Return status of txn
470  * @chan: chan for where status needs to be checked
471  * @cookie: cookie for txn
472  * @txstate: DMA txn state
473  *
474  * Return status of DMA txn
475  */
intel_mid_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)476 static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
477 						dma_cookie_t cookie,
478 						struct dma_tx_state *txstate)
479 {
480 	struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
481 	enum dma_status ret;
482 
483 	ret = dma_cookie_status(chan, cookie, txstate);
484 	if (ret != DMA_SUCCESS) {
485 		spin_lock_bh(&midc->lock);
486 		midc_scan_descriptors(to_middma_device(chan->device), midc);
487 		spin_unlock_bh(&midc->lock);
488 
489 		ret = dma_cookie_status(chan, cookie, txstate);
490 	}
491 
492 	return ret;
493 }
494 
dma_slave_control(struct dma_chan * chan,unsigned long arg)495 static int dma_slave_control(struct dma_chan *chan, unsigned long arg)
496 {
497 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
498 	struct dma_slave_config  *slave = (struct dma_slave_config *)arg;
499 	struct intel_mid_dma_slave *mid_slave;
500 
501 	BUG_ON(!midc);
502 	BUG_ON(!slave);
503 	pr_debug("MDMA: slave control called\n");
504 
505 	mid_slave = to_intel_mid_dma_slave(slave);
506 
507 	BUG_ON(!mid_slave);
508 
509 	midc->mid_slave = mid_slave;
510 	return 0;
511 }
512 /**
513  * intel_mid_dma_device_control -	DMA device control
514  * @chan: chan for DMA control
515  * @cmd: control cmd
516  * @arg: cmd arg value
517  *
518  * Perform DMA control command
519  */
intel_mid_dma_device_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)520 static int intel_mid_dma_device_control(struct dma_chan *chan,
521 			enum dma_ctrl_cmd cmd, unsigned long arg)
522 {
523 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
524 	struct middma_device	*mid = to_middma_device(chan->device);
525 	struct intel_mid_dma_desc	*desc, *_desc;
526 	union intel_mid_dma_cfg_lo cfg_lo;
527 
528 	if (cmd == DMA_SLAVE_CONFIG)
529 		return dma_slave_control(chan, arg);
530 
531 	if (cmd != DMA_TERMINATE_ALL)
532 		return -ENXIO;
533 
534 	spin_lock_bh(&midc->lock);
535 	if (midc->busy == false) {
536 		spin_unlock_bh(&midc->lock);
537 		return 0;
538 	}
539 	/*Suspend and disable the channel*/
540 	cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
541 	cfg_lo.cfgx.ch_susp = 1;
542 	iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
543 	iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
544 	midc->busy = false;
545 	/* Disable interrupts */
546 	disable_dma_interrupt(midc);
547 	midc->descs_allocated = 0;
548 
549 	spin_unlock_bh(&midc->lock);
550 	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
551 		if (desc->lli != NULL) {
552 			pci_pool_free(desc->lli_pool, desc->lli,
553 						desc->lli_phys);
554 			pci_pool_destroy(desc->lli_pool);
555 			desc->lli = NULL;
556 		}
557 		list_move(&desc->desc_node, &midc->free_list);
558 	}
559 	return 0;
560 }
561 
562 
563 /**
564  * intel_mid_dma_prep_memcpy -	Prep memcpy txn
565  * @chan: chan for DMA transfer
566  * @dest: destn address
567  * @src: src address
568  * @len: DMA transfer len
569  * @flags: DMA flags
570  *
571  * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
572  * The periphral txn details should be filled in slave structure properly
573  * Returns the descriptor for this txn
574  */
intel_mid_dma_prep_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)575 static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
576 			struct dma_chan *chan, dma_addr_t dest,
577 			dma_addr_t src, size_t len, unsigned long flags)
578 {
579 	struct intel_mid_dma_chan *midc;
580 	struct intel_mid_dma_desc *desc = NULL;
581 	struct intel_mid_dma_slave *mids;
582 	union intel_mid_dma_ctl_lo ctl_lo;
583 	union intel_mid_dma_ctl_hi ctl_hi;
584 	union intel_mid_dma_cfg_lo cfg_lo;
585 	union intel_mid_dma_cfg_hi cfg_hi;
