1 /*
2  * drivers/crypto/tegra-aes.c
3  *
4  * Driver for NVIDIA Tegra AES hardware engine residing inside the
5  * Bit Stream Engine for Video (BSEV) hardware block.
6  *
7  * The programming sequence for this engine is with the help
8  * of commands which travel via a command queue residing between the
9  * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM)
10  * where the final input plaintext, keys and the IV have to be copied
11  * before starting the encrypt/decrypt operation.
12  *
13  * Copyright (c) 2010, NVIDIA Corporation.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * This program is distributed in the hope that it will be useful, but WITHOUT
21  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
22  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
23  * more details.
24  *
25  * You should have received a copy of the GNU General Public License along
26  * with this program; if not, write to the Free Software Foundation, Inc.,
27  * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
28  */
29 
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/clk.h>
35 #include <linux/platform_device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/io.h>
39 #include <linux/mutex.h>
40 #include <linux/interrupt.h>
41 #include <linux/completion.h>
42 #include <linux/workqueue.h>
43 
44 #include <mach/clk.h>
45 
46 #include <crypto/scatterwalk.h>
47 #include <crypto/aes.h>
48 #include <crypto/internal/rng.h>
49 
50 #include "tegra-aes.h"
51 
52 #define FLAGS_MODE_MASK			0x00FF
53 #define FLAGS_ENCRYPT			BIT(0)
54 #define FLAGS_CBC			BIT(1)
55 #define FLAGS_GIV			BIT(2)
56 #define FLAGS_RNG			BIT(3)
57 #define FLAGS_OFB			BIT(4)
58 #define FLAGS_NEW_KEY			BIT(5)
59 #define FLAGS_NEW_IV			BIT(6)
60 #define FLAGS_INIT			BIT(7)
61 #define FLAGS_FAST			BIT(8)
62 #define FLAGS_BUSY			9
63 
64 /*
65  * Defines AES engine Max process bytes size in one go, which takes 1 msec.
66  * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte
67  * The duration CPU can use the BSE to 1 msec, then the number of available
68  * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB
69  * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB.
70  */
71 #define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000
72 
73 /*
74  * The key table length is 64 bytes
75  * (This includes first upto 32 bytes key + 16 bytes original initial vector
76  * and 16 bytes updated initial vector)
77  */
78 #define AES_HW_KEY_TABLE_LENGTH_BYTES 64
79 
80 /*
81  * The memory being used is divides as follows:
82  * 1. Key - 32 bytes
83  * 2. Original IV - 16 bytes
84  * 3. Updated IV - 16 bytes
85  * 4. Key schedule - 256 bytes
86  *
87  * 1+2+3 constitute the hw key table.
88  */
89 #define AES_HW_IV_SIZE 16
90 #define AES_HW_KEYSCHEDULE_LEN 256
91 #define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN)
92 
93 /* Define commands required for AES operation */
94 enum {
95 	CMD_BLKSTARTENGINE = 0x0E,
96 	CMD_DMASETUP = 0x10,
97 	CMD_DMACOMPLETE = 0x11,
98 	CMD_SETTABLE = 0x15,
99 	CMD_MEMDMAVD = 0x22,
100 };
101 
102 /* Define sub-commands */
103 enum {
104 	SUBCMD_VRAM_SEL = 0x1,
105 	SUBCMD_CRYPTO_TABLE_SEL = 0x3,
106 	SUBCMD_KEY_TABLE_SEL = 0x8,
107 };
108 
109 /* memdma_vd command */
110 #define MEMDMA_DIR_DTOVRAM		0 /* sdram -> vram */
111 #define MEMDMA_DIR_VTODRAM		1 /* vram -> sdram */
112 #define MEMDMA_DIR_SHIFT		25
113 #define MEMDMA_NUM_WORDS_SHIFT		12
114 
115 /* command queue bit shifts */
116 enum {
117 	CMDQ_KEYTABLEADDR_SHIFT = 0,
118 	CMDQ_KEYTABLEID_SHIFT = 17,
119 	CMDQ_VRAMSEL_SHIFT = 23,
120 	CMDQ_TABLESEL_SHIFT = 24,
121 	CMDQ_OPCODE_SHIFT = 26,
122 };
123 
124 /*
125  * The secure key slot contains a unique secure key generated
126  * and loaded by the bootloader. This slot is marked as non-accessible
127  * to the kernel.
