1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
6 
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
13 
14 
15 /*
16  * We're configured to use a specific TC block, one that's not hooked
17  * up to external hardware, to provide a time solution:
18  *
19  *   - Two channels combine to create a free-running 32 bit counter
20  *     with a base rate of 5+ MHz, packaged as a clocksource (with
21  *     resolution better than 200 nsec).
22  *   - Some chips support 32 bit counter. A single channel is used for
23  *     this 32 bit free-running counter. the second channel is not used.
24  *
25  *   - The third channel may be used to provide a 16-bit clockevent
26  *     source, used in either periodic or oneshot mode.  This runs
27  *     at 32 KiHZ, and can handle delays of up to two seconds.
28  *
29  * A boot clocksource and clockevent source are also currently needed,
30  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31  * this code can be used when init_timers() is called, well before most
32  * devices are set up.  (Some low end AT91 parts, which can run uClinux,
33  * have only the timers in one TC block... they currently don't support
34  * the tclib code, because of that initialization issue.)
35  *
36  * REVISIT behavior during system suspend states... we should disable
37  * all clocks and save the power.  Easily done for clockevent devices,
38  * but clocksources won't necessarily get the needed notifications.
39  * For deeper system sleep states, this will be mandatory...
40  */
41 
42 static void __iomem *tcaddr;
43 
tc_get_cycles(struct clocksource * cs)44 static cycle_t tc_get_cycles(struct clocksource *cs)
45 {
46 	unsigned long	flags;
47 	u32		lower, upper;
48 
49 	raw_local_irq_save(flags);
50 	do {
51 		upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52 		lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53 	} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
54 
55 	raw_local_irq_restore(flags);
56 	return (upper << 16) | lower;
57 }
58 
tc_get_cycles32(struct clocksource * cs)59 static cycle_t tc_get_cycles32(struct clocksource *cs)
60 {
61 	return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
62 }
63 
64 static struct clocksource clksrc = {
65 	.name           = "tcb_clksrc",
66 	.rating         = 200,
67 	.read           = tc_get_cycles,
68 	.mask           = CLOCKSOURCE_MASK(32),
69 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
70 };
71 
72 #ifdef CONFIG_GENERIC_CLOCKEVENTS
73 
74 struct tc_clkevt_device {
75 	struct clock_event_device	clkevt;
76 	struct clk			*clk;
77 	void __iomem			*regs;
78 };
79 
to_tc_clkevt(struct clock_event_device * clkevt)80 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
81 {
82 	return container_of(clkevt, struct tc_clkevt_device, clkevt);
83 }
84 
85 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86  * because using one of the divided clocks would usually mean the
87  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
88  *
89  * A divided clock could be good for high resolution timers, since
90  * 30.5 usec resolution can seem "low".
91  */
92 static u32 timer_clock;
93 
tc_mode(enum clock_event_mode m,struct clock_event_device * d)94 static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
95 {
96 	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97 	void __iomem		*regs = tcd->regs;
98 
99 	if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
100 			|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
101 		__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
102 		__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
103 		clk_disable(tcd->clk);
104 	}
105 
106 	switch (m) {
107 
108 	/* By not making the gentime core emulate periodic mode on top
109 	 * of oneshot, we get lower overhead and improved accuracy.
110 	 */
111 	case CLOCK_EVT_MODE_PERIODIC:
112 		clk_enable(tcd->clk);
113 
114 		/* slow clock, count up to RC, then irq and restart */
115 		__raw_writel(timer_clock
116 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
117 				regs + ATMEL_TC_REG(2, CMR));
118 		__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
119 
120 		/* Enable clock and interrupts on RC compare */
121 		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
122 
123 		/* go go gadget! */
124 		__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
125 				regs + ATMEL_TC_REG(2, CCR));
126 		break;
127 
128 	case CLOCK_EVT_MODE_ONESHOT:
129 		clk_enable(tcd->clk);
130 
131 		/* slow clock, count up to RC, then irq and stop */
132 		__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
133 				| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
134 				regs + ATMEL_TC_REG(2, CMR));
135 		__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
136 
137 		/* set_next_event() configures and starts the timer */
138 		break;
139 
140 	default:
141 		break;
142 	}
143 }
144 
tc_next_event(unsigned long delta,struct clock_event_device * d)145 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
146 {
147 	__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
148 
149 	/* go go gadget! */
150 	__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
151 			tcaddr + ATMEL_TC_REG(2, CCR));
152 	return 0;
153 }
154 
155 static struct tc_clkevt_device clkevt = {
156 	.clkevt	= {
157 		.name		= "tc_clkevt",
158 		.features	= CLOCK_EVT_FEAT_PERIODIC
159 					| CLOCK_EVT_FEAT_ONESHOT,
160 		.shift		= 32,
161 		/* Should be lower than at91rm9200's system timer */
162 		.rating		= 125,