586 	enum dma_slave_buswidth width;
587 
588 	pr_debug("MDMA: Prep for memcpy\n");
589 	BUG_ON(!chan);
590 	if (!len)
591 		return NULL;
592 
593 	midc = to_intel_mid_dma_chan(chan);
594 	BUG_ON(!midc);
595 
596 	mids = midc->mid_slave;
597 	BUG_ON(!mids);
598 
599 	pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
600 				midc->dma->pci_id, midc->ch_id, len);
601 	pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
602 			mids->cfg_mode, mids->dma_slave.direction,
603 			mids->hs_mode, mids->dma_slave.src_addr_width);
604 
605 	/*calculate CFG_LO*/
606 	if (mids->hs_mode == LNW_DMA_SW_HS) {
607 		cfg_lo.cfg_lo = 0;
608 		cfg_lo.cfgx.hs_sel_dst = 1;
609 		cfg_lo.cfgx.hs_sel_src = 1;
610 	} else if (mids->hs_mode == LNW_DMA_HW_HS)
611 		cfg_lo.cfg_lo = 0x00000;
612 
613 	/*calculate CFG_HI*/
614 	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
615 		/*SW HS only*/
616 		cfg_hi.cfg_hi = 0;
617 	} else {
618 		cfg_hi.cfg_hi = 0;
619 		if (midc->dma->pimr_mask) {
620 			cfg_hi.cfgx.protctl = 0x0; /*default value*/
621 			cfg_hi.cfgx.fifo_mode = 1;
622 			if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
623 				cfg_hi.cfgx.src_per = 0;
624 				if (mids->device_instance == 0)
625 					cfg_hi.cfgx.dst_per = 3;
626 				if (mids->device_instance == 1)
627 					cfg_hi.cfgx.dst_per = 1;
628 			} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
629 				if (mids->device_instance == 0)
630 					cfg_hi.cfgx.src_per = 2;
631 				if (mids->device_instance == 1)
632 					cfg_hi.cfgx.src_per = 0;
633 				cfg_hi.cfgx.dst_per = 0;
634 			}
635 		} else {
636 			cfg_hi.cfgx.protctl = 0x1; /*default value*/
637 			cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
638 					midc->ch_id - midc->dma->chan_base;
639 		}
640 	}
641 
642 	/*calculate CTL_HI*/
643 	ctl_hi.ctlx.reser = 0;
644 	ctl_hi.ctlx.done  = 0;
645 	width = mids->dma_slave.src_addr_width;
646 
647 	ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
648 	pr_debug("MDMA:calc len %d for block size %d\n",
649 				ctl_hi.ctlx.block_ts, midc->dma->block_size);
650 	/*calculate CTL_LO*/
651 	ctl_lo.ctl_lo = 0;
652 	ctl_lo.ctlx.int_en = 1;
653 	ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
654 	ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
655 
656 	/*
657 	 * Here we need some translation from "enum dma_slave_buswidth"
658 	 * to the format for our dma controller
659 	 *		standard	intel_mid_dmac's format
660 	 *		 1 Byte			0b000
661 	 *		 2 Bytes		0b001
662 	 *		 4 Bytes		0b010
663 	 */
664 	ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
665 	ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
666 
667 	if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
668 		ctl_lo.ctlx.tt_fc = 0;
669 		ctl_lo.ctlx.sinc = 0;
670 		ctl_lo.ctlx.dinc = 0;
671 	} else {
672 		if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
673 			ctl_lo.ctlx.sinc = 0;
674 			ctl_lo.ctlx.dinc = 2;
675 			ctl_lo.ctlx.tt_fc = 1;
676 		} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
677 			ctl_lo.ctlx.sinc = 2;
678 			ctl_lo.ctlx.dinc = 0;
679 			ctl_lo.ctlx.tt_fc = 2;
680 		}
681 	}
682 
683 	pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
684 		ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
685 
686 	enable_dma_interrupt(midc);
687 
688 	desc = midc_desc_get(midc);
689 	if (desc == NULL)
690 		goto err_desc_get;
691 	desc->sar = src;
692 	desc->dar = dest ;
693 	desc->len = len;
694 	desc->cfg_hi = cfg_hi.cfg_hi;
695 	desc->cfg_lo = cfg_lo.cfg_lo;
696 	desc->ctl_lo = ctl_lo.ctl_lo;
697 	desc->ctl_hi = ctl_hi.ctl_hi;
698 	desc->width = width;
699 	desc->dirn = mids->dma_slave.direction;
700 	desc->lli_phys = 0;
701 	desc->lli = NULL;
702 	desc->lli_pool = NULL;
703 	return &desc->txd;
704 
705 err_desc_get:
706 	pr_err("ERR_MDMA: Failed to get desc\n");
707 	midc_desc_put(midc, desc);
708 	return NULL;
709 }
