1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/wait.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44 
45 #include "dmaengine.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130 	u32 count   : 16; /* size of the buffer pointed by this BD */
131 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132 	u32 command :  8; /* command mostlky used for channel 0 */
133 };
134 
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139 	struct sdma_mode_count  mode;
140 	u32 buffer_addr;	/* address of the buffer described */
141 	u32 ext_buffer_addr;	/* extended buffer address */
142 } __attribute__ ((packed));
143 
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr	current buffer descriptor processed
148  * @base_bd_ptr		first element of buffer descriptor array
149  * @unused		padding. The SDMA engine expects an array of 128 byte
150  *			control blocks
151  */
152 struct sdma_channel_control {
153 	u32 current_bd_ptr;
154 	u32 base_bd_ptr;
155 	u32 unused[2];
156 } __attribute__ ((packed));
157 
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:		program counter
162  * @t:		test bit: status of arithmetic & test instruction
163  * @rpc:	return program counter
164  * @sf:		source fault while loading data
165  * @spc:	loop start program counter
166  * @df:		destination fault while storing data
167  * @epc:	loop end program counter
168  * @lm:		loop mode
169  */
170 struct sdma_state_registers {
171 	u32 pc     :14;
172 	u32 unused1: 1;
173 	u32 t      : 1;
174 	u32 rpc    :14;
175 	u32 unused0: 1;
176 	u32 sf     : 1;
177 	u32 spc    :14;
178 	u32 unused2: 1;
179 	u32 df     : 1;
180 	u32 epc    :14;
181 	u32 lm     : 2;
182 } __attribute__ ((packed));
183 
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:	channel state bits
188  * @gReg:		general registers
189  * @mda:		burst dma destination address register
190  * @msa:		burst dma source address register
191  * @ms:			burst dma status register
192  * @md:			burst dma data register
193  * @pda:		peripheral dma destination address register
194  * @psa:		peripheral dma source address register
195  * @ps:			peripheral dma status register
196  * @pd:			peripheral dma data register
197  * @ca:			CRC polynomial register
198  * @cs:			CRC accumulator register
199  * @dda:		dedicated core destination address register
200  * @dsa:		dedicated core source address register
201  * @ds:			dedicated core status register
202  * @dd:			dedicated core data register
203  */
204 struct sdma_context_data {
205 	struct sdma_state_registers  channel_state;
206 	u32  gReg[8];
207 	u32  mda;
208 	u32  msa;
209 	u32  ms;
210 	u32  md;
211 	u32  pda;
212 	u32  psa;
213 	u32  ps;
214 	u32  pd;
215 	u32  ca;
216 	u32  cs;
217 	u32  dda;
218 	u32  dsa;
219 	u32  ds;
220 	u32  dd;
221 	u32  scratch0;
222 	u32  scratch1;
223 	u32  scratch2;
224 	u32  scratch3;
225 	u32  scratch4;
226 	u32  scratch5;
227 	u32  scratch6;
228 	u32  scratch7;
229 } __attribute__ ((packed));
230 
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232 
233 struct sdma_engine;
234 
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma		pointer to the SDMA engine for this channel
239  * @channel		the channel number, matches dmaengine chan_id + 1
240  * @direction		transfer type. Needed for setting SDMA script
241  * @peripheral_type	Peripheral type. Needed for setting SDMA script
242  * @event_id0		aka dma request line
243  * @event_id1		for channels that use 2 events
244  * @word_size		peripheral access size
245  * @buf_tail		ID of the buffer that was processed
246  * @done		channel completion
247  * @num_bd		max NUM_BD. number of descriptors currently handling
248  */
249 struct sdma_channel {
250 	struct sdma_engine		*sdma;
251 	unsigned int			channel;
252 	enum dma_transfer_direction		direction;
253 	enum sdma_peripheral_type	peripheral_type;
254 	unsigned int			event_id0;
255 	unsigned int			event_id1;
256 	enum dma_slave_buswidth		word_size;
257 	unsigned int			buf_tail;
258 	struct completion		done;
259 	unsigned int			num_bd;
260 	struct sdma_buffer_descriptor	*bd;
261 	dma_addr_t			bd_phys;
262 	unsigned int			pc_from_device, pc_to_device;
263 	unsigned long			flags;
264 	dma_addr_t			per_address;
265 	unsigned long			event_mask[2];
266 	unsigned long			watermark_level;
267 	u32				shp_addr, per_addr;
268 	struct dma_chan			chan;
269 	spinlock_t			lock;
270 	struct dma_async_tx_descriptor	desc;
271 	enum dma_status			status;
272 	unsigned int			chn_count;
273 	unsigned int			chn_real_count;
274 };
275 
276 #define IMX_DMA_SG_LOOP		BIT(0)
277 
278 #define MAX_DMA_CHANNELS 32
279 #define MXC_SDMA_DEFAULT_PRIORITY 1
280 #define MXC_SDMA_MIN_PRIORITY 1
281 #define MXC_SDMA_MAX_PRIORITY 7
282 
283 #define SDMA_FIRMWARE_MAGIC 0x414d4453
284 
285 /**
286  * struct sdma_firmware_header - Layout of the firmware image
287  *
288  * @magic		"SDMA"
289  * @version_major	increased whenever layout of struct sdma_script_start_addrs
290  *			changes.