128  */
129 #define SSK_SLOT_NUM		4
130 
131 #define AES_NR_KEYSLOTS		8
132 #define TEGRA_AES_QUEUE_LENGTH	50
133 #define DEFAULT_RNG_BLK_SZ	16
134 
135 /* The command queue depth */
136 #define AES_HW_MAX_ICQ_LENGTH	5
137 
138 struct tegra_aes_slot {
139 	struct list_head node;
140 	int slot_num;
141 };
142 
143 static struct tegra_aes_slot ssk = {
144 	.slot_num = SSK_SLOT_NUM,
145 };
146 
147 struct tegra_aes_reqctx {
148 	unsigned long mode;
149 };
150 
151 struct tegra_aes_dev {
152 	struct device *dev;
153 	void __iomem *io_base;
154 	dma_addr_t ivkey_phys_base;
155 	void __iomem *ivkey_base;
156 	struct clk *aes_clk;
157 	struct tegra_aes_ctx *ctx;
158 	int irq;
159 	unsigned long flags;
160 	struct completion op_complete;
161 	u32 *buf_in;
162 	dma_addr_t dma_buf_in;
163 	u32 *buf_out;
164 	dma_addr_t dma_buf_out;
165 	u8 *iv;
166 	u8 dt[DEFAULT_RNG_BLK_SZ];
167 	int ivlen;
168 	u64 ctr;
169 	spinlock_t lock;
170 	struct crypto_queue queue;
171 	struct tegra_aes_slot *slots;
172 	struct ablkcipher_request *req;
173 	size_t total;
174 	struct scatterlist *in_sg;
175 	size_t in_offset;
176 	struct scatterlist *out_sg;
177 	size_t out_offset;
178 };
179 
180 static struct tegra_aes_dev *aes_dev;
181 
182 struct tegra_aes_ctx {
183 	struct tegra_aes_dev *dd;
184 	unsigned long flags;
185 	struct tegra_aes_slot *slot;
186 	u8 key[AES_MAX_KEY_SIZE];
187 	size_t keylen;
188 };
189 
190 static struct tegra_aes_ctx rng_ctx = {
191 	.flags = FLAGS_NEW_KEY,
192 	.keylen = AES_KEYSIZE_128,
193 };
194 
195 /* keep registered devices data here */
196 static struct list_head dev_list;
197 static DEFINE_SPINLOCK(list_lock);
198 static DEFINE_MUTEX(aes_lock);
199 
200 static void aes_workqueue_handler(struct work_struct *work);
201 static DECLARE_WORK(aes_work, aes_workqueue_handler);
202 static struct workqueue_struct *aes_wq;
203 
204 extern unsigned long long tegra_chip_uid(void);
205 
aes_readl(struct tegra_aes_dev * dd,u32 offset)206 static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset)
207 {
208 	return readl(dd->io_base + offset);
209 }
210 
aes_writel(struct tegra_aes_dev * dd,u32 val,u32 offset)211 static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset)
212 {
213 	writel(val, dd->io_base + offset);
214 }
215 
aes_start_crypt(struct tegra_aes_dev * dd,u32 in_addr,u32 out_addr,int nblocks,int mode,bool upd_iv)216 static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr,
217 	int nblocks, int mode, bool upd_iv)
218 {
219 	u32 cmdq[AES_HW_MAX_ICQ_LENGTH];
220 	int i, eng_busy, icq_empty, ret;
221 	u32 value;
222 
223 	/* reset all the interrupt bits */
224 	aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS);
225 
226 	/* enable error, dma xfer complete interrupts */
227 	aes_writel(dd, 0x33, TEGRA_AES_INT_ENB);
228 
229 	cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT;
230 	cmdq[1] = in_addr;
231 	cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1);
232 	cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT;
233 
234 	value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL);
235 	/* access SDRAM through AHB */
236 	value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD;
237 	value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD;
238 	value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD |
239 		 TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD |
240 		 TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD;
241 	aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL);
242 	dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value);
243 
244 	value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) |
245 		((dd->ctx->keylen * 8) <<
246 			TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) |
247 		((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT);
248 
249 	if (mode & FLAGS_CBC) {
250 		value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3)
251 				<< TEGRA_AES_SECURE_XOR_POS_SHIFT) |
252 			(((mode & FLAGS_ENCRYPT) ? 2 : 3)
253 				<< TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) |
254 			((mode & FLAGS_ENCRYPT) ? 1 : 0)
255 				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT);
256 	} else if (mode & FLAGS_OFB) {
257 		value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) |