710 /**
711  * intel_mid_dma_prep_slave_sg -	Prep slave sg txn
712  * @chan: chan for DMA transfer
713  * @sgl: scatter gather list
714  * @sg_len: length of sg txn
715  * @direction: DMA transfer dirtn
716  * @flags: DMA flags
717  * @context: transfer context (ignored)
718  *
719  * Prepares LLI based periphral transfer
720  */
intel_mid_dma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)721 static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
722 			struct dma_chan *chan, struct scatterlist *sgl,
723 			unsigned int sg_len, enum dma_transfer_direction direction,
724 			unsigned long flags, void *context)
725 {
726 	struct intel_mid_dma_chan *midc = NULL;
727 	struct intel_mid_dma_slave *mids = NULL;
728 	struct intel_mid_dma_desc *desc = NULL;
729 	struct dma_async_tx_descriptor *txd = NULL;
730 	union intel_mid_dma_ctl_lo ctl_lo;
731 
732 	pr_debug("MDMA: Prep for slave SG\n");
733 
734 	if (!sg_len) {
735 		pr_err("MDMA: Invalid SG length\n");
736 		return NULL;
737 	}
738 	midc = to_intel_mid_dma_chan(chan);
739 	BUG_ON(!midc);
740 
741 	mids = midc->mid_slave;
742 	BUG_ON(!mids);
743 
744 	if (!midc->dma->pimr_mask) {
745 		/* We can still handle sg list with only one item */
746 		if (sg_len == 1) {
747 			txd = intel_mid_dma_prep_memcpy(chan,
748 						mids->dma_slave.dst_addr,
749 						mids->dma_slave.src_addr,
750 						sgl->length,
751 						flags);
752 			return txd;
753 		} else {
754 			pr_warn("MDMA: SG list is not supported by this controller\n");
755 			return  NULL;
756 		}
757 	}
758 
759 	pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
760 			sg_len, direction, flags);
761 
762 	txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sgl->length, flags);
763 	if (NULL == txd) {
764 		pr_err("MDMA: Prep memcpy failed\n");
765 		return NULL;
766 	}
767 
768 	desc = to_intel_mid_dma_desc(txd);
769 	desc->dirn = direction;
770 	ctl_lo.ctl_lo = desc->ctl_lo;
771 	ctl_lo.ctlx.llp_dst_en = 1;
772 	ctl_lo.ctlx.llp_src_en = 1;
773 	desc->ctl_lo = ctl_lo.ctl_lo;
774 	desc->lli_length = sg_len;
775 	desc->current_lli = 0;
776 	/* DMA coherent memory pool for LLI descriptors*/
777 	desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
778 				midc->dma->pdev,
779 				(sizeof(struct intel_mid_dma_lli)*sg_len),
780 				32, 0);
781 	if (NULL == desc->lli_pool) {
782 		pr_err("MID_DMA:LLI pool create failed\n");
783 		return NULL;
784 	}
785 
786 	desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
787 	if (!desc->lli) {
788 		pr_err("MID_DMA: LLI alloc failed\n");
789 		pci_pool_destroy(desc->lli_pool);
790 		return NULL;
791 	}
792 
793 	midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
794 	if (flags & DMA_PREP_INTERRUPT) {
795 		iowrite32(UNMASK_INTR_REG(midc->ch_id),
796 				midc->dma_base + MASK_BLOCK);
797 		pr_debug("MDMA:Enabled Block interrupt\n");
798 	}
799 	return &desc->txd;
800 }
801 
802 /**
803  * intel_mid_dma_free_chan_resources -	Frees dma resources
804  * @chan: chan requiring attention
805  *
806  * Frees the allocated resources on this DMA chan
807  */
intel_mid_dma_free_chan_resources(struct dma_chan * chan)808 static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
809 {
810 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
811 	struct middma_device	*mid = to_middma_device(chan->device);
812 	struct intel_mid_dma_desc	*desc, *_desc;
813 
814 	if (true == midc->busy) {
815 		/*trying to free ch in use!!!!!*/
816 		pr_err("ERR_MDMA: trying to free ch in use\n");
817 	}
818 	spin_lock_bh(&midc->lock);
819 	midc->descs_allocated = 0;
820 	list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
821 		list_del(&desc->desc_node);
822 		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
823 	}
824 	list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
825 		list_del(&desc->desc_node);
826 		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
