1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *	Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *	Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
24 #include <linux/mm.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/io.h>
37 
38 #include <asm/current.h>
39 #include <asm/irq.h>
40 #include <asm/div64.h>
41 
42 #include <linux/acpi.h>
43 #include <acpi/acpi_bus.h>
44 #include <linux/hpet.h>
45 
46 /*
47  * The High Precision Event Timer driver.
48  * This driver is closely modelled after the rtc.c driver.
49  * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
50  */
51 #define	HPET_USER_FREQ	(64)
52 #define	HPET_DRIFT	(500)
53 
54 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
55 
56 
57 /* WARNING -- don't get confused.  These macros are never used
58  * to write the (single) counter, and rarely to read it.
59  * They're badly named; to fix, someday.
60  */
61 #if BITS_PER_LONG == 64
62 #define	write_counter(V, MC)	writeq(V, MC)
63 #define	read_counter(MC)	readq(MC)
64 #else
65 #define	write_counter(V, MC)	writel(V, MC)
66 #define	read_counter(MC)	readl(MC)
67 #endif
68 
69 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
70 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
71 
72 /* This clocksource driver currently only works on ia64 */
73 #ifdef CONFIG_IA64
74 static void __iomem *hpet_mctr;
75 
read_hpet(struct clocksource * cs)76 static cycle_t read_hpet(struct clocksource *cs)
77 {
78 	return (cycle_t)read_counter((void __iomem *)hpet_mctr);
79 }
80 
81 static struct clocksource clocksource_hpet = {
82 	.name		= "hpet",
83 	.rating		= 250,
84 	.read		= read_hpet,
85 	.mask		= CLOCKSOURCE_MASK(64),
86 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
87 };
88 static struct clocksource *hpet_clocksource;
89 #endif
90 
91 /* A lock for concurrent access by app and isr hpet activity. */
92 static DEFINE_SPINLOCK(hpet_lock);
93 
94 #define	HPET_DEV_NAME	(7)
95 
96 struct hpet_dev {
97 	struct hpets *hd_hpets;
98 	struct hpet __iomem *hd_hpet;
99 	struct hpet_timer __iomem *hd_timer;
100 	unsigned long hd_ireqfreq;
101 	unsigned long hd_irqdata;
102 	wait_queue_head_t hd_waitqueue;
103 	struct fasync_struct *hd_async_queue;
104 	unsigned int hd_flags;
105 	unsigned int hd_irq;
106 	unsigned int hd_hdwirq;
107 	char hd_name[HPET_DEV_NAME];
108 };
109 
110 struct hpets {
111 	struct hpets *hp_next;
112 	struct hpet __iomem *hp_hpet;
113 	unsigned long hp_hpet_phys;
114 	struct clocksource *hp_clocksource;
115 	unsigned long long hp_tick_freq;
116 	unsigned long hp_delta;
117 	unsigned int hp_ntimer;
118 	unsigned int hp_which;
119 	struct hpet_dev hp_dev[1];
120 };
121 
122 static struct hpets *hpets;
123 
124 #define	HPET_OPEN		0x0001
125 #define	HPET_IE			0x0002	/* interrupt enabled */
126 #define	HPET_PERIODIC		0x0004
127 #define	HPET_SHARED_IRQ		0x0008
128 
129 
130 #ifndef readq
readq(void __iomem * addr)131 static inline unsigned long long readq(void __iomem *addr)
132 {
133 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
134 }
135 #endif
136 
137 #ifndef writeq
writeq(unsigned long long v,void __iomem * addr)138 static inline void writeq(unsigned long long v, void __iomem *addr)
139 {
140 	writel(v & 0xffffffff, addr);
141 	writel(v >> 32, addr + 4);
142 }
143 #endif
144 
hpet_interrupt(int irq,void * data)145 static irqreturn_t hpet_interrupt(int irq, void *data)
146 {
147 	struct hpet_dev *devp;
148 	unsigned long isr;
149 
150 	devp = data;
151 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
152 
153 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
154 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
155 		return IRQ_NONE;
156 
157 	spin_lock(&hpet_lock);
158 	devp->hd_irqdata++;
159 
160 	/*
161 	 * For non-periodic timers, increment the accumulator.