258 			(2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) |
259 			(TEGRA_AES_SECURE_CORE_SEL_FIELD));
260 	} else if (mode & FLAGS_RNG) {
261 		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
262 				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT |
263 			  TEGRA_AES_SECURE_RNG_ENB_FIELD);
264 	} else {
265 		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0)
266 				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT);
267 	}
268 
269 	dev_dbg(dd->dev, "secure_in_sel=0x%x", value);
270 	aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT);
271 
272 	aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR);
273 	INIT_COMPLETION(dd->op_complete);
274 
275 	for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) {
276 		do {
277 			value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
278 			eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
279 			icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
280 		} while (eng_busy & (!icq_empty));
281 		aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR);
282 	}
283 
284 	ret = wait_for_completion_timeout(&dd->op_complete,
285 					  msecs_to_jiffies(150));
286 	if (ret == 0) {
287 		dev_err(dd->dev, "timed out (0x%x)\n",
288 			aes_readl(dd, TEGRA_AES_INTR_STATUS));
289 		return -ETIMEDOUT;
290 	}
291 
292 	aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR);
293 	return 0;
294 }
295 
aes_release_key_slot(struct tegra_aes_slot * slot)296 static void aes_release_key_slot(struct tegra_aes_slot *slot)
297 {
298 	if (slot->slot_num == SSK_SLOT_NUM)
299 		return;
300 
301 	spin_lock(&list_lock);
302 	list_add_tail(&slot->node, &dev_list);
303 	slot = NULL;
304 	spin_unlock(&list_lock);
305 }
306 
aes_find_key_slot(void)307 static struct tegra_aes_slot *aes_find_key_slot(void)
308 {
309 	struct tegra_aes_slot *slot = NULL;
310 	struct list_head *new_head;
311 	int empty;
312 
313 	spin_lock(&list_lock);
314 	empty = list_empty(&dev_list);
315 	if (!empty) {
316 		slot = list_entry(&dev_list, struct tegra_aes_slot, node);
317 		new_head = dev_list.next;
318 		list_del(&dev_list);
319 		dev_list.next = new_head->next;
320 		dev_list.prev = NULL;
321 	}
322 	spin_unlock(&list_lock);
323 
324 	return slot;
325 }
326 
aes_set_key(struct tegra_aes_dev * dd)327 static int aes_set_key(struct tegra_aes_dev *dd)
328 {
329 	u32 value, cmdq[2];
330 	struct tegra_aes_ctx *ctx = dd->ctx;
331 	int eng_busy, icq_empty, dma_busy;
332 	bool use_ssk = false;
333 
334 	/* use ssk? */
335 	if (!dd->ctx->slot) {
336 		dev_dbg(dd->dev, "using ssk");
337 		dd->ctx->slot = &ssk;
338 		use_ssk = true;
339 	}
340 
341 	/* enable key schedule generation in hardware */
342 	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT);
343 	value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD;
344 	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT);
345 
346 	/* select the key slot */
347 	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG);
348 	value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD;
349 	value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT);
350 	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG);
351 
352 	if (use_ssk)
353 		return 0;
354 
355 	/* copy the key table from sdram to vram */
356 	cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT |
357 		MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT |
358 		AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) <<
359 			MEMDMA_NUM_WORDS_SHIFT;
360 	cmdq[1] = (u32)dd->ivkey_phys_base;
361 
362 	aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR);
363 	aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR);
364 
365 	do {
366 		value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
367 		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
368 		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
369 		dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD;
370 	} while (eng_busy & (!icq_empty) & dma_busy);
371 
372 	/* settable command to get key into internal registers */
373 	value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT |
374 		SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT |
375 		SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT |
376 		(SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) <<
