1 /*
2  *  CPU frequency scaling for OMAP using OPP information
3  *
4  *  Copyright (C) 2005 Nokia Corporation
5  *  Written by Tony Lindgren <tony@atomide.com>
6  *
7  *  Based on cpu-sa1110.c, Copyright (C) 2001 Russell King
8  *
9  * Copyright (C) 2007-2011 Texas Instruments, Inc.
10  * - OMAP3/4 support by Rajendra Nayak, Santosh Shilimkar
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/cpufreq.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/io.h>
25 #include <linux/opp.h>
26 #include <linux/cpu.h>
27 #include <linux/module.h>
28 #include <linux/regulator/consumer.h>
29 
30 #include <asm/smp_plat.h>
31 #include <asm/cpu.h>
32 
33 #include <plat/clock.h>
34 #include <plat/omap-pm.h>
35 #include <plat/common.h>
36 #include <plat/omap_device.h>
37 
38 #include <mach/hardware.h>
39 
40 /* OPP tolerance in percentage */
41 #define	OPP_TOLERANCE	4
42 
43 #ifdef CONFIG_SMP
44 struct lpj_info {
45 	unsigned long	ref;
46 	unsigned int	freq;
47 };
48 
49 static DEFINE_PER_CPU(struct lpj_info, lpj_ref);
50 static struct lpj_info global_lpj_ref;
51 #endif
52 
53 static struct cpufreq_frequency_table *freq_table;
54 static atomic_t freq_table_users = ATOMIC_INIT(0);
55 static struct clk *mpu_clk;
56 static char *mpu_clk_name;
57 static struct device *mpu_dev;
58 static struct regulator *mpu_reg;
59 
omap_verify_speed(struct cpufreq_policy * policy)60 static int omap_verify_speed(struct cpufreq_policy *policy)
61 {
62 	if (!freq_table)
63 		return -EINVAL;
64 	return cpufreq_frequency_table_verify(policy, freq_table);
65 }
66 
omap_getspeed(unsigned int cpu)67 static unsigned int omap_getspeed(unsigned int cpu)
68 {
69 	unsigned long rate;
70 
71 	if (cpu >= NR_CPUS)
72 		return 0;
73 
74 	rate = clk_get_rate(mpu_clk) / 1000;
75 	return rate;
76 }
77 
omap_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)78 static int omap_target(struct cpufreq_policy *policy,
79 		       unsigned int target_freq,
80 		       unsigned int relation)
81 {
82 	unsigned int i;
83 	int r, ret = 0;
84 	struct cpufreq_freqs freqs;
85 	struct opp *opp;
86 	unsigned long freq, volt = 0, volt_old = 0, tol = 0;
87 
88 	if (!freq_table) {
89 		dev_err(mpu_dev, "%s: cpu%d: no freq table!\n", __func__,
90 				policy->cpu);
91 		return -EINVAL;
92 	}
93 
94 	ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
95 			relation, &i);
96 	if (ret) {
97 		dev_dbg(mpu_dev, "%s: cpu%d: no freq match for %d(ret=%d)\n",
98 			__func__, policy->cpu, target_freq, ret);
99 		return ret;
100 	}
101 	freqs.new = freq_table[i].frequency;
102 	if (!freqs.new) {
103 		dev_err(mpu_dev, "%s: cpu%d: no match for freq %d\n", __func__,
104 			policy->cpu, target_freq);
105 		return -EINVAL;
106 	}
107 
108 	freqs.old = omap_getspeed(policy->cpu);
109 	freqs.cpu = policy->cpu;
110 
111 	if (freqs.old == freqs.new && policy->cur == freqs.new)
112 		return ret;
113 
114 	/* notifiers */
115 	for_each_cpu(i, policy->cpus) {
116 		freqs.cpu = i;
117 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
118 	}
119 
120 	freq = freqs.new * 1000;
121 
122 	if (mpu_reg) {
123 		opp = opp_find_freq_ceil(mpu_dev, &freq);
124 		if (IS_ERR(opp)) {
125 			dev_err(mpu_dev, "%s: unable to find MPU OPP for %d\n",
126 				__func__, freqs.new);
127 			return -EINVAL;
128 		}
129 		volt = opp_get_voltage(opp);
130 		tol = volt * OPP_TOLERANCE / 100;
131 		volt_old = regulator_get_voltage(mpu_reg);
132 	}
133 
134 	dev_dbg(mpu_dev, "cpufreq-omap: %u MHz, %ld mV --> %u MHz, %ld mV\n",
