1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
22  *			 - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *			 - use spin_lock_bh instead of _irq
25  *			 - Never block on make_request.  queue
26  *			   bh's instead.
27  *			 - unregister umem from devfs at mod unload
28  *			 - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *			 - a sequence of writes that cover the card, and
34  *			 - set initialised bit then.
35  */
36 
37 #undef DEBUG	/* #define DEBUG if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/gfp.h>
44 #include <linux/ioctl.h>
45 #include <linux/module.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/timer.h>
49 #include <linux/pci.h>
50 #include <linux/dma-mapping.h>
51 
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54 
55 #include "umem.h"
56 
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59 
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65 
66 /*
67  * Version Information
68  */
69 
70 #define DRIVER_NAME	"umem"
71 #define DRIVER_VERSION	"v2.3"
72 #define DRIVER_AUTHOR	"San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC	"Micro Memory(tm) PCI memory board block driver"
74 
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78 
79 #define DEBUG_LED_ON_TRANSFER	0x01
80 #define DEBUG_BATTERY_POLLING	0x02
81 
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84 
85 static int pci_read_cmd = 0x0C;		/* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88 
89 static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92 
93 static int pci_cmds;
94 
95 static int major_nr;
96 
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99 
100 struct cardinfo {
101 	struct pci_dev	*dev;
102 
103 	unsigned char	__iomem *csr_remap;
104 	unsigned int	mm_size;  /* size in kbytes */
105 
106 	unsigned int	init_size; /* initial segment, in sectors,
107 				    * that we know to
108 				    * have been written
109 				    */
110 	struct bio	*bio, *currentbio, **biotail;
111 	int		current_idx;
112 	sector_t	current_sector;
113 
114 	struct request_queue *queue;
115 
116 	struct mm_page {
117 		dma_addr_t		page_dma;
118 		struct mm_dma_desc	*desc;
119 		int	 		cnt, headcnt;
120 		struct bio		*bio, **biotail;
121 		int			idx;
122 	} mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124 
125 	int  Active, Ready;
126 
127 	struct tasklet_struct	tasklet;
128 	unsigned int dma_status;
129 
130 	struct {
131 		int		good;
132 		int		warned;
133 		unsigned long	last_change;
134 	} battery[2];
135 
136 	spinlock_t 	lock;
137 	int		check_batteries;
138 
139 	int		flags;
140 };
141 
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct timer_list battery_timer;
144 
145 static int num_cards;
146 
147 static struct gendisk *mm_gendisk[MM_MAXCARDS];
148 
149 static void check_batteries(struct cardinfo *card);
150 
get_userbit(struct cardinfo * card,int bit)151 static int get_userbit(struct cardinfo *card, int bit)
152 {
153 	unsigned char led;
154 
155 	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
156 	return led & bit;
157 }
158 
set_userbit(struct cardinfo * card,int bit,unsigned char state)159 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
160 {
161 	unsigned char led;
162 
163 	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
164 	if (state)
165 		led |= bit;
166 	else
167 		led &= ~bit;
168 	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
169 
170 	return 0;
171 }
172 
173 /*
174  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
175  */
set_led(struct cardinfo * card,int shift,unsigned char state)176 static void set_led(struct cardinfo *card, int shift, unsigned char state)
177 {
178 	unsigned char led;
179 
180 	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
181 	if (state == LED_FLIP)
182 		led ^= (1<<shift);
183 	else {
184 		led &= ~(0x03 << shift);
185 		led |= (state << shift);
186 	}
187 	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
188 
189 }
190 
191 #ifdef MM_DIAG
dump_regs(struct cardinfo * card)192 static void dump_regs(struct cardinfo *card)
193 {
194 	unsigned char *p;
195 	int i, i1;
196 
197 	p = card->csr_remap;
198 	for (i = 0; i < 8; i++) {
199 		printk(KERN_DEBUG "%p   ", p);
200 
201 		for (i1 = 0; i1 < 16; i1++)
202 			printk("%02x ", *p++);
203 
204 		printk("\n");
205 	}
206 }
207 #endif
208 
dump_dmastat(struct cardinfo * card,unsigned int dmastat)209 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
210 {
211 	dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
212 	if (dmastat & DMASCR_ANY_ERR)
213 		printk(KERN_CONT "ANY_ERR ");
214 	if (dmastat & DMASCR_MBE_ERR)
215 		printk(KERN_CONT "MBE_ERR ");
216 	if (dmastat & DMASCR_PARITY_ERR_REP)
217 		printk(KERN_CONT "PARITY_ERR_REP ");
218 	if (dmastat & DMASCR_PARITY_ERR_DET)
219 		printk(KERN_CONT "PARITY_ERR_DET ");
220 	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
221 		printk(KERN_CONT "SYSTEM_ERR_SIG ");
222 	if (dmastat & DMASCR_TARGET_ABT)
223 		printk(KERN_CONT "TARGET_ABT ");
224 	if (dmastat & DMASCR_MASTER_ABT)
225 		printk(KERN_CONT "MASTER_ABT ");
226 	if (dmastat & DMASCR_CHAIN_COMPLETE)
227 		printk(KERN_CONT "CHAIN_COMPLETE ");
228 	if (dmastat & DMASCR_DMA_COMPLETE)
229 		printk(KERN_CONT "DMA_COMPLETE ");
230 	printk("\n");
231 }
232 
233 /*
234  * Theory of request handling
235  *
236  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
237  * We have two pages of mm_dma_desc, holding about 64 descriptors
238  * each.  These are allocated at init time.