163 		.set_next_event	= tc_next_event,
164 		.set_mode	= tc_mode,
165 	},
166 };
167 
ch2_irq(int irq,void * handle)168 static irqreturn_t ch2_irq(int irq, void *handle)
169 {
170 	struct tc_clkevt_device	*dev = handle;
171 	unsigned int		sr;
172 
173 	sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
174 	if (sr & ATMEL_TC_CPCS) {
175 		dev->clkevt.event_handler(&dev->clkevt);
176 		return IRQ_HANDLED;
177 	}
178 
179 	return IRQ_NONE;
180 }
181 
182 static struct irqaction tc_irqaction = {
183 	.name		= "tc_clkevt",
184 	.flags		= IRQF_TIMER | IRQF_DISABLED,
185 	.handler	= ch2_irq,
186 };
187 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)188 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
189 {
190 	struct clk *t2_clk = tc->clk[2];
191 	int irq = tc->irq[2];
192 
193 	clkevt.regs = tc->regs;
194 	clkevt.clk = t2_clk;
195 	tc_irqaction.dev_id = &clkevt;
196 
197 	timer_clock = clk32k_divisor_idx;
198 
199 	clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
200 	clkevt.clkevt.max_delta_ns
201 		= clockevent_delta2ns(0xffff, &clkevt.clkevt);
202 	clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
203 	clkevt.clkevt.cpumask = cpumask_of(0);
204 
205 	clockevents_register_device(&clkevt.clkevt);
206 
207 	setup_irq(irq, &tc_irqaction);
208 }
209 
210 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
211 
setup_clkevents(struct atmel_tc * tc,int clk32k_divisor_idx)212 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
213 {
214 	/* NOTHING */
215 }
216 
217 #endif
218 
tcb_setup_dual_chan(struct atmel_tc * tc,int mck_divisor_idx)219 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
220 {
221 	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
222 	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
223 			| ATMEL_TC_WAVE
224 			| ATMEL_TC_WAVESEL_UP		/* free-run */
225 			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
226 			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
227 			tcaddr + ATMEL_TC_REG(0, CMR));
228 	__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
229 	__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
230 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
231 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
232 
233 	/* channel 1:  waveform mode, input TIOA0 */
234 	__raw_writel(ATMEL_TC_XC1			/* input: TIOA0 */
235 			| ATMEL_TC_WAVE
236 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
237 			tcaddr + ATMEL_TC_REG(1, CMR));
238 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
239 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
240 
241 	/* chain channel 0 to channel 1*/
242 	__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
243 	/* then reset all the timers */
244 	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
245 }
246 
tcb_setup_single_chan(struct atmel_tc * tc,int mck_divisor_idx)247 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
248 {
249 	/* channel 0:  waveform mode, input mclk/8 */
250 	__raw_writel(mck_divisor_idx			/* likely divide-by-8 */
251 			| ATMEL_TC_WAVE
252 			| ATMEL_TC_WAVESEL_UP,		/* free-run */
253 			tcaddr + ATMEL_TC_REG(0, CMR));
254 	__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
255 	__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
256 
257 	/* then reset all the timers */
258 	__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
259 }
260 
tcb_clksrc_init(void)261 static int __init tcb_clksrc_init(void)
262 {
263 	static char bootinfo[] __initdata
264 		= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
265 
266 	struct platform_device *pdev;
267 	struct atmel_tc *tc;
268 	struct clk *t0_clk;
269 	u32 rate, divided_rate = 0;
270 	int best_divisor_idx = -1;
271 	int clk32k_divisor_idx = -1;
272 	int i;
273 
274 	tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
275 	if (!tc) {
276 		pr_debug("can't alloc TC for clocksource\n");
277 		return -ENODEV;
278 	}
279 	tcaddr = tc->regs;
280 	pdev = tc->pdev;
281 
282 	t0_clk = tc->clk[0];
283 	clk_enable(t0_clk);
284 
285 	/* How fast will we be counting?  Pick something over 5 MHz.  */
286 	rate = (u32) clk_get_rate(t0_clk);
287 	for (i = 0; i < 5; i++) {
288 		unsigned divisor = atmel_tc_divisors[i];
289 		unsigned tmp;
290 
291 		/* remember 32 KiHz clock for later */
292 		if (!divisor) {
293 			clk32k_divisor_idx = i;
294 			continue;
295 		}
296 
297 		tmp = rate / divisor;
298 		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
299 		if (best_divisor_idx > 0) {
300 			if (tmp < 5 * 1000 * 1000)
301 				continue;
302 		}
303 		divided_rate = tmp;
304 		best_divisor_idx = i;
305 	}
306 
307 
308 	printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
309 			divided_rate / 1000000,
310 			((divided_rate + 500000) % 1000000) / 1000);
311 
312 	if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
313 		/* use apropriate function to read 32 bit counter */
314 		clksrc.read = tc_get_cycles32;
315 		/* setup ony channel 0 */
316 		tcb_setup_single_chan(tc, best_divisor_idx);
317 	} else {
318 		/* tclib will give us three clocks no matter what the
319 		 * underlying platform supports.
320 		 */
321 		clk_enable(tc->clk[1]);
322 		/* setup both channel 0 & 1 */
323 		tcb_setup_dual_chan(tc, best_divisor_idx);
324 	}
325 
326 	/* and away we go! */
327 	clocksource_register_hz(&clksrc, divided_rate);
328 
329 	/* channel 2:  periodic and oneshot timer support */
330 	setup_clkevents(tc, clk32k_divisor_idx);
331 
332 	return 0;
333 }
334 arch_initcall(tcb_clksrc_init);
335