135 		freqs.old / 1000, volt_old ? volt_old / 1000 : -1,
136 		freqs.new / 1000, volt ? volt / 1000 : -1);
137 
138 	/* scaling up?  scale voltage before frequency */
139 	if (mpu_reg && (freqs.new > freqs.old)) {
140 		r = regulator_set_voltage(mpu_reg, volt - tol, volt + tol);
141 		if (r < 0) {
142 			dev_warn(mpu_dev, "%s: unable to scale voltage up.\n",
143 				 __func__);
144 			freqs.new = freqs.old;
145 			goto done;
146 		}
147 	}
148 
149 	ret = clk_set_rate(mpu_clk, freqs.new * 1000);
150 
151 	/* scaling down?  scale voltage after frequency */
152 	if (mpu_reg && (freqs.new < freqs.old)) {
153 		r = regulator_set_voltage(mpu_reg, volt - tol, volt + tol);
154 		if (r < 0) {
155 			dev_warn(mpu_dev, "%s: unable to scale voltage down.\n",
156 				 __func__);
157 			ret = clk_set_rate(mpu_clk, freqs.old * 1000);
158 			freqs.new = freqs.old;
159 			goto done;
160 		}
161 	}
162 
163 	freqs.new = omap_getspeed(policy->cpu);
164 #ifdef CONFIG_SMP
165 	/*
166 	 * Note that loops_per_jiffy is not updated on SMP systems in
167 	 * cpufreq driver. So, update the per-CPU loops_per_jiffy value
168 	 * on frequency transition. We need to update all dependent CPUs.
169 	 */
170 	for_each_cpu(i, policy->cpus) {
171 		struct lpj_info *lpj = &per_cpu(lpj_ref, i);
172 		if (!lpj->freq) {
173 			lpj->ref = per_cpu(cpu_data, i).loops_per_jiffy;
174 			lpj->freq = freqs.old;
175 		}
176 
177 		per_cpu(cpu_data, i).loops_per_jiffy =
178 			cpufreq_scale(lpj->ref, lpj->freq, freqs.new);
179 	}
180 
181 	/* And don't forget to adjust the global one */
182 	if (!global_lpj_ref.freq) {
183 		global_lpj_ref.ref = loops_per_jiffy;
184 		global_lpj_ref.freq = freqs.old;
185 	}
186 	loops_per_jiffy = cpufreq_scale(global_lpj_ref.ref, global_lpj_ref.freq,
187 					freqs.new);
188 #endif
189 
190 done:
191 	/* notifiers */
192 	for_each_cpu(i, policy->cpus) {
193 		freqs.cpu = i;
194 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
195 	}
196 
197 	return ret;
198 }
199 
freq_table_free(void)200 static inline void freq_table_free(void)
201 {
202 	if (atomic_dec_and_test(&freq_table_users))
203 		opp_free_cpufreq_table(mpu_dev, &freq_table);
204 }
205 
omap_cpu_init(struct cpufreq_policy * policy)206 static int __cpuinit omap_cpu_init(struct cpufreq_policy *policy)
207 {
208 	int result = 0;
209 
210 	mpu_clk = clk_get(NULL, mpu_clk_name);
211 	if (IS_ERR(mpu_clk))
212 		return PTR_ERR(mpu_clk);
213 
214 	if (policy->cpu >= NR_CPUS) {
215 		result = -EINVAL;
216 		goto fail_ck;
217 	}
218 
219 	policy->cur = policy->min = policy->max = omap_getspeed(policy->cpu);
220 
221 	if (atomic_inc_return(&freq_table_users) == 1)
222 		result = opp_init_cpufreq_table(mpu_dev, &freq_table);
223 
224 	if (result) {
225 		dev_err(mpu_dev, "%s: cpu%d: failed creating freq table[%d]\n",
226 				__func__, policy->cpu, result);
227 		goto fail_ck;
228 	}
229 
230 	result = cpufreq_frequency_table_cpuinfo(policy, freq_table);
231 	if (result)
232 		goto fail_table;
233 
234 	cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
235 
236 	policy->min = policy->cpuinfo.min_freq;
237 	policy->max = policy->cpuinfo.max_freq;
238 	policy->cur = omap_getspeed(policy->cpu);
239 
240 	/*
241 	 * On OMAP SMP configuartion, both processors share the voltage
242 	 * and clock. So both CPUs needs to be scaled together and hence
243 	 * needs software co-ordination. Use cpufreq affected_cpus
244 	 * interface to handle this scenario. Additional is_smp() check
245 	 * is to keep SMP_ON_UP build working.