377 			CMDQ_KEYTABLEID_SHIFT;
378 	aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR);
379 
380 	do {
381 		value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
382 		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD;
383 		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD;
384 	} while (eng_busy & (!icq_empty));
385 
386 	return 0;
387 }
388 
tegra_aes_handle_req(struct tegra_aes_dev * dd)389 static int tegra_aes_handle_req(struct tegra_aes_dev *dd)
390 {
391 	struct crypto_async_request *async_req, *backlog;
392 	struct crypto_ablkcipher *tfm;
393 	struct tegra_aes_ctx *ctx;
394 	struct tegra_aes_reqctx *rctx;
395 	struct ablkcipher_request *req;
396 	unsigned long flags;
397 	int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES;
398 	int ret = 0, nblocks, total;
399 	int count = 0;
400 	dma_addr_t addr_in, addr_out;
401 	struct scatterlist *in_sg, *out_sg;
402 
403 	if (!dd)
404 		return -EINVAL;
405 
406 	spin_lock_irqsave(&dd->lock, flags);
407 	backlog = crypto_get_backlog(&dd->queue);
408 	async_req = crypto_dequeue_request(&dd->queue);
409 	if (!async_req)
410 		clear_bit(FLAGS_BUSY, &dd->flags);
411 	spin_unlock_irqrestore(&dd->lock, flags);
412 
413 	if (!async_req)
414 		return -ENODATA;
415 
416 	if (backlog)
417 		backlog->complete(backlog, -EINPROGRESS);
418 
419 	req = ablkcipher_request_cast(async_req);
420 
421 	dev_dbg(dd->dev, "%s: get new req\n", __func__);
422 
423 	if (!req->src || !req->dst)
424 		return -EINVAL;
425 
426 	/* take mutex to access the aes hw */
427 	mutex_lock(&aes_lock);
428 
429 	/* assign new request to device */
430 	dd->req = req;
431 	dd->total = req->nbytes;
432 	dd->in_offset = 0;
433 	dd->in_sg = req->src;
434 	dd->out_offset = 0;
435 	dd->out_sg = req->dst;
436 
437 	in_sg = dd->in_sg;
438 	out_sg = dd->out_sg;
439 
440 	total = dd->total;
441 
442 	tfm = crypto_ablkcipher_reqtfm(req);
443 	rctx = ablkcipher_request_ctx(req);
444 	ctx = crypto_ablkcipher_ctx(tfm);
445 	rctx->mode &= FLAGS_MODE_MASK;
446 	dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode;
447 
448 	dd->iv = (u8 *)req->info;
449 	dd->ivlen = crypto_ablkcipher_ivsize(tfm);
450 
451 	/* assign new context to device */
452 	ctx->dd = dd;
453 	dd->ctx = ctx;
454 
455 	if (ctx->flags & FLAGS_NEW_KEY) {
456 		/* copy the key */
457 		memcpy(dd->ivkey_base, ctx->key, ctx->keylen);
458 		memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen);
459 		aes_set_key(dd);
460 		ctx->flags &= ~FLAGS_NEW_KEY;
461 	}
462 
463 	if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) {
464 		/* set iv to the aes hw slot
465 		 * Hw generates updated iv only after iv is set in slot.
466 		 * So key and iv is passed asynchronously.
467 		 */
468 		memcpy(dd->buf_in, dd->iv, dd->ivlen);
469 
470 		ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
471 				      dd->dma_buf_out, 1, FLAGS_CBC, false);
472 		if (ret < 0) {
473 			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
474 			goto out;
475 		}
476 	}
477 
478 	while (total) {
479 		dev_dbg(dd->dev, "remain: %d\n", total);
480 		ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
481 		if (!ret) {
482 			dev_err(dd->dev, "dma_map_sg() error\n");
483 			goto out;
484 		}
485 
486 		ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
487 		if (!ret) {
488 			dev_err(dd->dev, "dma_map_sg() error\n");
489 			dma_unmap_sg(dd->dev, dd->in_sg,
490 				1, DMA_TO_DEVICE);
491 			goto out;
492 		}
493 
494 		addr_in = sg_dma_address(in_sg);
495 		addr_out = sg_dma_address(out_sg);
496 		dd->flags |= FLAGS_FAST;
497 		count = min_t(int, sg_dma_len(in_sg), dma_max);
498 		WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg));
499 		nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE);
500 
501 		ret = aes_start_crypt(dd, addr_in, addr_out, nblocks,
502 			dd->flags, true);
503 
504 		dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE);
505 		dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE);
506 
507 		if (ret < 0) {
508 			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
509 			goto out;
510 		}
511 		dd->flags &= ~FLAGS_FAST;
512 
513 		dev_dbg(dd->dev, "out: copied %d\n", count);
514 		total -= count;
515 		in_sg = sg_next(in_sg);
516 		out_sg = sg_next(out_sg);