162 	 * This has the effect of treating non-periodic like periodic.
163 	 */
164 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
165 		unsigned long m, t, mc, base, k;
166 		struct hpet __iomem *hpet = devp->hd_hpet;
167 		struct hpets *hpetp = devp->hd_hpets;
168 
169 		t = devp->hd_ireqfreq;
170 		m = read_counter(&devp->hd_timer->hpet_compare);
171 		mc = read_counter(&hpet->hpet_mc);
172 		/* The time for the next interrupt would logically be t + m,
173 		 * however, if we are very unlucky and the interrupt is delayed
174 		 * for longer than t then we will completely miss the next
175 		 * interrupt if we set t + m and an application will hang.
176 		 * Therefore we need to make a more complex computation assuming
177 		 * that there exists a k for which the following is true:
178 		 * k * t + base < mc + delta
179 		 * (k + 1) * t + base > mc + delta
180 		 * where t is the interval in hpet ticks for the given freq,
181 		 * base is the theoretical start value 0 < base < t,
182 		 * mc is the main counter value at the time of the interrupt,
183 		 * delta is the time it takes to write the a value to the
184 		 * comparator.
185 		 * k may then be computed as (mc - base + delta) / t .
186 		 */
187 		base = mc % t;
188 		k = (mc - base + hpetp->hp_delta) / t;
189 		write_counter(t * (k + 1) + base,
190 			      &devp->hd_timer->hpet_compare);
191 	}
192 
193 	if (devp->hd_flags & HPET_SHARED_IRQ)
194 		writel(isr, &devp->hd_hpet->hpet_isr);
195 	spin_unlock(&hpet_lock);
196 
197 	wake_up_interruptible(&devp->hd_waitqueue);
198 
199 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
200 
201 	return IRQ_HANDLED;
202 }
203 
hpet_timer_set_irq(struct hpet_dev * devp)204 static void hpet_timer_set_irq(struct hpet_dev *devp)
205 {
206 	unsigned long v;
207 	int irq, gsi;
208 	struct hpet_timer __iomem *timer;
209 
210 	spin_lock_irq(&hpet_lock);
211 	if (devp->hd_hdwirq) {
212 		spin_unlock_irq(&hpet_lock);
213 		return;
214 	}
215 
216 	timer = devp->hd_timer;
217 
218 	/* we prefer level triggered mode */
219 	v = readl(&timer->hpet_config);
220 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
221 		v |= Tn_INT_TYPE_CNF_MASK;
222 		writel(v, &timer->hpet_config);
223 	}
224 	spin_unlock_irq(&hpet_lock);
225 
226 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
227 				 Tn_INT_ROUTE_CAP_SHIFT;
228 
229 	/*
230 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
231 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
232 	 */
233 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
234 		v &= ~0xf3df;
235 	else
236 		v &= ~0xffff;
237 
238 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
239 		if (irq >= nr_irqs) {
240 			irq = HPET_MAX_IRQ;
241 			break;
242 		}
243 
244 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
245 					ACPI_ACTIVE_LOW);
246 		if (gsi > 0)
247 			break;
248 
249 		/* FIXME: Setup interrupt source table */
250 	}
251 
252 	if (irq < HPET_MAX_IRQ) {
253 		spin_lock_irq(&hpet_lock);
254 		v = readl(&timer->hpet_config);
255 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
256 		writel(v, &timer->hpet_config);
257 		devp->hd_hdwirq = gsi;
258 		spin_unlock_irq(&hpet_lock);
259 	}
260 	return;
261 }
262 
hpet_open(struct inode * inode,struct file * file)263 static int hpet_open(struct inode *inode, struct file *file)
264 {
265 	struct hpet_dev *devp;
266 	struct hpets *hpetp;
267 	int i;
268 
269 	if (file->f_mode & FMODE_WRITE)
270 		return -EINVAL;
271 
272 	mutex_lock(&hpet_mutex);