827 	}
828 	list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
829 		list_del(&desc->desc_node);
830 		pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
831 	}
832 	spin_unlock_bh(&midc->lock);
833 	midc->in_use = false;
834 	midc->busy = false;
835 	/* Disable CH interrupts */
836 	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
837 	iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
838 	pm_runtime_put(&mid->pdev->dev);
839 }
840 
841 /**
842  * intel_mid_dma_alloc_chan_resources -	Allocate dma resources
843  * @chan: chan requiring attention
844  *
845  * Allocates DMA resources on this chan
846  * Return the descriptors allocated
847  */
intel_mid_dma_alloc_chan_resources(struct dma_chan * chan)848 static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
849 {
850 	struct intel_mid_dma_chan	*midc = to_intel_mid_dma_chan(chan);
851 	struct middma_device	*mid = to_middma_device(chan->device);
852 	struct intel_mid_dma_desc	*desc;
853 	dma_addr_t		phys;
854 	int	i = 0;
855 
856 	pm_runtime_get_sync(&mid->pdev->dev);
857 
858 	if (mid->state == SUSPENDED) {
859 		if (dma_resume(&mid->pdev->dev)) {
860 			pr_err("ERR_MDMA: resume failed");
861 			return -EFAULT;
862 		}
863 	}
864 
865 	/* ASSERT:  channel is idle */
866 	if (test_ch_en(mid->dma_base, midc->ch_id)) {
867 		/*ch is not idle*/
868 		pr_err("ERR_MDMA: ch not idle\n");
869 		pm_runtime_put(&mid->pdev->dev);
870 		return -EIO;
871 	}
872 	dma_cookie_init(chan);
873 
874 	spin_lock_bh(&midc->lock);
875 	while (midc->descs_allocated < DESCS_PER_CHANNEL) {
876 		spin_unlock_bh(&midc->lock);
877 		desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
878 		if (!desc) {
879 			pr_err("ERR_MDMA: desc failed\n");
880 			pm_runtime_put(&mid->pdev->dev);
881 			return -ENOMEM;
882 			/*check*/
883 		}
884 		dma_async_tx_descriptor_init(&desc->txd, chan);
885 		desc->txd.tx_submit = intel_mid_dma_tx_submit;
886 		desc->txd.flags = DMA_CTRL_ACK;
887 		desc->txd.phys = phys;
888 		spin_lock_bh(&midc->lock);
889 		i = ++midc->descs_allocated;
890 		list_add_tail(&desc->desc_node, &midc->free_list);
891 	}
892 	spin_unlock_bh(&midc->lock);
893 	midc->in_use = true;
894 	midc->busy = false;
895 	pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
896 	return i;
897 }
898 
899 /**
900  * midc_handle_error -	Handle DMA txn error
901  * @mid: controller where error occurred
902  * @midc: chan where error occurred
903  *
904  * Scan the descriptor for error
905  */
midc_handle_error(struct middma_device * mid,struct intel_mid_dma_chan * midc)906 static void midc_handle_error(struct middma_device *mid,
907 		struct intel_mid_dma_chan *midc)
908 {
909 	midc_scan_descriptors(mid, midc);
910 }
911 
912 /**
913  * dma_tasklet -	DMA interrupt tasklet
914  * @data: tasklet arg (the controller structure)
915  *
916  * Scan the controller for interrupts for completion/error
917  * Clear the interrupt and call for handling completion/error
918  */
dma_tasklet(unsigned long data)919 static void dma_tasklet(unsigned long data)
920 {
921 	struct middma_device *mid = NULL;
922 	struct intel_mid_dma_chan *midc = NULL;
923 	u32 status, raw_tfr, raw_block;
924 	int i;
925 
926 	mid = (struct middma_device *)data;
927 	if (mid == NULL) {
928 		pr_err("ERR_MDMA: tasklet Null param\n");
929 		return;
930 	}
931 	pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
932 	raw_tfr = ioread32(mid->dma_base + RAW_TFR);
933 	raw_block = ioread32(mid->dma_base + RAW_BLOCK);
934 	status = raw_tfr | raw_block;
935 	status &= mid->intr_mask;
936 	while (status) {
937 		/*txn interrupt*/
938 		i = get_ch_index(&status, mid->chan_base);
939 		if (i < 0) {
940 			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
941 			return;
942 		}
943 		midc = &mid->ch[i];
944 		if (midc == NULL) {
945 			pr_err("ERR_MDMA:Null param midc\n");
946 			return;
947 		}