291  * @version_minor	firmware minor version (for binary compatible changes)
292  * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
293  * @num_script_addrs	Number of script addresses in this image
294  * @ram_code_start	offset of SDMA ram image in this firmware image
295  * @ram_code_size	size of SDMA ram image
296  * @script_addrs	Stores the start address of the SDMA scripts
297  *			(in SDMA memory space)
298  */
299 struct sdma_firmware_header {
300 	u32	magic;
301 	u32	version_major;
302 	u32	version_minor;
303 	u32	script_addrs_start;
304 	u32	num_script_addrs;
305 	u32	ram_code_start;
306 	u32	ram_code_size;
307 };
308 
309 enum sdma_devtype {
310 	IMX31_SDMA,	/* runs on i.mx31 */
311 	IMX35_SDMA,	/* runs on i.mx35 and later */
312 };
313 
314 struct sdma_engine {
315 	struct device			*dev;
316 	struct device_dma_parameters	dma_parms;
317 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
318 	struct sdma_channel_control	*channel_control;
319 	void __iomem			*regs;
320 	enum sdma_devtype		devtype;
321 	unsigned int			num_events;
322 	struct sdma_context_data	*context;
323 	dma_addr_t			context_phys;
324 	struct dma_device		dma_device;
325 	struct clk			*clk;
326 	struct mutex			channel_0_lock;
327 	struct sdma_script_start_addrs	*script_addrs;
328 };
329 
330 static struct platform_device_id sdma_devtypes[] = {
331 	{
332 		.name = "imx31-sdma",
333 		.driver_data = IMX31_SDMA,
334 	}, {
335 		.name = "imx35-sdma",
336 		.driver_data = IMX35_SDMA,
337 	}, {
338 		/* sentinel */
339 	}
340 };
341 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
342 
343 static const struct of_device_id sdma_dt_ids[] = {
344 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
345 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
346 	{ /* sentinel */ }
347 };
348 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
349 
350 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
351 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
352 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
353 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
354 
chnenbl_ofs(struct sdma_engine * sdma,unsigned int event)355 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
356 {
357 	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
358 						      SDMA_CHNENBL0_IMX35);
359 	return chnenbl0 + event * 4;
360 }
361 
sdma_config_ownership(struct sdma_channel * sdmac,bool event_override,bool mcu_override,bool dsp_override)362 static int sdma_config_ownership(struct sdma_channel *sdmac,
363 		bool event_override, bool mcu_override, bool dsp_override)
364 {
365 	struct sdma_engine *sdma = sdmac->sdma;
366 	int channel = sdmac->channel;
367 	unsigned long evt, mcu, dsp;
368 
369 	if (event_override && mcu_override && dsp_override)
370 		return -EINVAL;
371 
372 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
373 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
374 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
375 
376 	if (dsp_override)
377 		__clear_bit(channel, &dsp);
378 	else
379 		__set_bit(channel, &dsp);
380 
381 	if (event_override)
382 		__clear_bit(channel, &evt);
383 	else
384 		__set_bit(channel, &evt);
385 
386 	if (mcu_override)
387 		__clear_bit(channel, &mcu);
388 	else
389 		__set_bit(channel, &mcu);
390 
391 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
392 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
393 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
394 
395 	return 0;
396 }
397 
sdma_enable_channel(struct sdma_engine * sdma,int channel)398 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
399 {
400 	writel(BIT(channel), sdma->regs + SDMA_H_START);
401 }
402 
403 /*
404  * sdma_run_channel - run a channel and wait till it's done
405  */
sdma_run_channel(struct sdma_channel * sdmac)406 static int sdma_run_channel(struct sdma_channel *sdmac)
407 {
408 	struct sdma_engine *sdma = sdmac->sdma;
409 	int channel = sdmac->channel;
410 	int ret;
411 
412 	init_completion(&sdmac->done);
413 
414 	sdma_enable_channel(sdma, channel);
415 
416 	ret = wait_for_completion_timeout(&sdmac->done, HZ);
417 
418 	return ret ? 0 : -ETIMEDOUT;
419 }
420 
sdma_load_script(struct sdma_engine * sdma,void * buf,int size,u32 address)421 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
422 		u32 address)
423 {
424 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
425 	void *buf_virt;
426 	dma_addr_t buf_phys;
427 	int ret;
428 
429 	mutex_lock(&sdma->channel_0_lock);
430 
431 	buf_virt = dma_alloc_coherent(NULL,
432 			size,
433 			&buf_phys, GFP_KERNEL);
434 	if (!buf_virt) {
435 		ret = -ENOMEM;
436 		goto err_out;
437 	}
438 
439 	bd0->mode.command = C0_SETPM;
440 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
441 	bd0->mode.count = size / 2;
442 	bd0->buffer_addr = buf_phys;
443 	bd0->ext_buffer_addr = address;
444 
445 	memcpy(buf_virt, buf, size);
446 
447 	ret = sdma_run_channel(&sdma->channel[0]);
448 
449 	dma_free_coherent(NULL, size, buf_virt, buf_phys);
450 
451 err_out:
452 	mutex_unlock(&sdma->channel_0_lock);
453 
454 	return ret;
455 }
456 
sdma_event_enable(struct sdma_channel * sdmac,unsigned int event)457 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
458 {
459 	struct sdma_engine *sdma = sdmac->sdma;
460 	int channel = sdmac->channel;
461 	unsigned long val;
462 	u32 chnenbl = chnenbl_ofs(sdma, event);
463 
464 	val = readl_relaxed(sdma->regs + chnenbl);
465 	__set_bit(channel, &val);
466 	writel_relaxed(val, sdma->regs + chnenbl);
467 }
468 
sdma_event_disable(struct sdma_channel * sdmac,unsigned int event)469 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
470 {
471 	struct sdma_engine *sdma = sdmac->sdma;
472 	int channel = sdmac->channel;
473 	u32 chnenbl = chnenbl_ofs(sdma, event);
474 	unsigned long val;
475 
476 	val = readl_relaxed(sdma->regs + chnenbl);
477 	__clear_bit(channel, &val);
478 	writel_relaxed(val, sdma->regs + chnenbl);
479 }
480 
sdma_handle_channel_loop(struct sdma_channel * sdmac)481 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
482 {
483 	struct sdma_buffer_descriptor *bd;
484 
485 	/*
486 	 * loop mode. Iterate over descriptors, re-setup them and
487 	 * call callback function.