273 	spin_lock_irq(&hpet_lock);
274 
275 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
276 		for (i = 0; i < hpetp->hp_ntimer; i++)
277 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
278 				continue;
279 			else {
280 				devp = &hpetp->hp_dev[i];
281 				break;
282 			}
283 
284 	if (!devp) {
285 		spin_unlock_irq(&hpet_lock);
286 		mutex_unlock(&hpet_mutex);
287 		return -EBUSY;
288 	}
289 
290 	file->private_data = devp;
291 	devp->hd_irqdata = 0;
292 	devp->hd_flags |= HPET_OPEN;
293 	spin_unlock_irq(&hpet_lock);
294 	mutex_unlock(&hpet_mutex);
295 
296 	hpet_timer_set_irq(devp);
297 
298 	return 0;
299 }
300 
301 static ssize_t
hpet_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)302 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
303 {
304 	DECLARE_WAITQUEUE(wait, current);
305 	unsigned long data;
306 	ssize_t retval;
307 	struct hpet_dev *devp;
308 
309 	devp = file->private_data;
310 	if (!devp->hd_ireqfreq)
311 		return -EIO;
312 
313 	if (count < sizeof(unsigned long))
314 		return -EINVAL;
315 
316 	add_wait_queue(&devp->hd_waitqueue, &wait);
317 
318 	for ( ; ; ) {
319 		set_current_state(TASK_INTERRUPTIBLE);
320 
321 		spin_lock_irq(&hpet_lock);
322 		data = devp->hd_irqdata;
323 		devp->hd_irqdata = 0;
324 		spin_unlock_irq(&hpet_lock);
325 
326 		if (data)
327 			break;
328 		else if (file->f_flags & O_NONBLOCK) {
329 			retval = -EAGAIN;
330 			goto out;
331 		} else if (signal_pending(current)) {
332 			retval = -ERESTARTSYS;
333 			goto out;
334 		}
335 		schedule();
336 	}
337 
338 	retval = put_user(data, (unsigned long __user *)buf);
339 	if (!retval)
340 		retval = sizeof(unsigned long);
341 out:
342 	__set_current_state(TASK_RUNNING);
343 	remove_wait_queue(&devp->hd_waitqueue, &wait);
344 
345 	return retval;
346 }
347 
hpet_poll(struct file * file,poll_table * wait)348 static unsigned int hpet_poll(struct file *file, poll_table * wait)
349 {
350 	unsigned long v;
351 	struct hpet_dev *devp;
352 
353 	devp = file->private_data;
354 
355 	if (!devp->hd_ireqfreq)
356 		return 0;
357 
358 	poll_wait(file, &devp->hd_waitqueue, wait);
359 
360 	spin_lock_irq(&hpet_lock);
361 	v = devp->hd_irqdata;
362 	spin_unlock_irq(&hpet_lock);
363 
364 	if (v != 0)
365 		return POLLIN | POLLRDNORM;
366 
367 	return 0;
368 }
369 
hpet_mmap(struct file * file,struct vm_area_struct * vma)370 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
371 {
372 #ifdef	CONFIG_HPET_MMAP
373 	struct hpet_dev *devp;
374 	unsigned long addr;
375 
376 	devp = file->private_data;
377 	addr = devp->hd_hpets->hp_hpet_phys;
378 
379 	if (addr & (PAGE_SIZE - 1))
380 		return -ENOSYS;
381 
382 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
383 	return vm_iomap_memory(vma, addr, PAGE_SIZE);
384 #else
385 	return -ENOSYS;
386 #endif
387 }
388 
hpet_fasync(int fd,struct file * file,int on)389 static int hpet_fasync(int fd, struct file *file, int on)
390 {
391 	struct hpet_dev *devp;
392 
393 	devp = file->private_data;
394 
395 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
396 		return 0;
397 	else
398 		return -EIO;
399 }
400 
hpet_release(struct inode * inode,struct file * file)401 static int hpet_release(struct inode *inode, struct file *file)
402 {
403 	struct hpet_dev *devp;
404 	struct hpet_timer __iomem *timer;
405 	int irq = 0;
406 
407 	devp = file->private_data;
408 	timer = devp->hd_timer;
409 
410 	spin_lock_irq(&hpet_lock);
411 
412 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