239  * One page is "Ready" and is either full, or can have request added.
240  * The other page might be "Active", which DMA is happening on it.
241  *
242  * Whenever IO on the active page completes, the Ready page is activated
243  * and the ex-Active page is clean out and made Ready.
244  * Otherwise the Ready page is only activated when it becomes full.
245  *
246  * If a request arrives while both pages a full, it is queued, and b_rdev is
247  * overloaded to record whether it was a read or a write.
248  *
249  * The interrupt handler only polls the device to clear the interrupt.
250  * The processing of the result is done in a tasklet.
251  */
252 
mm_start_io(struct cardinfo * card)253 static void mm_start_io(struct cardinfo *card)
254 {
255 	/* we have the lock, we know there is
256 	 * no IO active, and we know that card->Active
257 	 * is set
258 	 */
259 	struct mm_dma_desc *desc;
260 	struct mm_page *page;
261 	int offset;
262 
263 	/* make the last descriptor end the chain */
264 	page = &card->mm_pages[card->Active];
265 	pr_debug("start_io: %d %d->%d\n",
266 		card->Active, page->headcnt, page->cnt - 1);
267 	desc = &page->desc[page->cnt-1];
268 
269 	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
270 	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
271 	desc->sem_control_bits = desc->control_bits;
272 
273 
274 	if (debug & DEBUG_LED_ON_TRANSFER)
275 		set_led(card, LED_REMOVE, LED_ON);
276 
277 	desc = &page->desc[page->headcnt];
278 	writel(0, card->csr_remap + DMA_PCI_ADDR);
279 	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
280 
281 	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
282 	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
283 
284 	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
285 	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
286 
287 	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
288 	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
289 
290 	offset = ((char *)desc) - ((char *)page->desc);
291 	writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
292 	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
293 	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
294 	 * and on some ports will do nothing ! */
295 	writel(cpu_to_le32(((u64)page->page_dma)>>32),
296 	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
297 
298 	/* Go, go, go */
299 	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
300 	       card->csr_remap + DMA_STATUS_CTRL);
301 }
302 
303 static int add_bio(struct cardinfo *card);
304 
activate(struct cardinfo * card)305 static void activate(struct cardinfo *card)
306 {
307 	/* if No page is Active, and Ready is
308 	 * not empty, then switch Ready page
309 	 * to active and start IO.
310 	 * Then add any bh's that are available to Ready
311 	 */
312 
313 	do {
314 		while (add_bio(card))
315 			;
316 
317 		if (card->Active == -1 &&
318 		    card->mm_pages[card->Ready].cnt > 0) {
319 			card->Active = card->Ready;
320 			card->Ready = 1-card->Ready;
321 			mm_start_io(card);
322 		}
323 
324 	} while (card->Active == -1 && add_bio(card));
325 }
326 
reset_page(struct mm_page * page)327 static inline void reset_page(struct mm_page *page)
328 {
329 	page->cnt = 0;
330 	page->headcnt = 0;
331 	page->bio = NULL;
332 	page->biotail = &page->bio;
333 }
334 
335 /*
336  * If there is room on Ready page, take
337  * one bh off list and add it.
338  * return 1 if there was room, else 0.