488 	 */
489 	while (1) {
490 		bd = &sdmac->bd[sdmac->buf_tail];
491 
492 		if (bd->mode.status & BD_DONE)
493 			break;
494 
495 		if (bd->mode.status & BD_RROR)
496 			sdmac->status = DMA_ERROR;
497 		else
498 			sdmac->status = DMA_IN_PROGRESS;
499 
500 		bd->mode.status |= BD_DONE;
501 		sdmac->buf_tail++;
502 		sdmac->buf_tail %= sdmac->num_bd;
503 
504 		if (sdmac->desc.callback)
505 			sdmac->desc.callback(sdmac->desc.callback_param);
506 	}
507 }
508 
mxc_sdma_handle_channel_normal(struct sdma_channel * sdmac)509 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
510 {
511 	struct sdma_buffer_descriptor *bd;
512 	int i, error = 0;
513 
514 	sdmac->chn_real_count = 0;
515 	/*
516 	 * non loop mode. Iterate over all descriptors, collect
517 	 * errors and call callback function
518 	 */
519 	for (i = 0; i < sdmac->num_bd; i++) {
520 		bd = &sdmac->bd[i];
521 
522 		 if (bd->mode.status & (BD_DONE | BD_RROR))
523 			error = -EIO;
524 		 sdmac->chn_real_count += bd->mode.count;
525 	}
526 
527 	if (error)
528 		sdmac->status = DMA_ERROR;
529 	else
530 		sdmac->status = DMA_SUCCESS;
531 
532 	dma_cookie_complete(&sdmac->desc);
533 	if (sdmac->desc.callback)
534 		sdmac->desc.callback(sdmac->desc.callback_param);
535 }
536 
mxc_sdma_handle_channel(struct sdma_channel * sdmac)537 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
538 {
539 	complete(&sdmac->done);
540 
541 	/* not interested in channel 0 interrupts */
542 	if (sdmac->channel == 0)
543 		return;
544 
545 	if (sdmac->flags & IMX_DMA_SG_LOOP)
546 		sdma_handle_channel_loop(sdmac);
547 	else
548 		mxc_sdma_handle_channel_normal(sdmac);
549 }
550 
sdma_int_handler(int irq,void * dev_id)551 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
552 {
553 	struct sdma_engine *sdma = dev_id;
554 	unsigned long stat;
555 
556 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
557 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
558 
559 	while (stat) {
560 		int channel = fls(stat) - 1;
561 		struct sdma_channel *sdmac = &sdma->channel[channel];
562 
563 		mxc_sdma_handle_channel(sdmac);
564 
565 		__clear_bit(channel, &stat);
566 	}
567 
568 	return IRQ_HANDLED;
569 }
570 
571 /*
572  * sets the pc of SDMA script according to the peripheral type
573  */
sdma_get_pc(struct sdma_channel * sdmac,enum sdma_peripheral_type peripheral_type)574 static void sdma_get_pc(struct sdma_channel *sdmac,
575 		enum sdma_peripheral_type peripheral_type)
576 {
577 	struct sdma_engine *sdma = sdmac->sdma;
578 	int per_2_emi = 0, emi_2_per = 0;
579 	/*
580 	 * These are needed once we start to support transfers between
581 	 * two peripherals or memory-to-memory transfers
582 	 */
583 	int per_2_per = 0, emi_2_emi = 0;
584 
585 	sdmac->pc_from_device = 0;
586 	sdmac->pc_to_device = 0;
587 
588 	switch (peripheral_type) {
589 	case IMX_DMATYPE_MEMORY:
590 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
591 		break;
592 	case IMX_DMATYPE_DSP:
593 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
594 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
595 		break;
596 	case IMX_DMATYPE_FIRI:
597 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
598 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
599 		break;
600 	case IMX_DMATYPE_UART:
601 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
602 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
603 		break;
604 	case IMX_DMATYPE_UART_SP:
605 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
606 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
607 		break;
608 	case IMX_DMATYPE_ATA:
609 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
610 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
611 		break;
612 	case IMX_DMATYPE_CSPI:
613 	case IMX_DMATYPE_EXT:
614 	case IMX_DMATYPE_SSI:
615 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
616 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
617 		break;
618 	case IMX_DMATYPE_SSI_SP:
619 	case IMX_DMATYPE_MMC:
620 	case IMX_DMATYPE_SDHC:
621 	case IMX_DMATYPE_CSPI_SP:
622 	case IMX_DMATYPE_ESAI:
623 	case IMX_DMATYPE_MSHC_SP:
624 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
625 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
626 		break;
627 	case IMX_DMATYPE_ASRC:
628 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
629 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
630 		per_2_per = sdma->script_addrs->per_2_per_addr;
631 		break;
632 	case IMX_DMATYPE_MSHC:
633 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
634 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
635 		break;
636 	case IMX_DMATYPE_CCM:
637 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
638 		break;
639 	case IMX_DMATYPE_SPDIF:
640 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
641 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
642 		break;
643 	case IMX_DMATYPE_IPU_MEMORY:
644 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
645 		break;
646 	default:
647 		break;
648 	}
649 
650 	sdmac->pc_from_device = per_2_emi;
651 	sdmac->pc_to_device = emi_2_per;
652 }
653 
sdma_load_context(struct sdma_channel * sdmac)654 static int sdma_load_context(struct sdma_channel *sdmac)
655 {
656 	struct sdma_engine *sdma = sdmac->sdma;
657 	int channel = sdmac->channel;
658 	int load_address;
659 	struct sdma_context_data *context = sdma->context;
660 	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
661 	int ret;
662 
663 	if (sdmac->direction == DMA_DEV_TO_MEM) {
664 		load_address = sdmac->pc_from_device;
665 	} else {
666 		load_address = sdmac->pc_to_device;
667 	}
668 
669 	if (load_address < 0)
670 		return load_address;
671 
672 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
673 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
674 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
675 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
676 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
677 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
678 
679 	mutex_lock(&sdma->channel_0_lock);
680 
681 	memset(context, 0, sizeof(*context));
682 	context->channel_state.pc = load_address;
683 
684 	/* Send by context the event mask,base address for peripheral
685 	 * and watermark level
686 	 */
687 	context->gReg[0] = sdmac->event_mask[1];
688 	context->gReg[1] = sdmac->event_mask[0];
689 	context->gReg[2] = sdmac->per_addr;
690 	context->gReg[6] = sdmac->shp_addr;
691 	context->gReg[7] = sdmac->watermark_level;
692 
693 	bd0->mode.command = C0_SETDM;
694 	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
695 	bd0->mode.count = sizeof(*context) / 4;
696 	bd0->buffer_addr = sdma->context_phys;
697 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
698 
699 	ret = sdma_run_channel(&sdma->channel[0]);
700 
701 	mutex_unlock(&sdma->channel_0_lock);
702 
703 	return ret;
704 }
705 
sdma_disable_channel(struct sdma_channel * sdmac)706 static void sdma_disable_channel(struct sdma_channel *sdmac)
707 {
708 	struct sdma_engine *sdma = sdmac->sdma;
709 	int channel = sdmac->channel;
710 
711 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
712 	sdmac->status = DMA_ERROR;
713 }
714 
sdma_config_channel(struct sdma_channel * sdmac)715 static int sdma_config_channel(struct sdma_channel *sdmac)
716 {
717 	int ret;
718 
719 	sdma_disable_channel(sdmac);
720 
721 	sdmac->event_mask[0] = 0;
722 	sdmac->event_mask[1] = 0;
723 	sdmac->shp_addr = 0;
724 	sdmac->per_addr = 0;
725 
726 	if (sdmac->event_id0) {
727 		if (sdmac->event_id0 >= sdmac->sdma->num_events)
728 			return -EINVAL;
729 		sdma_event_enable(sdmac, sdmac->event_id0);
730 	}
731 
732 	switch (sdmac->peripheral_type) {
733 	case IMX_DMATYPE_DSP:
734 		sdma_config_ownership(sdmac, false, true, true);
735 		break;
736 	case IMX_DMATYPE_MEMORY:
737 		sdma_config_ownership(sdmac, false, true, false);
738 		break;
739 	default:
740 		sdma_config_ownership(sdmac, true, true, false);
741 		break;
742 	}
743 
744 	sdma_get_pc(sdmac, sdmac->peripheral_type);
745 
746 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
747 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
748 		/* Handle multiple event channels differently */
749 		if (sdmac->event_id1) {
750 			sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
751 			if (sdmac->event_id1 > 31)
752 				__set_bit(31, &sdmac->watermark_level);
753 			sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
754 			if (sdmac->event_id0 > 31)
755 				__set_bit(30, &sdmac->watermark_level);
756 		} else {
757 			__set_bit(sdmac->event_id0, sdmac->event_mask);
758 		}
759 		/* Watermark Level */
760 		sdmac->watermark_level |= sdmac->watermark_level;
761 		/* Address */
762 		sdmac->shp_addr = sdmac->per_address;
763 	} else {
764 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
765 	}
766 
767 	ret = sdma_load_context(sdmac);
768 
769 	return ret;
770 }
771 
sdma_set_channel_priority(struct sdma_channel * sdmac,unsigned int priority)772 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
773 		unsigned int priority)
774 {
775 	struct sdma_engine *sdma = sdmac->sdma;
776 	int channel = sdmac->channel;
777 
778 	if (priority < MXC_SDMA_MIN_PRIORITY
779 	    || priority > MXC_SDMA_MAX_PRIORITY) {
780 		return -EINVAL;
781 	}
782 
783 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
784 
785 	return 0;
786 }
787 
sdma_request_channel(struct sdma_channel * sdmac)788 static int sdma_request_channel(struct sdma_channel *sdmac)
789 {
790 	struct sdma_engine *sdma = sdmac->sdma;
791 	int channel = sdmac->channel;
792 	int ret = -EBUSY;
793 
794 	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
795 	if (!sdmac->bd) {
796 		ret = -ENOMEM;
797 		goto out;
798 	}
799 
800 	memset(sdmac->bd, 0, PAGE_SIZE);
801 
802 	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