413 	       &timer->hpet_config);
414 
415 	irq = devp->hd_irq;
416 	devp->hd_irq = 0;
417 
418 	devp->hd_ireqfreq = 0;
419 
420 	if (devp->hd_flags & HPET_PERIODIC
421 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
422 		unsigned long v;
423 
424 		v = readq(&timer->hpet_config);
425 		v ^= Tn_TYPE_CNF_MASK;
426 		writeq(v, &timer->hpet_config);
427 	}
428 
429 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
430 	spin_unlock_irq(&hpet_lock);
431 
432 	if (irq)
433 		free_irq(irq, devp);
434 
435 	file->private_data = NULL;
436 	return 0;
437 }
438 
hpet_ioctl_ieon(struct hpet_dev * devp)439 static int hpet_ioctl_ieon(struct hpet_dev *devp)
440 {
441 	struct hpet_timer __iomem *timer;
442 	struct hpet __iomem *hpet;
443 	struct hpets *hpetp;
444 	int irq;
445 	unsigned long g, v, t, m;
446 	unsigned long flags, isr;
447 
448 	timer = devp->hd_timer;
449 	hpet = devp->hd_hpet;
450 	hpetp = devp->hd_hpets;
451 
452 	if (!devp->hd_ireqfreq)
453 		return -EIO;
454 
455 	spin_lock_irq(&hpet_lock);
456 
457 	if (devp->hd_flags & HPET_IE) {
458 		spin_unlock_irq(&hpet_lock);
459 		return -EBUSY;
460 	}
461 
462 	devp->hd_flags |= HPET_IE;
463 
464 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
465 		devp->hd_flags |= HPET_SHARED_IRQ;
466 	spin_unlock_irq(&hpet_lock);
467 
468 	irq = devp->hd_hdwirq;
469 
470 	if (irq) {
471 		unsigned long irq_flags;
472 
473 		if (devp->hd_flags & HPET_SHARED_IRQ) {
474 			/*
475 			 * To prevent the interrupt handler from seeing an
476 			 * unwanted interrupt status bit, program the timer
477 			 * so that it will not fire in the near future ...
478 			 */
479 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
480 			       &timer->hpet_config);
481 			write_counter(read_counter(&hpet->hpet_mc),
482 				      &timer->hpet_compare);
483 			/* ... and clear any left-over status. */
484 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
485 			writel(isr, &hpet->hpet_isr);
486 		}
487 
488 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
489 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ
490 						? IRQF_SHARED : IRQF_DISABLED;
491 		if (request_irq(irq, hpet_interrupt, irq_flags,
492 				devp->hd_name, (void *)devp)) {
493 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
494 			irq = 0;
495 		}
496 	}
497 
498 	if (irq == 0) {
499 		spin_lock_irq(&hpet_lock);
500 		devp->hd_flags ^= HPET_IE;
501 		spin_unlock_irq(&hpet_lock);
502 		return -EIO;
503 	}
504 
505 	devp->hd_irq = irq;
506 	t = devp->hd_ireqfreq;
507 	v = readq(&timer->hpet_config);
508 
509 	/* 64-bit comparators are not yet supported through the ioctls,
510 	 * so force this into 32-bit mode if it supports both modes
511 	 */
512 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
513 
514 	if (devp->hd_flags & HPET_PERIODIC) {
515 		g |= Tn_TYPE_CNF_MASK;
516 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
517 		writeq(v, &timer->hpet_config);
518 		local_irq_save(flags);
519 
520 		/*
521 		 * NOTE: First we modify the hidden accumulator
522 		 * register supported by periodic-capable comparators.
523 		 * We never want to modify the (single) counter; that
524 		 * would affect all the comparators. The value written
525 		 * is the counter value when the first interrupt is due.
526 		 */
527 		m = read_counter(&hpet->hpet_mc);
528 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
529 		/*
530 		 * Then we modify the comparator, indicating the period
531 		 * for subsequent interrupt.