948 		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
949 				status, midc->ch_id, i);
950 		midc->raw_tfr = raw_tfr;
951 		midc->raw_block = raw_block;
952 		spin_lock_bh(&midc->lock);
953 		/*clearing this interrupts first*/
954 		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
955 		if (raw_block) {
956 			iowrite32((1 << midc->ch_id),
957 				mid->dma_base + CLEAR_BLOCK);
958 		}
959 		midc_scan_descriptors(mid, midc);
960 		pr_debug("MDMA:Scan of desc... complete, unmasking\n");
961 		iowrite32(UNMASK_INTR_REG(midc->ch_id),
962 				mid->dma_base + MASK_TFR);
963 		if (raw_block) {
964 			iowrite32(UNMASK_INTR_REG(midc->ch_id),
965 				mid->dma_base + MASK_BLOCK);
966 		}
967 		spin_unlock_bh(&midc->lock);
968 	}
969 
970 	status = ioread32(mid->dma_base + RAW_ERR);
971 	status &= mid->intr_mask;
972 	while (status) {
973 		/*err interrupt*/
974 		i = get_ch_index(&status, mid->chan_base);
975 		if (i < 0) {
976 			pr_err("ERR_MDMA:Invalid ch index %x\n", i);
977 			return;
978 		}
979 		midc = &mid->ch[i];
980 		if (midc == NULL) {
981 			pr_err("ERR_MDMA:Null param midc\n");
982 			return;
983 		}
984 		pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
985 				status, midc->ch_id, i);
986 
987 		iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
988 		spin_lock_bh(&midc->lock);
989 		midc_handle_error(mid, midc);
990 		iowrite32(UNMASK_INTR_REG(midc->ch_id),
991 				mid->dma_base + MASK_ERR);
992 		spin_unlock_bh(&midc->lock);
993 	}
994 	pr_debug("MDMA:Exiting takslet...\n");
995 	return;
996 }
997 
dma_tasklet1(unsigned long data)998 static void dma_tasklet1(unsigned long data)
999 {
1000 	pr_debug("MDMA:in takslet1...\n");
1001 	return dma_tasklet(data);
1002 }
1003 
dma_tasklet2(unsigned long data)1004 static void dma_tasklet2(unsigned long data)
1005 {
1006 	pr_debug("MDMA:in takslet2...\n");
1007 	return dma_tasklet(data);
1008 }
1009 
1010 /**
1011  * intel_mid_dma_interrupt -	DMA ISR
1012  * @irq: IRQ where interrupt occurred
1013  * @data: ISR cllback data (the controller structure)
1014  *
1015  * See if this is our interrupt if so then schedule the tasklet
1016  * otherwise ignore
1017  */
intel_mid_dma_interrupt(int irq,void * data)1018 static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1019 {
1020 	struct middma_device *mid = data;
1021 	u32 tfr_status, err_status;
1022 	int call_tasklet = 0;
1023 
1024 	tfr_status = ioread32(mid->dma_base + RAW_TFR);
1025 	err_status = ioread32(mid->dma_base + RAW_ERR);
1026 	if (!tfr_status && !err_status)
1027 		return IRQ_NONE;
1028 
1029 	/*DMA Interrupt*/
1030 	pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1031 	pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1032 	tfr_status &= mid->intr_mask;
1033 	if (tfr_status) {
1034 		/*need to disable intr*/
1035 		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1036 		iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1037 		pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1038 		call_tasklet = 1;
1039 	}
1040 	err_status &= mid->intr_mask;
1041 	if (err_status) {
1042 		iowrite32((err_status << INT_MASK_WE),
1043 			  mid->dma_base + MASK_ERR);
1044 		call_tasklet = 1;
1045 	}
1046 	if (call_tasklet)
1047 		tasklet_schedule(&mid->tasklet);
1048 
1049 	return IRQ_HANDLED;
1050 }
1051 
intel_mid_dma_interrupt1(int irq,void * data)1052 static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1053 {
1054 	return intel_mid_dma_interrupt(irq, data);
1055 }
1056 
intel_mid_dma_interrupt2(int irq,void * data)1057 static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1058 {
1059 	return intel_mid_dma_interrupt(irq, data);
1060 }
1061 
1062 /**
1063  * mid_setup_dma -	Setup the DMA controller
1064  * @pdev: Controller PCI device structure
1065  *
1066  * Initialize the DMA controller, channels, registers with DMA engine,
1067  * ISR. Initialize DMA controller channels.