803 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
804 
805 	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
806 
807 	init_completion(&sdmac->done);
808 
809 	sdmac->buf_tail = 0;
810 
811 	return 0;
812 out:
813 
814 	return ret;
815 }
816 
to_sdma_chan(struct dma_chan * chan)817 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
818 {
819 	return container_of(chan, struct sdma_channel, chan);
820 }
821 
sdma_tx_submit(struct dma_async_tx_descriptor * tx)822 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
823 {
824 	unsigned long flags;
825 	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
826 	dma_cookie_t cookie;
827 
828 	spin_lock_irqsave(&sdmac->lock, flags);
829 
830 	cookie = dma_cookie_assign(tx);
831 
832 	spin_unlock_irqrestore(&sdmac->lock, flags);
833 
834 	return cookie;
835 }
836 
sdma_alloc_chan_resources(struct dma_chan * chan)837 static int sdma_alloc_chan_resources(struct dma_chan *chan)
838 {
839 	struct sdma_channel *sdmac = to_sdma_chan(chan);
840 	struct imx_dma_data *data = chan->private;
841 	int prio, ret;
842 
843 	if (!data)
844 		return -EINVAL;
845 
846 	switch (data->priority) {
847 	case DMA_PRIO_HIGH:
848 		prio = 3;
849 		break;
850 	case DMA_PRIO_MEDIUM:
851 		prio = 2;
852 		break;
853 	case DMA_PRIO_LOW:
854 	default:
855 		prio = 1;
856 		break;
857 	}
858 
859 	sdmac->peripheral_type = data->peripheral_type;
860 	sdmac->event_id0 = data->dma_request;
861 
862 	clk_enable(sdmac->sdma->clk);
863 
864 	ret = sdma_request_channel(sdmac);
865 	if (ret)
866 		return ret;
867 
868 	ret = sdma_set_channel_priority(sdmac, prio);
869 	if (ret)
870 		return ret;
871 
872 	dma_async_tx_descriptor_init(&sdmac->desc, chan);
873 	sdmac->desc.tx_submit = sdma_tx_submit;
874 	/* txd.flags will be overwritten in prep funcs */
875 	sdmac->desc.flags = DMA_CTRL_ACK;
876 
877 	return 0;
878 }
879 
sdma_free_chan_resources(struct dma_chan * chan)880 static void sdma_free_chan_resources(struct dma_chan *chan)
881 {
882 	struct sdma_channel *sdmac = to_sdma_chan(chan);
883 	struct sdma_engine *sdma = sdmac->sdma;
884 
885 	sdma_disable_channel(sdmac);
886 
887 	if (sdmac->event_id0)
888 		sdma_event_disable(sdmac, sdmac->event_id0);
889 	if (sdmac->event_id1)
890 		sdma_event_disable(sdmac, sdmac->event_id1);
891 
892 	sdmac->event_id0 = 0;
893 	sdmac->event_id1 = 0;
894 
895 	sdma_set_channel_priority(sdmac, 0);
896 
897 	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
898 
899 	clk_disable(sdma->clk);
900 }
901 
sdma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)902 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
903 		struct dma_chan *chan, struct scatterlist *sgl,
904 		unsigned int sg_len, enum dma_transfer_direction direction,
905 		unsigned long flags, void *context)
906 {
907 	struct sdma_channel *sdmac = to_sdma_chan(chan);
908 	struct sdma_engine *sdma = sdmac->sdma;
909 	int ret, i, count;
910 	int channel = sdmac->channel;
911 	struct scatterlist *sg;
912 
913 	if (sdmac->status == DMA_IN_PROGRESS)
914 		return NULL;
915 	sdmac->status = DMA_IN_PROGRESS;
916 
917 	sdmac->flags = 0;
918 
919 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
920 			sg_len, channel);
921 
922 	sdmac->direction = direction;
923 	ret = sdma_load_context(sdmac);
924 	if (ret)
925 		goto err_out;
926 
927 	if (sg_len > NUM_BD) {
928 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
929 				channel, sg_len, NUM_BD);
930 		ret = -EINVAL;
931 		goto err_out;
932 	}
933 
934 	sdmac->chn_count = 0;
935 	for_each_sg(sgl, sg, sg_len, i) {
936 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
937 		int param;
938 
939 		bd->buffer_addr = sg->dma_address;
940 
941 		count = sg->length;
942 
943 		if (count > 0xffff) {
944 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
945 					channel, count, 0xffff);
946 			ret = -EINVAL;
947 			goto err_out;
948 		}
949 
950 		bd->mode.count = count;
951 		sdmac->chn_count += count;
952 
953 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
954 			ret =  -EINVAL;
955 			goto err_out;
956 		}
957 
958 		switch (sdmac->word_size) {
959 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
960 			bd->mode.command = 0;
961 			if (count & 3 || sg->dma_address & 3)
962 				return NULL;
963 			break;
964 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
965 			bd->mode.command = 2;
966 			if (count & 1 || sg->dma_address & 1)
967 				return NULL;
968 			break;
969 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
970 			bd->mode.command = 1;
971 			break;
972 		default:
973 			return NULL;
974 		}
975 
976 		param = BD_DONE | BD_EXTD | BD_CONT;
977 
978 		if (i + 1 == sg_len) {
979 			param |= BD_INTR;
980 			param |= BD_LAST;
981 			param &= ~BD_CONT;
982 		}
983 
984 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
985 				i, count, sg->dma_address,