532 		 */
533 		write_counter(t, &timer->hpet_compare);
534 	} else {
535 		local_irq_save(flags);
536 		m = read_counter(&hpet->hpet_mc);
537 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
538 	}
539 
540 	if (devp->hd_flags & HPET_SHARED_IRQ) {
541 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
542 		writel(isr, &hpet->hpet_isr);
543 	}
544 	writeq(g, &timer->hpet_config);
545 	local_irq_restore(flags);
546 
547 	return 0;
548 }
549 
550 /* converts Hz to number of timer ticks */
hpet_time_div(struct hpets * hpets,unsigned long dis)551 static inline unsigned long hpet_time_div(struct hpets *hpets,
552 					  unsigned long dis)
553 {
554 	unsigned long long m;
555 
556 	m = hpets->hp_tick_freq + (dis >> 1);
557 	do_div(m, dis);
558 	return (unsigned long)m;
559 }
560 
561 static int
hpet_ioctl_common(struct hpet_dev * devp,int cmd,unsigned long arg,struct hpet_info * info)562 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
563 		  struct hpet_info *info)
564 {
565 	struct hpet_timer __iomem *timer;
566 	struct hpet __iomem *hpet;
567 	struct hpets *hpetp;
568 	int err;
569 	unsigned long v;
570 
571 	switch (cmd) {
572 	case HPET_IE_OFF:
573 	case HPET_INFO:
574 	case HPET_EPI:
575 	case HPET_DPI:
576 	case HPET_IRQFREQ:
577 		timer = devp->hd_timer;
578 		hpet = devp->hd_hpet;
579 		hpetp = devp->hd_hpets;
580 		break;
581 	case HPET_IE_ON:
582 		return hpet_ioctl_ieon(devp);
583 	default:
584 		return -EINVAL;
585 	}
586 
587 	err = 0;
588 
589 	switch (cmd) {
590 	case HPET_IE_OFF:
591 		if ((devp->hd_flags & HPET_IE) == 0)
592 			break;
593 		v = readq(&timer->hpet_config);
594 		v &= ~Tn_INT_ENB_CNF_MASK;
595 		writeq(v, &timer->hpet_config);
596 		if (devp->hd_irq) {
597 			free_irq(devp->hd_irq, devp);
598 			devp->hd_irq = 0;
599 		}
600 		devp->hd_flags ^= HPET_IE;
601 		break;
602 	case HPET_INFO:
603 		{
604 			memset(info, 0, sizeof(*info));
605 			if (devp->hd_ireqfreq)
606 				info->hi_ireqfreq =
607 					hpet_time_div(hpetp, devp->hd_ireqfreq);
608 			info->hi_flags =
609 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
610 			info->hi_hpet = hpetp->hp_which;
611 			info->hi_timer = devp - hpetp->hp_dev;
612 			break;
613 		}
614 	case HPET_EPI:
615 		v = readq(&timer->hpet_config);
616 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
617 			err = -ENXIO;
618 			break;
619 		}
620 		devp->hd_flags |= HPET_PERIODIC;
621 		break;
622 	case HPET_DPI:
623 		v = readq(&timer->hpet_config);
624 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
625 			err = -ENXIO;
626 			break;
627 		}
628 		if (devp->hd_flags & HPET_PERIODIC &&
629 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
630 			v = readq(&timer->hpet_config);
631 			v ^= Tn_TYPE_CNF_MASK;
632 			writeq(v, &timer->hpet_config);
633 		}
634 		devp->hd_flags &= ~HPET_PERIODIC;
635 		break;
636 	case HPET_IRQFREQ:
637 		if ((arg > hpet_max_freq) &&
638 		    !capable(CAP_SYS_RESOURCE)) {
639 			err = -EACCES;
640 			break;
641 		}
642 
643 		if (!arg) {
644 			err = -EINVAL;
645 			break;
646 		}
647 
648 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
649 	}
650 
651 	return err;
652 }
653 
654 static long
hpet_ioctl(struct file * file,unsigned int cmd,unsigned long arg)655 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
656 {
657 	struct hpet_info info;
658 	int err;
659 
660 	mutex_lock(&hpet_mutex);
661 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
662 	mutex_unlock(&hpet_mutex);
663 
664 	if ((cmd == HPET_INFO) && !err &&
665 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
666 		err = -EFAULT;
667 
668 	return err;
669 }
670 
671 #ifdef CONFIG_COMPAT