339  */
add_bio(struct cardinfo * card)340 static int add_bio(struct cardinfo *card)
341 {
342 	struct mm_page *p;
343 	struct mm_dma_desc *desc;
344 	dma_addr_t dma_handle;
345 	int offset;
346 	struct bio *bio;
347 	struct bio_vec *vec;
348 	int idx;
349 	int rw;
350 	int len;
351 
352 	bio = card->currentbio;
353 	if (!bio && card->bio) {
354 		card->currentbio = card->bio;
355 		card->current_idx = card->bio->bi_idx;
356 		card->current_sector = card->bio->bi_sector;
357 		card->bio = card->bio->bi_next;
358 		if (card->bio == NULL)
359 			card->biotail = &card->bio;
360 		card->currentbio->bi_next = NULL;
361 		return 1;
362 	}
363 	if (!bio)
364 		return 0;
365 	idx = card->current_idx;
366 
367 	rw = bio_rw(bio);
368 	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
369 		return 0;
370 
371 	vec = bio_iovec_idx(bio, idx);
372 	len = vec->bv_len;
373 	dma_handle = pci_map_page(card->dev,
374 				  vec->bv_page,
375 				  vec->bv_offset,
376 				  len,
377 				  (rw == READ) ?
378 				  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
379 
380 	p = &card->mm_pages[card->Ready];
381 	desc = &p->desc[p->cnt];
382 	p->cnt++;
383 	if (p->bio == NULL)
384 		p->idx = idx;
385 	if ((p->biotail) != &bio->bi_next) {
386 		*(p->biotail) = bio;
387 		p->biotail = &(bio->bi_next);
388 		bio->bi_next = NULL;
389 	}
390 
391 	desc->data_dma_handle = dma_handle;
392 
393 	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
394 	desc->local_addr = cpu_to_le64(card->current_sector << 9);
395 	desc->transfer_size = cpu_to_le32(len);
396 	offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
397 	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
398 	desc->zero1 = desc->zero2 = 0;
399 	offset = (((char *)(desc+1)) - ((char *)p->desc));
400 	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
401 	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
402 					 DMASCR_PARITY_INT_EN|
403 					 DMASCR_CHAIN_EN |
404 					 DMASCR_SEM_EN |
405 					 pci_cmds);
406 	if (rw == WRITE)
407 		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
408 	desc->sem_control_bits = desc->control_bits;
409 
410 	card->current_sector += (len >> 9);
411 	idx++;
412 	card->current_idx = idx;
413 	if (idx >= bio->bi_vcnt)
414 		card->currentbio = NULL;
415 
416 	return 1;
417 }
418 
process_page(unsigned long data)419 static void process_page(unsigned long data)
420 {
421 	/* check if any of the requests in the page are DMA_COMPLETE,
422 	 * and deal with them appropriately.
423 	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
424 	 * dma must have hit an error on that descriptor, so use dma_status
425 	 * instead and assume that all following descriptors must be re-tried.
426 	 */
427 	struct mm_page *page;
428 	struct bio *return_bio = NULL;
429 	struct cardinfo *card = (struct cardinfo *)data;
430 	unsigned int dma_status = card->dma_status;
431 
432 	spin_lock_bh(&card->lock);
433 	if (card->Active < 0)
434 		goto out_unlock;
435 	page = &card->mm_pages[card->Active];
436 
437 	while (page->headcnt < page->cnt) {
438 		struct bio *bio = page->bio;
439 		struct mm_dma_desc *desc = &page->desc[page->headcnt];
440 		int control = le32_to_cpu(desc->sem_control_bits);
441 		int last = 0;
442 		int idx;
443 
444 		if (!(control & DMASCR_DMA_COMPLETE)) {
445 			control = dma_status;
446 			last = 1;
447 		}
448 		page->headcnt++;
449 		idx = page->idx;
450 		page->idx++;
451 		if (page->idx >= bio->bi_vcnt) {
452 			page->bio = bio->bi_next;
453 			if (page->bio)
454 				page->idx = page->bio->bi_idx;
455 		}
456 
457 		pci_unmap_page(card->dev, desc->data_dma_handle,
458 			       bio_iovec_idx(bio, idx)->bv_len,
459 				 (control & DMASCR_TRANSFER_READ) ?