986 				param & BD_WRAP ? "wrap" : "",
987 				param & BD_INTR ? " intr" : "");
988 
989 		bd->mode.status = param;
990 	}
991 
992 	sdmac->num_bd = sg_len;
993 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
994 
995 	return &sdmac->desc;
996 err_out:
997 	sdmac->status = DMA_ERROR;
998 	return NULL;
999 }
1000 
sdma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,void * context)1001 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1002 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1003 		size_t period_len, enum dma_transfer_direction direction,
1004 		void *context)
1005 {
1006 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1007 	struct sdma_engine *sdma = sdmac->sdma;
1008 	int num_periods = buf_len / period_len;
1009 	int channel = sdmac->channel;
1010 	int ret, i = 0, buf = 0;
1011 
1012 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1013 
1014 	if (sdmac->status == DMA_IN_PROGRESS)
1015 		return NULL;
1016 
1017 	sdmac->status = DMA_IN_PROGRESS;
1018 
1019 	sdmac->flags |= IMX_DMA_SG_LOOP;
1020 	sdmac->direction = direction;
1021 	ret = sdma_load_context(sdmac);
1022 	if (ret)
1023 		goto err_out;
1024 
1025 	if (num_periods > NUM_BD) {
1026 		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1027 				channel, num_periods, NUM_BD);
1028 		goto err_out;
1029 	}
1030 
1031 	if (period_len > 0xffff) {
1032 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1033 				channel, period_len, 0xffff);
1034 		goto err_out;
1035 	}
1036 
1037 	while (buf < buf_len) {
1038 		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1039 		int param;
1040 
1041 		bd->buffer_addr = dma_addr;
1042 
1043 		bd->mode.count = period_len;
1044 
1045 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1046 			goto err_out;
1047 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1048 			bd->mode.command = 0;
1049 		else
1050 			bd->mode.command = sdmac->word_size;
1051 
1052 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1053 		if (i + 1 == num_periods)
1054 			param |= BD_WRAP;
1055 
1056 		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1057 				i, period_len, dma_addr,
1058 				param & BD_WRAP ? "wrap" : "",
1059 				param & BD_INTR ? " intr" : "");
1060 
1061 		bd->mode.status = param;
1062 
1063 		dma_addr += period_len;
1064 		buf += period_len;
1065 
1066 		i++;
1067 	}
1068 
1069 	sdmac->num_bd = num_periods;
1070 	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1071 
1072 	return &sdmac->desc;
1073 err_out:
1074 	sdmac->status = DMA_ERROR;
1075 	return NULL;
1076 }
1077 
sdma_control(struct dma_chan * chan,enum dma_ctrl_cmd cmd,unsigned long arg)1078 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1079 		unsigned long arg)
1080 {
1081 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1082 	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1083 
1084 	switch (cmd) {
1085 	case DMA_TERMINATE_ALL:
1086 		sdma_disable_channel(sdmac);
1087 		return 0;
1088 	case DMA_SLAVE_CONFIG:
1089 		if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1090 			sdmac->per_address = dmaengine_cfg->src_addr;
1091 			sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1092 						dmaengine_cfg->src_addr_width;
1093 			sdmac->word_size = dmaengine_cfg->src_addr_width;
1094 		} else {
1095 			sdmac->per_address = dmaengine_cfg->dst_addr;
1096 			sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1097 						dmaengine_cfg->dst_addr_width;
1098 			sdmac->word_size = dmaengine_cfg->dst_addr_width;
1099 		}
1100 		sdmac->direction = dmaengine_cfg->direction;
1101 		return sdma_config_channel(sdmac);
1102 	default:
1103 		return -ENOSYS;
1104 	}
1105 
1106 	return -EINVAL;
1107 }
1108 
sdma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1109 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1110 					    dma_cookie_t cookie,
1111 					    struct dma_tx_state *txstate)
1112 {
1113 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1114 	dma_cookie_t last_used;
1115 
1116 	last_used = chan->cookie;
1117 
1118 	dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1119 			sdmac->chn_count - sdmac->chn_real_count);
1120 
1121 	return sdmac->status;
1122 }
1123 
sdma_issue_pending(struct dma_chan * chan)1124 static void sdma_issue_pending(struct dma_chan *chan)
1125 {
1126 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1127 	struct sdma_engine *sdma = sdmac->sdma;
1128 
1129 	if (sdmac->status == DMA_IN_PROGRESS)
1130 		sdma_enable_channel(sdma, sdmac->channel);
1131 }
1132 
1133 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1134 
sdma_add_scripts(struct sdma_engine * sdma,const struct sdma_script_start_addrs * addr)1135 static void sdma_add_scripts(struct sdma_engine *sdma,
1136 		const struct sdma_script_start_addrs *addr)
1137 {
1138 	s32 *addr_arr = (u32 *)addr;
1139 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1140 	int i;
1141 