672 struct compat_hpet_info {
673 	compat_ulong_t hi_ireqfreq;	/* Hz */
674 	compat_ulong_t hi_flags;	/* information */
675 	unsigned short hi_hpet;
676 	unsigned short hi_timer;
677 };
678 
679 static long
hpet_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)680 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
681 {
682 	struct hpet_info info;
683 	int err;
684 
685 	mutex_lock(&hpet_mutex);
686 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
687 	mutex_unlock(&hpet_mutex);
688 
689 	if ((cmd == HPET_INFO) && !err) {
690 		struct compat_hpet_info __user *u = compat_ptr(arg);
691 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
692 		    put_user(info.hi_flags, &u->hi_flags) ||
693 		    put_user(info.hi_hpet, &u->hi_hpet) ||
694 		    put_user(info.hi_timer, &u->hi_timer))
695 			err = -EFAULT;
696 	}
697 
698 	return err;
699 }
700 #endif
701 
702 static const struct file_operations hpet_fops = {
703 	.owner = THIS_MODULE,
704 	.llseek = no_llseek,
705 	.read = hpet_read,
706 	.poll = hpet_poll,
707 	.unlocked_ioctl = hpet_ioctl,
708 #ifdef CONFIG_COMPAT
709 	.compat_ioctl = hpet_compat_ioctl,
710 #endif
711 	.open = hpet_open,
712 	.release = hpet_release,
713 	.fasync = hpet_fasync,
714 	.mmap = hpet_mmap,
715 };
716 
hpet_is_known(struct hpet_data * hdp)717 static int hpet_is_known(struct hpet_data *hdp)
718 {
719 	struct hpets *hpetp;
720 
721 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
722 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
723 			return 1;
724 
725 	return 0;
726 }
727 
728 static ctl_table hpet_table[] = {
729 	{
730 	 .procname = "max-user-freq",
731 	 .data = &hpet_max_freq,
732 	 .maxlen = sizeof(int),
733 	 .mode = 0644,
734 	 .proc_handler = proc_dointvec,
735 	 },
736 	{}
737 };
738 
739 static ctl_table hpet_root[] = {
740 	{
741 	 .procname = "hpet",
742 	 .maxlen = 0,
743 	 .mode = 0555,
744 	 .child = hpet_table,
745 	 },
746 	{}
747 };
748 
749 static ctl_table dev_root[] = {
750 	{
751 	 .procname = "dev",
752 	 .maxlen = 0,
753 	 .mode = 0555,
754 	 .child = hpet_root,
755 	 },
756 	{}
757 };
758 
759 static struct ctl_table_header *sysctl_header;
760 
761 /*
762  * Adjustment for when arming the timer with
763  * initial conditions.  That is, main counter
764  * ticks expired before interrupts are enabled.
765  */
766 #define	TICK_CALIBRATE	(1000UL)
767 
__hpet_calibrate(struct hpets * hpetp)768 static unsigned long __hpet_calibrate(struct hpets *hpetp)
769 {
770 	struct hpet_timer __iomem *timer = NULL;
771 	unsigned long t, m, count, i, flags, start;
772 	struct hpet_dev *devp;
773 	int j;
774 	struct hpet __iomem *hpet;
775 
776 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
777 		if ((devp->hd_flags & HPET_OPEN) == 0) {
778 			timer = devp->hd_timer;
779 			break;
780 		}
781 
782 	if (!timer)
783 		return 0;
784 
785 	hpet = hpetp->hp_hpet;
786 	t = read_counter(&timer->hpet_compare);
787 
788 	i = 0;
789 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
790 
791 	local_irq_save(flags);
792 
793 	start = read_counter(&hpet->hpet_mc);
794 
795 	do {
796 		m = read_counter(&hpet->hpet_mc);
797 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
798 	} while (i++, (m - start) < count);
799 
800 	local_irq_restore(flags);
801 
802 	return (m - start) / i;
803 }
804 
hpet_calibrate(struct hpets * hpetp)805 static unsigned long hpet_calibrate(struct hpets *hpetp)
806 {
807 	unsigned long ret = -1;
808 	unsigned long tmp;
809 
810 	/*
811 	 * Try to calibrate until return value becomes stable small value.
812 	 * If SMI interruption occurs in calibration loop, the return value
813 	 * will be big. This avoids its impact.