517 		WARN_ON(((total != 0) && (!in_sg || !out_sg)));
518 	}
519 
520 out:
521 	mutex_unlock(&aes_lock);
522 
523 	dd->total = total;
524 
525 	if (dd->req->base.complete)
526 		dd->req->base.complete(&dd->req->base, ret);
527 
528 	dev_dbg(dd->dev, "%s: exit\n", __func__);
529 	return ret;
530 }
531 
tegra_aes_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)532 static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
533 			    unsigned int keylen)
534 {
535 	struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
536 	struct tegra_aes_dev *dd = aes_dev;
537 	struct tegra_aes_slot *key_slot;
538 
539 	if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) &&
540 		(keylen != AES_KEYSIZE_256)) {
541 		dev_err(dd->dev, "unsupported key size\n");
542 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
543 		return -EINVAL;
544 	}
545 
546 	dev_dbg(dd->dev, "keylen: %d\n", keylen);
547 
548 	ctx->dd = dd;
549 
550 	if (key) {
551 		if (!ctx->slot) {
552 			key_slot = aes_find_key_slot();
553 			if (!key_slot) {
554 				dev_err(dd->dev, "no empty slot\n");
555 				return -ENOMEM;
556 			}
557 
558 			ctx->slot = key_slot;
559 		}
560 
561 		memcpy(ctx->key, key, keylen);
562 		ctx->keylen = keylen;
563 	}
564 
565 	ctx->flags |= FLAGS_NEW_KEY;
566 	dev_dbg(dd->dev, "done\n");
567 	return 0;
568 }
569 
aes_workqueue_handler(struct work_struct * work)570 static void aes_workqueue_handler(struct work_struct *work)
571 {
572 	struct tegra_aes_dev *dd = aes_dev;
573 	int ret;
574 
575 	ret = clk_enable(dd->aes_clk);
576 	if (ret)
577 		BUG_ON("clock enable failed");
578 
579 	/* empty the crypto queue and then return */
580 	do {
581 		ret = tegra_aes_handle_req(dd);
582 	} while (!ret);
583 
584 	clk_disable(dd->aes_clk);
585 }
586 
aes_irq(int irq,void * dev_id)587 static irqreturn_t aes_irq(int irq, void *dev_id)
588 {
589 	struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id;
590 	u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS);
591 	int busy = test_bit(FLAGS_BUSY, &dd->flags);
592 
593 	if (!busy) {
594 		dev_dbg(dd->dev, "spurious interrupt\n");
595 		return IRQ_NONE;
596 	}
597 
598 	dev_dbg(dd->dev, "irq_stat: 0x%x\n", value);
599 	if (value & TEGRA_AES_INT_ERROR_MASK)
600 		aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS);
601 
602 	if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD))
603 		complete(&dd->op_complete);
604 	else
605 		return IRQ_NONE;
606 
607 	return IRQ_HANDLED;
608 }
609 
tegra_aes_crypt(struct ablkcipher_request * req,unsigned long mode)610 static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
611 {
612 	struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req);
613 	struct tegra_aes_dev *dd = aes_dev;
614 	unsigned long flags;
615 	int err = 0;
616 	int busy;
617 
618 	dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n",
619 		req->nbytes, !!(mode & FLAGS_ENCRYPT),
620 		!!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB));
621 
622 	rctx->mode = mode;
623 
624 	spin_lock_irqsave(&dd->lock, flags);
625 	err = ablkcipher_enqueue_request(&dd->queue, req);
626 	busy = test_and_set_bit(FLAGS_BUSY, &dd->flags);
627 	spin_unlock_irqrestore(&dd->lock, flags);
628 
629 	if (!busy)
630 		queue_work(aes_wq, &aes_work);
631 
632 	return err;
633 }
634 
tegra_aes_ecb_encrypt(struct ablkcipher_request * req)635 static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req)
636 {
637 	return tegra_aes_crypt(req, FLAGS_ENCRYPT);
638 }
639 
tegra_aes_ecb_decrypt(struct ablkcipher_request * req)640 static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req)
641 {
642 	return tegra_aes_crypt(req, 0);
643 }
644 
tegra_aes_cbc_encrypt(struct ablkcipher_request * req)645 static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req)
646 {
647 	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC);
648 }
649 
tegra_aes_cbc_decrypt(struct ablkcipher_request * req)650 static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req)
651 {
652 	return tegra_aes_crypt(req, FLAGS_CBC);
653 }
654 
tegra_aes_ofb_encrypt(struct ablkcipher_request * req)655 static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req)
656 {
657 	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB);
658 }
659 