1142 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1143 		if (addr_arr[i] > 0)
1144 			saddr_arr[i] = addr_arr[i];
1145 }
1146 
sdma_load_firmware(const struct firmware * fw,void * context)1147 static void sdma_load_firmware(const struct firmware *fw, void *context)
1148 {
1149 	struct sdma_engine *sdma = context;
1150 	const struct sdma_firmware_header *header;
1151 	const struct sdma_script_start_addrs *addr;
1152 	unsigned short *ram_code;
1153 
1154 	if (!fw) {
1155 		dev_err(sdma->dev, "firmware not found\n");
1156 		return;
1157 	}
1158 
1159 	if (fw->size < sizeof(*header))
1160 		goto err_firmware;
1161 
1162 	header = (struct sdma_firmware_header *)fw->data;
1163 
1164 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1165 		goto err_firmware;
1166 	if (header->ram_code_start + header->ram_code_size > fw->size)
1167 		goto err_firmware;
1168 
1169 	addr = (void *)header + header->script_addrs_start;
1170 	ram_code = (void *)header + header->ram_code_start;
1171 
1172 	clk_enable(sdma->clk);
1173 	/* download the RAM image for SDMA */
1174 	sdma_load_script(sdma, ram_code,
1175 			header->ram_code_size,
1176 			addr->ram_code_start_addr);
1177 	clk_disable(sdma->clk);
1178 
1179 	sdma_add_scripts(sdma, addr);
1180 
1181 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1182 			header->version_major,
1183 			header->version_minor);
1184 
1185 err_firmware:
1186 	release_firmware(fw);
1187 }
1188 
sdma_get_firmware(struct sdma_engine * sdma,const char * fw_name)1189 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1190 		const char *fw_name)
1191 {
1192 	int ret;
1193 
1194 	ret = request_firmware_nowait(THIS_MODULE,
1195 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1196 			GFP_KERNEL, sdma, sdma_load_firmware);
1197 
1198 	return ret;
1199 }
1200 
sdma_init(struct sdma_engine * sdma)1201 static int __init sdma_init(struct sdma_engine *sdma)
1202 {
1203 	int i, ret;
1204 	dma_addr_t ccb_phys;
1205 
1206 	switch (sdma->devtype) {
1207 	case IMX31_SDMA:
1208 		sdma->num_events = 32;
1209 		break;
1210 	case IMX35_SDMA:
1211 		sdma->num_events = 48;
1212 		break;
1213 	default:
1214 		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1215 			sdma->devtype);
1216 		return -ENODEV;
1217 	}
1218 
1219 	clk_enable(sdma->clk);
1220 
1221 	/* Be sure SDMA has not started yet */
1222 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1223 
1224 	sdma->channel_control = dma_alloc_coherent(NULL,
1225 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1226 			sizeof(struct sdma_context_data),
1227 			&ccb_phys, GFP_KERNEL);
1228 
1229 	if (!sdma->channel_control) {
1230 		ret = -ENOMEM;
1231 		goto err_dma_alloc;
1232 	}
1233 
1234 	sdma->context = (void *)sdma->channel_control +
1235 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1236 	sdma->context_phys = ccb_phys +
1237 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1238 
1239 	/* Zero-out the CCB structures array just allocated */
1240 	memset(sdma->channel_control, 0,
1241 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1242 
1243 	/* disable all channels */
1244 	for (i = 0; i < sdma->num_events; i++)
1245 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1246 
1247 	/* All channels have priority 0 */
1248 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1249 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1250 
1251 	ret = sdma_request_channel(&sdma->channel[0]);
1252 	if (ret)
1253 		goto err_dma_alloc;
1254 
1255 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1256 
1257 	/* Set Command Channel (Channel Zero) */
1258 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1259 
1260 	/* Set bits of CONFIG register but with static context switching */
1261 	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1262 	writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1263 
1264 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1265 
1266 	/* Set bits of CONFIG register with given context switching mode */
1267 	writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1268 
1269 	/* Initializes channel's priorities */
1270 	sdma_set_channel_priority(&sdma->channel[0], 7);
1271 
1272 	clk_disable(sdma->clk);
1273 
1274 	return 0;
1275 
1276 err_dma_alloc:
1277 	clk_disable(sdma->clk);
1278 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1279 	return ret;
1280 }
1281 
sdma_probe(struct platform_device * pdev)1282 static int __init sdma_probe(struct platform_device *pdev)
1283 {
1284 	const struct of_device_id *of_id =
1285 			of_match_device(sdma_dt_ids, &pdev->dev);
1286 	struct device_node *np = pdev->dev.of_node;
1287 	const char *fw_name;
1288 	int ret;
1289 	int irq;
1290 	struct resource *iores;
1291 	struct sdma_platform_data *pdata = pdev->dev.platform_data;
1292 	int i;
1293 	struct sdma_engine *sdma;
1294 	s32 *saddr_arr;
1295 
1296 	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1297 	if (!sdma)