814 	 */
815 	for ( ; ; ) {
816 		tmp = __hpet_calibrate(hpetp);
817 		if (ret <= tmp)
818 			break;
819 		ret = tmp;
820 	}
821 
822 	return ret;
823 }
824 
hpet_alloc(struct hpet_data * hdp)825 int hpet_alloc(struct hpet_data *hdp)
826 {
827 	u64 cap, mcfg;
828 	struct hpet_dev *devp;
829 	u32 i, ntimer;
830 	struct hpets *hpetp;
831 	size_t siz;
832 	struct hpet __iomem *hpet;
833 	static struct hpets *last;
834 	unsigned long period;
835 	unsigned long long temp;
836 	u32 remainder;
837 
838 	/*
839 	 * hpet_alloc can be called by platform dependent code.
840 	 * If platform dependent code has allocated the hpet that
841 	 * ACPI has also reported, then we catch it here.
842 	 */
843 	if (hpet_is_known(hdp)) {
844 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
845 			__func__);
846 		return 0;
847 	}
848 
849 	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
850 				      sizeof(struct hpet_dev));
851 
852 	hpetp = kzalloc(siz, GFP_KERNEL);
853 
854 	if (!hpetp)
855 		return -ENOMEM;
856 
857 	hpetp->hp_which = hpet_nhpet++;
858 	hpetp->hp_hpet = hdp->hd_address;
859 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
860 
861 	hpetp->hp_ntimer = hdp->hd_nirqs;
862 
863 	for (i = 0; i < hdp->hd_nirqs; i++)
864 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
865 
866 	hpet = hpetp->hp_hpet;
867 
868 	cap = readq(&hpet->hpet_cap);
869 
870 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
871 
872 	if (hpetp->hp_ntimer != ntimer) {
873 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
874 		       " with number of timers\n");
875 		kfree(hpetp);
876 		return -ENODEV;
877 	}
878 
879 	if (last)
880 		last->hp_next = hpetp;
881 	else
882 		hpets = hpetp;
883 
884 	last = hpetp;
885 
886 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
887 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
888 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
889 	temp += period >> 1; /* round */
890 	do_div(temp, period);
891 	hpetp->hp_tick_freq = temp; /* ticks per second */
892 
893 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
894 		hpetp->hp_which, hdp->hd_phys_address,
895 		hpetp->hp_ntimer > 1 ? "s" : "");
896 	for (i = 0; i < hpetp->hp_ntimer; i++)
897 		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
898 	printk(KERN_CONT "\n");
899 
900 	temp = hpetp->hp_tick_freq;
901 	remainder = do_div(temp, 1000000);
902 	printk(KERN_INFO
903 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
904 		hpetp->hp_which, hpetp->hp_ntimer,
905 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
906 		(unsigned) temp, remainder);
907 
908 	mcfg = readq(&hpet->hpet_config);
909 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
910 		write_counter(0L, &hpet->hpet_mc);
911 		mcfg |= HPET_ENABLE_CNF_MASK;
912 		writeq(mcfg, &hpet->hpet_config);
913 	}
914 
915 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
916 		struct hpet_timer __iomem *timer;
917 
918 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
919 
920 		devp->hd_hpets = hpetp;
921 		devp->hd_hpet = hpet;
922 		devp->hd_timer = timer;
923 
924 		/*
925 		 * If the timer was reserved by platform code,
926 		 * then make timer unavailable for opens.