tegra_aes_ofb_decrypt(struct ablkcipher_request * req)660 static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req)
661 {
662 	return tegra_aes_crypt(req, FLAGS_OFB);
663 }
664 
tegra_aes_get_random(struct crypto_rng * tfm,u8 * rdata,unsigned int dlen)665 static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata,
666 				unsigned int dlen)
667 {
668 	struct tegra_aes_dev *dd = aes_dev;
669 	struct tegra_aes_ctx *ctx = &rng_ctx;
670 	int ret, i;
671 	u8 *dest = rdata, *dt = dd->dt;
672 
673 	/* take mutex to access the aes hw */
674 	mutex_lock(&aes_lock);
675 
676 	ret = clk_enable(dd->aes_clk);
677 	if (ret)
678 		return ret;
679 
680 	ctx->dd = dd;
681 	dd->ctx = ctx;
682 	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
683 
684 	memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ);
685 
686 	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
687 			      (u32)dd->dma_buf_out, 1, dd->flags, true);
688 	if (ret < 0) {
689 		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
690 		dlen = ret;
691 		goto out;
692 	}
693 	memcpy(dest, dd->buf_out, dlen);
694 
695 	/* update the DT */
696 	for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) {
697 		dt[i] += 1;
698 		if (dt[i] != 0)
699 			break;
700 	}
701 
702 out:
703 	clk_disable(dd->aes_clk);
704 	mutex_unlock(&aes_lock);
705 
706 	dev_dbg(dd->dev, "%s: done\n", __func__);
707 	return dlen;
708 }
709 
tegra_aes_rng_reset(struct crypto_rng * tfm,u8 * seed,unsigned int slen)710 static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed,
711 			       unsigned int slen)
712 {
713 	struct tegra_aes_dev *dd = aes_dev;
714 	struct tegra_aes_ctx *ctx = &rng_ctx;
715 	struct tegra_aes_slot *key_slot;
716 	struct timespec ts;
717 	int ret = 0;
718 	u64 nsec, tmp[2];
719 	u8 *dt;
720 
721 	if (!ctx || !dd) {
722 		dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n",
723 			(unsigned int)ctx, (unsigned int)dd);
724 		return -EINVAL;
725 	}
726 
727 	if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
728 		dev_err(dd->dev, "seed size invalid");
729 		return -ENOMEM;
730 	}
731 
732 	/* take mutex to access the aes hw */
733 	mutex_lock(&aes_lock);
734 
735 	if (!ctx->slot) {
736 		key_slot = aes_find_key_slot();
737 		if (!key_slot) {
738 			dev_err(dd->dev, "no empty slot\n");
739 			mutex_unlock(&aes_lock);
740 			return -ENOMEM;
741 		}
742 		ctx->slot = key_slot;
743 	}
744 
745 	ctx->dd = dd;
746 	dd->ctx = ctx;
747 	dd->ctr = 0;
748 
749 	ctx->keylen = AES_KEYSIZE_128;
750 	ctx->flags |= FLAGS_NEW_KEY;
751 
752 	/* copy the key to the key slot */
753 	memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128);
754 	memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128);
755 
756 	dd->iv = seed;
757 	dd->ivlen = slen;
758 
759 	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG;
760 
761 	ret = clk_enable(dd->aes_clk);
762 	if (ret)
763 		return ret;
764 
765 	aes_set_key(dd);
766 
767 	/* set seed to the aes hw slot */
768 	memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ);
769 	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in,
770 			      dd->dma_buf_out, 1, FLAGS_CBC, false);
771 	if (ret < 0) {
772 		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret);
773 		goto out;
774 	}
775 
776 	if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) {
777 		dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128;
778 	} else {
779 		getnstimeofday(&ts);
780 		nsec = timespec_to_ns(&ts);
781 		do_div(nsec, 1000);
782 		nsec ^= dd->ctr << 56;
783 		dd->ctr++;
784 		tmp[0] = nsec;
785 		tmp[1] = tegra_chip_uid();
786 		dt = (u8 *)tmp;
787 	}
788 	memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ);
789 
790 out:
791 	clk_disable(dd->aes_clk);
792 	mutex_unlock(&aes_lock);
793 
794 	dev_dbg(dd->dev, "%s: done\n", __func__);
795 	return ret;
796 }
797 
tegra_aes_cra_init(struct crypto_tfm * tfm)798 static int tegra_aes_cra_init(struct crypto_tfm *tfm)
799 {
800 	tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx);
801 
802 	return 0;
803 }
804 
tegra_aes_cra_exit(struct crypto_tfm * tfm)805 void tegra_aes_cra_exit(struct crypto_tfm *tfm)
806 {
807 	struct tegra_aes_ctx *ctx =
808 		crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm);
809 
810 	if (ctx && ctx->slot)
811 		aes_release_key_slot(ctx->slot);
812 }
813 