1068  */
mid_setup_dma(struct pci_dev * pdev)1069 static int mid_setup_dma(struct pci_dev *pdev)
1070 {
1071 	struct middma_device *dma = pci_get_drvdata(pdev);
1072 	int err, i;
1073 
1074 	/* DMA coherent memory pool for DMA descriptor allocations */
1075 	dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1076 					sizeof(struct intel_mid_dma_desc),
1077 					32, 0);
1078 	if (NULL == dma->dma_pool) {
1079 		pr_err("ERR_MDMA:pci_pool_create failed\n");
1080 		err = -ENOMEM;
1081 		goto err_dma_pool;
1082 	}
1083 
1084 	INIT_LIST_HEAD(&dma->common.channels);
1085 	dma->pci_id = pdev->device;
1086 	if (dma->pimr_mask) {
1087 		dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1088 					LNW_PERIPHRAL_MASK_SIZE);
1089 		if (dma->mask_reg == NULL) {
1090 			pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1091 			err = -ENOMEM;
1092 			goto err_ioremap;
1093 		}
1094 	} else
1095 		dma->mask_reg = NULL;
1096 
1097 	pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1098 	/*init CH structures*/
1099 	dma->intr_mask = 0;
1100 	dma->state = RUNNING;
1101 	for (i = 0; i < dma->max_chan; i++) {
1102 		struct intel_mid_dma_chan *midch = &dma->ch[i];
1103 
1104 		midch->chan.device = &dma->common;
1105 		dma_cookie_init(&midch->chan);
1106 		midch->ch_id = dma->chan_base + i;
1107 		pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1108 
1109 		midch->dma_base = dma->dma_base;
1110 		midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1111 		midch->dma = dma;
1112 		dma->intr_mask |= 1 << (dma->chan_base + i);
1113 		spin_lock_init(&midch->lock);
1114 
1115 		INIT_LIST_HEAD(&midch->active_list);
1116 		INIT_LIST_HEAD(&midch->queue);
1117 		INIT_LIST_HEAD(&midch->free_list);
1118 		/*mask interrupts*/
1119 		iowrite32(MASK_INTR_REG(midch->ch_id),
1120 			dma->dma_base + MASK_BLOCK);
1121 		iowrite32(MASK_INTR_REG(midch->ch_id),
1122 			dma->dma_base + MASK_SRC_TRAN);
1123 		iowrite32(MASK_INTR_REG(midch->ch_id),
1124 			dma->dma_base + MASK_DST_TRAN);
1125 		iowrite32(MASK_INTR_REG(midch->ch_id),
1126 			dma->dma_base + MASK_ERR);
1127 		iowrite32(MASK_INTR_REG(midch->ch_id),
1128 			dma->dma_base + MASK_TFR);
1129 
1130 		disable_dma_interrupt(midch);
1131 		list_add_tail(&midch->chan.device_node, &dma->common.channels);
1132 	}
1133 	pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1134 
1135 	/*init dma structure*/
1136 	dma_cap_zero(dma->common.cap_mask);
1137 	dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1138 	dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1139 	dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1140 	dma->common.dev = &pdev->dev;
1141 
1142 	dma->common.device_alloc_chan_resources =
1143 					intel_mid_dma_alloc_chan_resources;
1144 	dma->common.device_free_chan_resources =
1145 					intel_mid_dma_free_chan_resources;
1146 
1147 	dma->common.device_tx_status = intel_mid_dma_tx_status;
1148 	dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1149 	dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1150 	dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1151 	dma->common.device_control = intel_mid_dma_device_control;
1152 
1153 	/*enable dma cntrl*/
1154 	iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1155 
1156 	/*register irq */
1157 	if (dma->pimr_mask) {
1158 		pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1159 		err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1160 			IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1161 		if (0 != err)
1162 			goto err_irq;
1163 	} else {
1164 		dma->intr_mask = 0x03;
1165 		pr_debug("MDMA:Requesting irq for DMAC2\n");
1166 		err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1167 			IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1168 		if (0 != err)
1169 			goto err_irq;
1170 	}
1171 	/*register device w/ engine*/
1172 	err = dma_async_device_register(&dma->common);
1173 	if (0 != err) {
1174 		pr_err("ERR_MDMA:device_register failed: %d\n", err);
1175 		goto err_engine;
1176 	}
1177 	if (dma->pimr_mask) {
1178 		pr_debug("setting up tasklet1 for DMAC1\n");
1179 		tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1180 	} else {
1181 		pr_debug("setting up tasklet2 for DMAC2\n");
1182 		tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1183 	}
1184 	return 0;
1185 
1186 err_engine:
1187 	free_irq(pdev->irq, dma);
1188 err_irq:
1189 	if (dma->mask_reg)
1190 		iounmap(dma->mask_reg);
1191 err_ioremap:
1192 	pci_pool_destroy(dma->dma_pool);
1193 err_dma_pool:
1194 	pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1195 	return err;
1196 
1197 }
1198 
1199 /**
1200  * middma_shutdown -	Shutdown the DMA controller
1201  * @pdev: Controller PCI device structure
1202  *
1203  * Called by remove
1204  * Unregister DMa controller, clear all structures and free interrupt
1205  */
middma_shutdown(struct pci_dev * pdev)1206 static void middma_shutdown(struct pci_dev *pdev)
1207 {
1208 	struct middma_device *device = pci_get_drvdata(pdev);
1209 
1210 	dma_async_device_unregister(&device->common);
1211 	pci_pool_destroy(device->dma_pool);
1212 	if (device->mask_reg)
1213 		iounmap(device->mask_reg);
1214 	if (device->dma_base)
1215 		iounmap(device->dma_base);
1216 	free_irq(pdev->irq, device);
1217 	return;
1218 }
1219 
1220 /**
1221  * intel_mid_dma_probe -	PCI Probe
1222  * @pdev: Controller PCI device structure
1223  * @id: pci device id structure
1224  *
1225  * Initialize the PCI device, map BARs, query driver data.