927 		 */
928 		if (hdp->hd_state & (1 << i)) {
929 			devp->hd_flags = HPET_OPEN;
930 			continue;
931 		}
932 
933 		init_waitqueue_head(&devp->hd_waitqueue);
934 	}
935 
936 	hpetp->hp_delta = hpet_calibrate(hpetp);
937 
938 /* This clocksource driver currently only works on ia64 */
939 #ifdef CONFIG_IA64
940 	if (!hpet_clocksource) {
941 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
942 		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
943 		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
944 		hpetp->hp_clocksource = &clocksource_hpet;
945 		hpet_clocksource = &clocksource_hpet;
946 	}
947 #endif
948 
949 	return 0;
950 }
951 
hpet_resources(struct acpi_resource * res,void * data)952 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
953 {
954 	struct hpet_data *hdp;
955 	acpi_status status;
956 	struct acpi_resource_address64 addr;
957 
958 	hdp = data;
959 
960 	status = acpi_resource_to_address64(res, &addr);
961 
962 	if (ACPI_SUCCESS(status)) {
963 		hdp->hd_phys_address = addr.minimum;
964 		hdp->hd_address = ioremap(addr.minimum, addr.address_length);
965 
966 		if (hpet_is_known(hdp)) {
967 			iounmap(hdp->hd_address);
968 			return AE_ALREADY_EXISTS;
969 		}
970 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
971 		struct acpi_resource_fixed_memory32 *fixmem32;
972 
973 		fixmem32 = &res->data.fixed_memory32;
974 		if (!fixmem32)
975 			return AE_NO_MEMORY;
976 
977 		hdp->hd_phys_address = fixmem32->address;
978 		hdp->hd_address = ioremap(fixmem32->address,
979 						HPET_RANGE_SIZE);
980 
981 		if (hpet_is_known(hdp)) {
982 			iounmap(hdp->hd_address);
983 			return AE_ALREADY_EXISTS;
984 		}
985 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
986 		struct acpi_resource_extended_irq *irqp;
987 		int i, irq;
988 
989 		irqp = &res->data.extended_irq;
990 
991 		for (i = 0; i < irqp->interrupt_count; i++) {
992 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
993 				      irqp->triggering, irqp->polarity);
994 			if (irq < 0)
995 				return AE_ERROR;
996 
997 			hdp->hd_irq[hdp->hd_nirqs] = irq;
998 			hdp->hd_nirqs++;
999 		}
1000 	}
1001 
1002 	return AE_OK;
1003 }
1004 
hpet_acpi_add(struct acpi_device * device)1005 static int hpet_acpi_add(struct acpi_device *device)
1006 {
1007 	acpi_status result;
1008 	struct hpet_data data;
1009 
1010 	memset(&data, 0, sizeof(data));
1011 
1012 	result =
1013 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1014 				hpet_resources, &data);
1015 
1016 	if (ACPI_FAILURE(result))
1017 		return -ENODEV;
1018 
1019 	if (!data.hd_address || !data.hd_nirqs) {
1020 		if (data.hd_address)
1021 			iounmap(data.hd_address);
1022 		printk("%s: no address or irqs in _CRS\n", __func__);
1023 		return -ENODEV;
1024 	}
1025 
1026 	return hpet_alloc(&data);
1027 }
1028 
hpet_acpi_remove(struct acpi_device * device,int type)1029 static int hpet_acpi_remove(struct acpi_device *device, int type)
1030 {
1031 	/* XXX need to unregister clocksource, dealloc mem, etc */
1032 	return -EINVAL;
1033 }
1034 
1035 static const struct acpi_device_id hpet_device_ids[] = {
1036 	{"PNP0103", 0},
1037 	{"", 0},
1038 };
1039 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1040 
1041 static struct acpi_driver hpet_acpi_driver = {
1042 	.name = "hpet",
1043 	.ids = hpet_device_ids,
1044 	.ops = {
1045 		.add = hpet_acpi_add,
1046 		.remove = hpet_acpi_remove,
1047 		},
1048 };
1049 
1050 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1051 
hpet_init(void)1052 static int __init hpet_init(void)
1053 {
1054 	int result;
1055 
1056 	result = misc_register(&hpet_misc);
1057 	if (result < 0)
1058 		return -ENODEV;
1059 
1060 	sysctl_header = register_sysctl_table(dev_root);
1061 
1062 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1063 	if (result < 0) {
1064 		if (sysctl_header)
1065 			unregister_sysctl_table(sysctl_header);
1066 		misc_deregister(&hpet_misc);
1067 		return result;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
hpet_exit(void)1073 static void __exit hpet_exit(void)
1074 {
1075 	acpi_bus_unregister_driver(&hpet_acpi_driver);
1076 
1077 	if (sysctl_header)
1078 		unregister_sysctl_table(sysctl_header);
1079 	misc_deregister(&hpet_misc);
1080 
1081 	return;
1082 }
1083 
1084 module_init(hpet_init);
1085 module_exit(hpet_exit);
1086 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1087 MODULE_LICENSE("GPL");
1088