1298 		return -ENOMEM;
1299 
1300 	mutex_init(&sdma->channel_0_lock);
1301 
1302 	sdma->dev = &pdev->dev;
1303 
1304 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1305 	irq = platform_get_irq(pdev, 0);
1306 	if (!iores || irq < 0) {
1307 		ret = -EINVAL;
1308 		goto err_irq;
1309 	}
1310 
1311 	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1312 		ret = -EBUSY;
1313 		goto err_request_region;
1314 	}
1315 
1316 	sdma->clk = clk_get(&pdev->dev, NULL);
1317 	if (IS_ERR(sdma->clk)) {
1318 		ret = PTR_ERR(sdma->clk);
1319 		goto err_clk;
1320 	}
1321 
1322 	sdma->regs = ioremap(iores->start, resource_size(iores));
1323 	if (!sdma->regs) {
1324 		ret = -ENOMEM;
1325 		goto err_ioremap;
1326 	}
1327 
1328 	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1329 	if (ret)
1330 		goto err_request_irq;
1331 
1332 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1333 	if (!sdma->script_addrs) {
1334 		ret = -ENOMEM;
1335 		goto err_alloc;
1336 	}
1337 
1338 	/* initially no scripts available */
1339 	saddr_arr = (s32 *)sdma->script_addrs;
1340 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1341 		saddr_arr[i] = -EINVAL;
1342 
1343 	if (of_id)
1344 		pdev->id_entry = of_id->data;
1345 	sdma->devtype = pdev->id_entry->driver_data;
1346 
1347 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1348 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1349 
1350 	INIT_LIST_HEAD(&sdma->dma_device.channels);
1351 	/* Initialize channel parameters */
1352 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1353 		struct sdma_channel *sdmac = &sdma->channel[i];
1354 
1355 		sdmac->sdma = sdma;
1356 		spin_lock_init(&sdmac->lock);
1357 
1358 		sdmac->chan.device = &sdma->dma_device;
1359 		dma_cookie_init(&sdmac->chan);
1360 		sdmac->channel = i;
1361 
1362 		/*
1363 		 * Add the channel to the DMAC list. Do not add channel 0 though
1364 		 * because we need it internally in the SDMA driver. This also means
1365 		 * that channel 0 in dmaengine counting matches sdma channel 1.
1366 		 */
1367 		if (i)
1368 			list_add_tail(&sdmac->chan.device_node,
1369 					&sdma->dma_device.channels);
1370 	}
1371 
1372 	ret = sdma_init(sdma);
1373 	if (ret)
1374 		goto err_init;
1375 
1376 	if (pdata && pdata->script_addrs)
1377 		sdma_add_scripts(sdma, pdata->script_addrs);
1378 
1379 	if (pdata) {
1380 		ret = sdma_get_firmware(sdma, pdata->fw_name);
1381 		if (ret)
1382 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1383 	} else {
1384 		/*
1385 		 * Because that device tree does not encode ROM script address,
1386 		 * the RAM script in firmware is mandatory for device tree
1387 		 * probe, otherwise it fails.
1388 		 */
1389 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1390 					      &fw_name);
1391 		if (ret)
1392 			dev_warn(&pdev->dev, "failed to get firmware name\n");
1393 		else {
1394 			ret = sdma_get_firmware(sdma, fw_name);
1395 			if (ret)
1396 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1397 		}
1398 	}
1399 
1400 	sdma->dma_device.dev = &pdev->dev;
1401 
1402 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1403 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1404 	sdma->dma_device.device_tx_status = sdma_tx_status;
1405 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1406 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1407 	sdma->dma_device.device_control = sdma_control;
1408 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1409 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1410 	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1411 
1412 	ret = dma_async_device_register(&sdma->dma_device);
1413 	if (ret) {
1414 		dev_err(&pdev->dev, "unable to register\n");
1415 		goto err_init;
1416 	}
1417 
1418 	dev_info(sdma->dev, "initialized\n");
1419 
1420 	return 0;
1421 
1422 err_init:
1423 	kfree(sdma->script_addrs);
1424 err_alloc:
1425 	free_irq(irq, sdma);
1426 err_request_irq:
1427 	iounmap(sdma->regs);
1428 err_ioremap:
1429 	clk_put(sdma->clk);
1430 err_clk:
1431 	release_mem_region(iores->start, resource_size(iores));
1432 err_request_region:
1433 err_irq:
1434 	kfree(sdma);
1435 	return ret;
1436 }
1437 
sdma_remove(struct platform_device * pdev)1438 static int __exit sdma_remove(struct platform_device *pdev)
1439 {
1440 	return -EBUSY;
1441 }
1442 
1443 static struct platform_driver sdma_driver = {
1444 	.driver		= {
1445 		.name	= "imx-sdma",
1446 		.of_match_table = sdma_dt_ids,
1447 	},
1448 	.id_table	= sdma_devtypes,
1449 	.remove		= __exit_p(sdma_remove),
1450 };
1451 
sdma_module_init(void)1452 static int __init sdma_module_init(void)
1453 {
1454 	return platform_driver_probe(&sdma_driver, sdma_probe);
1455 }
1456 module_init(sdma_module_init);
1457 
1458 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1459 MODULE_DESCRIPTION("i.MX SDMA driver");
1460 MODULE_LICENSE("GPL");
1461