246 	 */
247 	if (is_smp()) {
248 		policy->shared_type = CPUFREQ_SHARED_TYPE_ANY;
249 		cpumask_setall(policy->cpus);
250 	}
251 
252 	/* FIXME: what's the actual transition time? */
253 	policy->cpuinfo.transition_latency = 300 * 1000;
254 
255 	return 0;
256 
257 fail_table:
258 	freq_table_free();
259 fail_ck:
260 	clk_put(mpu_clk);
261 	return result;
262 }
263 
omap_cpu_exit(struct cpufreq_policy * policy)264 static int omap_cpu_exit(struct cpufreq_policy *policy)
265 {
266 	freq_table_free();
267 	clk_put(mpu_clk);
268 	return 0;
269 }
270 
271 static struct freq_attr *omap_cpufreq_attr[] = {
272 	&cpufreq_freq_attr_scaling_available_freqs,
273 	NULL,
274 };
275 
276 static struct cpufreq_driver omap_driver = {
277 	.flags		= CPUFREQ_STICKY,
278 	.verify		= omap_verify_speed,
279 	.target		= omap_target,
280 	.get		= omap_getspeed,
281 	.init		= omap_cpu_init,
282 	.exit		= omap_cpu_exit,
283 	.name		= "omap",
284 	.attr		= omap_cpufreq_attr,
285 };
286 
omap_cpufreq_init(void)287 static int __init omap_cpufreq_init(void)
288 {
289 	if (cpu_is_omap24xx())
290 		mpu_clk_name = "virt_prcm_set";
291 	else if (cpu_is_omap34xx())
292 		mpu_clk_name = "dpll1_ck";
293 	else if (cpu_is_omap44xx())
294 		mpu_clk_name = "dpll_mpu_ck";
295 
296 	if (!mpu_clk_name) {
297 		pr_err("%s: unsupported Silicon?\n", __func__);
298 		return -EINVAL;
299 	}
300 
301 	mpu_dev = omap_device_get_by_hwmod_name("mpu");
302 	if (!mpu_dev) {
303 		pr_warning("%s: unable to get the mpu device\n", __func__);
304 		return -EINVAL;
305 	}
306 
307 	mpu_reg = regulator_get(mpu_dev, "vcc");
308 	if (IS_ERR(mpu_reg)) {
309 		pr_warning("%s: unable to get MPU regulator\n", __func__);
310 		mpu_reg = NULL;
311 	} else {
312 		/*
313 		 * Ensure physical regulator is present.
314 		 * (e.g. could be dummy regulator.)
315 		 */
316 		if (regulator_get_voltage(mpu_reg) < 0) {
317 			pr_warn("%s: physical regulator not present for MPU\n",
318 				__func__);
319 			regulator_put(mpu_reg);
320 			mpu_reg = NULL;
321 		}
322 	}
323 
324 	return cpufreq_register_driver(&omap_driver);
325 }
326 
omap_cpufreq_exit(void)327 static void __exit omap_cpufreq_exit(void)
328 {
329 	cpufreq_unregister_driver(&omap_driver);
330 }
331 
332 MODULE_DESCRIPTION("cpufreq driver for OMAP SoCs");
333 MODULE_LICENSE("GPL");
334 module_init(omap_cpufreq_init);
335 module_exit(omap_cpufreq_exit);
336