814 static struct crypto_alg algs[] = {
815 	{
816 		.cra_name = "ecb(aes)",
817 		.cra_driver_name = "ecb-aes-tegra",
818 		.cra_priority = 300,
819 		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
820 		.cra_blocksize = AES_BLOCK_SIZE,
821 		.cra_alignmask = 3,
822 		.cra_type = &crypto_ablkcipher_type,
823 		.cra_u.ablkcipher = {
824 			.min_keysize = AES_MIN_KEY_SIZE,
825 			.max_keysize = AES_MAX_KEY_SIZE,
826 			.setkey = tegra_aes_setkey,
827 			.encrypt = tegra_aes_ecb_encrypt,
828 			.decrypt = tegra_aes_ecb_decrypt,
829 		},
830 	}, {
831 		.cra_name = "cbc(aes)",
832 		.cra_driver_name = "cbc-aes-tegra",
833 		.cra_priority = 300,
834 		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
835 		.cra_blocksize = AES_BLOCK_SIZE,
836 		.cra_alignmask = 3,
837 		.cra_type = &crypto_ablkcipher_type,
838 		.cra_u.ablkcipher = {
839 			.min_keysize = AES_MIN_KEY_SIZE,
840 			.max_keysize = AES_MAX_KEY_SIZE,
841 			.ivsize = AES_MIN_KEY_SIZE,
842 			.setkey = tegra_aes_setkey,
843 			.encrypt = tegra_aes_cbc_encrypt,
844 			.decrypt = tegra_aes_cbc_decrypt,
845 		}
846 	}, {
847 		.cra_name = "ofb(aes)",
848 		.cra_driver_name = "ofb-aes-tegra",
849 		.cra_priority = 300,
850 		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
851 		.cra_blocksize = AES_BLOCK_SIZE,
852 		.cra_alignmask = 3,
853 		.cra_type = &crypto_ablkcipher_type,
854 		.cra_u.ablkcipher = {
855 			.min_keysize = AES_MIN_KEY_SIZE,
856 			.max_keysize = AES_MAX_KEY_SIZE,
857 			.ivsize = AES_MIN_KEY_SIZE,
858 			.setkey = tegra_aes_setkey,
859 			.encrypt = tegra_aes_ofb_encrypt,
860 			.decrypt = tegra_aes_ofb_decrypt,
861 		}
862 	}, {
863 		.cra_name = "ansi_cprng",
864 		.cra_driver_name = "rng-aes-tegra",
865 		.cra_flags = CRYPTO_ALG_TYPE_RNG,
866 		.cra_ctxsize = sizeof(struct tegra_aes_ctx),
867 		.cra_type = &crypto_rng_type,
868 		.cra_u.rng = {
869 			.rng_make_random = tegra_aes_get_random,
870 			.rng_reset = tegra_aes_rng_reset,
871 			.seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ),
872 		}
873 	}
874 };
875 
tegra_aes_probe(struct platform_device * pdev)876 static int tegra_aes_probe(struct platform_device *pdev)
877 {
878 	struct device *dev = &pdev->dev;
879 	struct tegra_aes_dev *dd;
880 	struct resource *res;
881 	int err = -ENOMEM, i = 0, j;
882 
883 	dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL);
884 	if (dd == NULL) {
885 		dev_err(dev, "unable to alloc data struct.\n");
886 		return err;
887 	}
888 
889 	dd->dev = dev;
890 	platform_set_drvdata(pdev, dd);
891 
892 	dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) *
893 				 AES_NR_KEYSLOTS, GFP_KERNEL);
894 	if (dd->slots == NULL) {
895 		dev_err(dev, "unable to alloc slot struct.\n");
896 		goto out;
897 	}
898 
899 	spin_lock_init(&dd->lock);
900 	crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH);
901 
902 	/* Get the module base address */
903 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
904 	if (!res) {
905 		dev_err(dev, "invalid resource type: base\n");
906 		err = -ENODEV;
907 		goto out;
908 	}
909 
910 	if (!devm_request_mem_region(&pdev->dev, res->start,
911 				     resource_size(res),
912 				     dev_name(&pdev->dev))) {
913 		dev_err(&pdev->dev, "Couldn't request MEM resource\n");
914 		return -ENODEV;
915 	}
916 
917 	dd->io_base = devm_ioremap(dev, res->start, resource_size(res));
918 	if (!dd->io_base) {
919 		dev_err(dev, "can't ioremap register space\n");
920 		err = -ENOMEM;
921 		goto out;
922 	}
923 
924 	/* Initialize the vde clock */
925 	dd->aes_clk = clk_get(dev, "vde");
926 	if (IS_ERR(dd->aes_clk)) {
927 		dev_err(dev, "iclock intialization failed.\n");
928 		err = -ENODEV;
929 		goto out;
930 	}
931 
932 	err = clk_set_rate(dd->aes_clk, ULONG_MAX);
933 	if (err) {
934 		dev_err(dd->dev, "iclk set_rate fail(%d)\n", err);
935 		goto out;
936 	}
937 
938 	/*
939 	 * the foll contiguous memory is allocated as follows -
940 	 * - hardware key table
941 	 * - key schedule
942 	 */
943 	dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
944 					    &dd->ivkey_phys_base,
945 		GFP_KERNEL);
946 	if (!dd->ivkey_base) {
947 		dev_err(dev, "can not allocate iv/key buffer\n");
948 		err = -ENOMEM;
949 		goto out;
950 	}
951 
952 	dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