1226  * Call setup_dma to complete contoller and chan initilzation
1227  */
intel_mid_dma_probe(struct pci_dev * pdev,const struct pci_device_id * id)1228 static int __devinit intel_mid_dma_probe(struct pci_dev *pdev,
1229 					const struct pci_device_id *id)
1230 {
1231 	struct middma_device *device;
1232 	u32 base_addr, bar_size;
1233 	struct intel_mid_dma_probe_info *info;
1234 	int err;
1235 
1236 	pr_debug("MDMA: probe for %x\n", pdev->device);
1237 	info = (void *)id->driver_data;
1238 	pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1239 				info->max_chan, info->ch_base,
1240 				info->block_size, info->pimr_mask);
1241 
1242 	err = pci_enable_device(pdev);
1243 	if (err)
1244 		goto err_enable_device;
1245 
1246 	err = pci_request_regions(pdev, "intel_mid_dmac");
1247 	if (err)
1248 		goto err_request_regions;
1249 
1250 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1251 	if (err)
1252 		goto err_set_dma_mask;
1253 
1254 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1255 	if (err)
1256 		goto err_set_dma_mask;
1257 
1258 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1259 	if (!device) {
1260 		pr_err("ERR_MDMA:kzalloc failed probe\n");
1261 		err = -ENOMEM;
1262 		goto err_kzalloc;
1263 	}
1264 	device->pdev = pci_dev_get(pdev);
1265 
1266 	base_addr = pci_resource_start(pdev, 0);
1267 	bar_size  = pci_resource_len(pdev, 0);
1268 	device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1269 	if (!device->dma_base) {
1270 		pr_err("ERR_MDMA:ioremap failed\n");
1271 		err = -ENOMEM;
1272 		goto err_ioremap;
1273 	}
1274 	pci_set_drvdata(pdev, device);
1275 	pci_set_master(pdev);
1276 	device->max_chan = info->max_chan;
1277 	device->chan_base = info->ch_base;
1278 	device->block_size = info->block_size;
1279 	device->pimr_mask = info->pimr_mask;
1280 
1281 	err = mid_setup_dma(pdev);
1282 	if (err)
1283 		goto err_dma;
1284 
1285 	pm_runtime_put_noidle(&pdev->dev);
1286 	pm_runtime_allow(&pdev->dev);
1287 	return 0;
1288 
1289 err_dma:
1290 	iounmap(device->dma_base);
1291 err_ioremap:
1292 	pci_dev_put(pdev);
1293 	kfree(device);
1294 err_kzalloc:
1295 err_set_dma_mask:
1296 	pci_release_regions(pdev);
1297 	pci_disable_device(pdev);
1298 err_request_regions:
1299 err_enable_device:
1300 	pr_err("ERR_MDMA:Probe failed %d\n", err);
1301 	return err;
1302 }
1303 
1304 /**
1305  * intel_mid_dma_remove -	PCI remove
1306  * @pdev: Controller PCI device structure
1307  *
1308  * Free up all resources and data
1309  * Call shutdown_dma to complete contoller and chan cleanup
1310  */
intel_mid_dma_remove(struct pci_dev * pdev)1311 static void __devexit intel_mid_dma_remove(struct pci_dev *pdev)
1312 {
1313 	struct middma_device *device = pci_get_drvdata(pdev);
1314 
1315 	pm_runtime_get_noresume(&pdev->dev);
1316 	pm_runtime_forbid(&pdev->dev);
1317 	middma_shutdown(pdev);
1318 	pci_dev_put(pdev);
1319 	kfree(device);
1320 	pci_release_regions(pdev);
1321 	pci_disable_device(pdev);
1322 }
1323 
1324 /* Power Management */
1325 /*
1326 * dma_suspend - PCI suspend function
1327 *
1328 * @pci: PCI device structure
1329 * @state: PM message
1330 *
1331 * This function is called by OS when a power event occurs
1332 */
dma_suspend(struct device * dev)1333 static int dma_suspend(struct device *dev)
1334 {
1335 	struct pci_dev *pci = to_pci_dev(dev);
1336 	int i;
1337 	struct middma_device *device = pci_get_drvdata(pci);
1338 	pr_debug("MDMA: dma_suspend called\n");
1339 
1340 	for (i = 0; i < device->max_chan; i++) {
1341 		if (device->ch[i].in_use)
1342 			return -EAGAIN;
1343 	}
1344 	dmac1_mask_periphral_intr(device);
1345 	device->state = SUSPENDED;
1346 	pci_save_state(pci);
1347 	pci_disable_device(pci);