953 					&dd->dma_buf_in, GFP_KERNEL);
954 	if (!dd->buf_in) {
955 		dev_err(dev, "can not allocate dma-in buffer\n");
956 		err = -ENOMEM;
957 		goto out;
958 	}
959 
960 	dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
961 					 &dd->dma_buf_out, GFP_KERNEL);
962 	if (!dd->buf_out) {
963 		dev_err(dev, "can not allocate dma-out buffer\n");
964 		err = -ENOMEM;
965 		goto out;
966 	}
967 
968 	init_completion(&dd->op_complete);
969 	aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1);
970 	if (!aes_wq) {
971 		dev_err(dev, "alloc_workqueue failed\n");
972 		goto out;
973 	}
974 
975 	/* get the irq */
976 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
977 	if (!res) {
978 		dev_err(dev, "invalid resource type: base\n");
979 		err = -ENODEV;
980 		goto out;
981 	}
982 	dd->irq = res->start;
983 
984 	err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH |
985 				IRQF_SHARED, "tegra-aes", dd);
986 	if (err) {
987 		dev_err(dev, "request_irq failed\n");
988 		goto out;
989 	}
990 
991 	mutex_init(&aes_lock);
992 	INIT_LIST_HEAD(&dev_list);
993 
994 	spin_lock_init(&list_lock);
995 	spin_lock(&list_lock);
996 	for (i = 0; i < AES_NR_KEYSLOTS; i++) {
997 		if (i == SSK_SLOT_NUM)
998 			continue;
999 		dd->slots[i].slot_num = i;
1000 		INIT_LIST_HEAD(&dd->slots[i].node);
1001 		list_add_tail(&dd->slots[i].node, &dev_list);
1002 	}
1003 	spin_unlock(&list_lock);
1004 
1005 	aes_dev = dd;
1006 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
1007 		INIT_LIST_HEAD(&algs[i].cra_list);
1008 
1009 		algs[i].cra_priority = 300;
1010 		algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx);
1011 		algs[i].cra_module = THIS_MODULE;
1012 		algs[i].cra_init = tegra_aes_cra_init;
1013 		algs[i].cra_exit = tegra_aes_cra_exit;
1014 
1015 		err = crypto_register_alg(&algs[i]);
1016 		if (err)
1017 			goto out;
1018 	}
1019 
1020 	dev_info(dev, "registered");
1021 	return 0;
1022 
1023 out:
1024 	for (j = 0; j < i; j++)
1025 		crypto_unregister_alg(&algs[j]);
1026 	if (dd->ivkey_base)
1027 		dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
1028 			dd->ivkey_base, dd->ivkey_phys_base);
1029 	if (dd->buf_in)
1030 		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1031 			dd->buf_in, dd->dma_buf_in);
1032 	if (dd->buf_out)
1033 		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1034 			dd->buf_out, dd->dma_buf_out);
1035 	if (IS_ERR(dd->aes_clk))
1036 		clk_put(dd->aes_clk);
1037 	if (aes_wq)
1038 		destroy_workqueue(aes_wq);
1039 	spin_lock(&list_lock);
1040 	list_del(&dev_list);
1041 	spin_unlock(&list_lock);
1042 
1043 	aes_dev = NULL;
1044 
1045 	dev_err(dev, "%s: initialization failed.\n", __func__);
1046 	return err;
1047 }
1048 
tegra_aes_remove(struct platform_device * pdev)1049 static int __devexit tegra_aes_remove(struct platform_device *pdev)
1050 {
1051 	struct device *dev = &pdev->dev;
1052 	struct tegra_aes_dev *dd = platform_get_drvdata(pdev);
1053 	int i;
1054 
1055 	for (i = 0; i < ARRAY_SIZE(algs); i++)
1056 		crypto_unregister_alg(&algs[i]);
1057 
1058 	cancel_work_sync(&aes_work);
1059 	destroy_workqueue(aes_wq);
1060 	spin_lock(&list_lock);
1061 	list_del(&dev_list);
1062 	spin_unlock(&list_lock);
1063 
1064 	dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES,
1065 			  dd->ivkey_base, dd->ivkey_phys_base);
1066 	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1067 			  dd->buf_in, dd->dma_buf_in);
1068 	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES,
1069 			  dd->buf_out, dd->dma_buf_out);
1070 	clk_put(dd->aes_clk);
1071 	aes_dev = NULL;
1072 
1073 	return 0;
1074 }
1075 
1076 static struct of_device_id tegra_aes_of_match[] __devinitdata = {
1077 	{ .compatible = "nvidia,tegra20-aes", },
1078 	{ .compatible = "nvidia,tegra30-aes", },
1079 	{ },
1080 };
1081 
1082 static struct platform_driver tegra_aes_driver = {
1083 	.probe  = tegra_aes_probe,
1084 	.remove = __devexit_p(tegra_aes_remove),
1085 	.driver = {
1086 		.name   = "tegra-aes",
1087 		.owner  = THIS_MODULE,
1088 		.of_match_table = tegra_aes_of_match,
1089 	},
1090 };
1091 
1092 module_platform_driver(tegra_aes_driver);
1093 
1094 MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support.");
1095 MODULE_AUTHOR("NVIDIA Corporation");
1096 MODULE_LICENSE("GPL v2");
1097