1348 	pci_set_power_state(pci, PCI_D3hot);
1349 	return 0;
1350 }
1351 
1352 /**
1353 * dma_resume - PCI resume function
1354 *
1355 * @pci:	PCI device structure
1356 *
1357 * This function is called by OS when a power event occurs
1358 */
dma_resume(struct device * dev)1359 int dma_resume(struct device *dev)
1360 {
1361 	struct pci_dev *pci = to_pci_dev(dev);
1362 	int ret;
1363 	struct middma_device *device = pci_get_drvdata(pci);
1364 
1365 	pr_debug("MDMA: dma_resume called\n");
1366 	pci_set_power_state(pci, PCI_D0);
1367 	pci_restore_state(pci);
1368 	ret = pci_enable_device(pci);
1369 	if (ret) {
1370 		pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1371 		return ret;
1372 	}
1373 	device->state = RUNNING;
1374 	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1375 	return 0;
1376 }
1377 
dma_runtime_suspend(struct device * dev)1378 static int dma_runtime_suspend(struct device *dev)
1379 {
1380 	struct pci_dev *pci_dev = to_pci_dev(dev);
1381 	struct middma_device *device = pci_get_drvdata(pci_dev);
1382 
1383 	device->state = SUSPENDED;
1384 	return 0;
1385 }
1386 
dma_runtime_resume(struct device * dev)1387 static int dma_runtime_resume(struct device *dev)
1388 {
1389 	struct pci_dev *pci_dev = to_pci_dev(dev);
1390 	struct middma_device *device = pci_get_drvdata(pci_dev);
1391 
1392 	device->state = RUNNING;
1393 	iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1394 	return 0;
1395 }
1396 
dma_runtime_idle(struct device * dev)1397 static int dma_runtime_idle(struct device *dev)
1398 {
1399 	struct pci_dev *pdev = to_pci_dev(dev);
1400 	struct middma_device *device = pci_get_drvdata(pdev);
1401 	int i;
1402 
1403 	for (i = 0; i < device->max_chan; i++) {
1404 		if (device->ch[i].in_use)
1405 			return -EAGAIN;
1406 	}
1407 
1408 	return pm_schedule_suspend(dev, 0);
1409 }
1410 
1411 /******************************************************************************
1412 * PCI stuff
1413 */
1414 static struct pci_device_id intel_mid_dma_ids[] = {
1415 	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),	INFO(2, 6, 4095, 0x200020)},
1416 	{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1417 	{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),	INFO(2, 0, 2047, 0)},
1418 	{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),	INFO(4, 0, 4095, 0x400040)},
1419 	{ 0, }
1420 };
1421 MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1422 
1423 static const struct dev_pm_ops intel_mid_dma_pm = {
1424 	.runtime_suspend = dma_runtime_suspend,
1425 	.runtime_resume = dma_runtime_resume,
1426 	.runtime_idle = dma_runtime_idle,
1427 	.suspend = dma_suspend,
1428 	.resume = dma_resume,
1429 };
1430 
1431 static struct pci_driver intel_mid_dma_pci_driver = {
1432 	.name		=	"Intel MID DMA",
1433 	.id_table	=	intel_mid_dma_ids,
1434 	.probe		=	intel_mid_dma_probe,
1435 	.remove		=	__devexit_p(intel_mid_dma_remove),
1436 #ifdef CONFIG_PM
1437 	.driver = {
1438 		.pm = &intel_mid_dma_pm,
1439 	},
1440 #endif
1441 };
1442 
intel_mid_dma_init(void)1443 static int __init intel_mid_dma_init(void)
1444 {
1445 	pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1446 			INTEL_MID_DMA_DRIVER_VERSION);
1447 	return pci_register_driver(&intel_mid_dma_pci_driver);
1448 }
1449 fs_initcall(intel_mid_dma_init);
1450 
intel_mid_dma_exit(void)1451 static void __exit intel_mid_dma_exit(void)
1452 {
1453 	pci_unregister_driver(&intel_mid_dma_pci_driver);
1454 }
1455 module_exit(intel_mid_dma_exit);
1456 
1457 MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1458 MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1459 MODULE_LICENSE("GPL v2");
1460 MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
1461