460 				PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
461 		if (control & DMASCR_HARD_ERROR) {
462 			/* error */
463 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
464 			dev_printk(KERN_WARNING, &card->dev->dev,
465 				"I/O error on sector %d/%d\n",
466 				le32_to_cpu(desc->local_addr)>>9,
467 				le32_to_cpu(desc->transfer_size));
468 			dump_dmastat(card, control);
469 		} else if ((bio->bi_rw & REQ_WRITE) &&
470 			   le32_to_cpu(desc->local_addr) >> 9 ==
471 				card->init_size) {
472 			card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
473 			if (card->init_size >> 1 >= card->mm_size) {
474 				dev_printk(KERN_INFO, &card->dev->dev,
475 					"memory now initialised\n");
476 				set_userbit(card, MEMORY_INITIALIZED, 1);
477 			}
478 		}
479 		if (bio != page->bio) {
480 			bio->bi_next = return_bio;
481 			return_bio = bio;
482 		}
483 
484 		if (last)
485 			break;
486 	}
487 
488 	if (debug & DEBUG_LED_ON_TRANSFER)
489 		set_led(card, LED_REMOVE, LED_OFF);
490 
491 	if (card->check_batteries) {
492 		card->check_batteries = 0;
493 		check_batteries(card);
494 	}
495 	if (page->headcnt >= page->cnt) {
496 		reset_page(page);
497 		card->Active = -1;
498 		activate(card);
499 	} else {
500 		/* haven't finished with this one yet */
501 		pr_debug("do some more\n");
502 		mm_start_io(card);
503 	}
504  out_unlock:
505 	spin_unlock_bh(&card->lock);
506 
507 	while (return_bio) {
508 		struct bio *bio = return_bio;
509 
510 		return_bio = bio->bi_next;
511 		bio->bi_next = NULL;
512 		bio_endio(bio, 0);
513 	}
514 }
515 
516 struct mm_plug_cb {
517 	struct blk_plug_cb cb;
518 	struct cardinfo *card;
519 };
520 
mm_unplug(struct blk_plug_cb * cb)521 static void mm_unplug(struct blk_plug_cb *cb)
522 {
523 	struct mm_plug_cb *mmcb = container_of(cb, struct mm_plug_cb, cb);
524 
525 	spin_lock_irq(&mmcb->card->lock);
526 	activate(mmcb->card);
527 	spin_unlock_irq(&mmcb->card->lock);
528 	kfree(mmcb);
529 }
530 
mm_check_plugged(struct cardinfo * card)531 static int mm_check_plugged(struct cardinfo *card)
532 {
533 	struct blk_plug *plug = current->plug;
534 	struct mm_plug_cb *mmcb;
535 
536 	if (!plug)
537 		return 0;
538 
539 	list_for_each_entry(mmcb, &plug->cb_list, cb.list) {
540 		if (mmcb->cb.callback == mm_unplug && mmcb->card == card)
541 			return 1;
542 	}
543 	/* Not currently on the callback list */
544 	mmcb = kmalloc(sizeof(*mmcb), GFP_ATOMIC);
545 	if (!mmcb)
546 		return 0;
547 
548 	mmcb->card = card;
549 	mmcb->cb.callback = mm_unplug;
550 	list_add(&mmcb->cb.list, &plug->cb_list);
551 	return 1;
552 }
553 
mm_make_request(struct request_queue * q,struct bio * bio)554 static void mm_make_request(struct request_queue *q, struct bio *bio)
555 {
556 	struct cardinfo *card = q->queuedata;
557 	pr_debug("mm_make_request %llu %u\n",
558 		 (unsigned long long)bio->bi_sector, bio->bi_size);
559 
560 	spin_lock_irq(&card->lock);
561 	*card->biotail = bio;
562 	bio->bi_next = NULL;
563 	card->biotail = &bio->bi_next;
564 	if (bio->bi_rw & REQ_SYNC || !mm_check_plugged(card))
565 		activate(card);
566 	spin_unlock_irq(&card->lock);
567 
568 	return;
569 }
570 
mm_interrupt(int irq,void * __card)571 static irqreturn_t mm_interrupt(int irq, void *__card)
572 {
573 	struct cardinfo *card = (struct cardinfo *) __card;
574 	unsigned int dma_status;
575 	unsigned short cfg_status;
576 
577 HW_TRACE(0x30);
578 
579 	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
580 
581 	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
582 		/* interrupt wasn't for me ... */
583 		return IRQ_NONE;
584 	}
585 
586 	/* clear COMPLETION interrupts */
587 	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
588 		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
589 		       card->csr_remap + DMA_STATUS_CTRL);
590 	else
591 		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
592 		       card->csr_remap + DMA_STATUS_CTRL + 2);
593 
594 	/* log errors and clear interrupt status */
595 	if (dma_status & DMASCR_ANY_ERR) {
596 		unsigned int	data_log1, data_log2;
597 		unsigned int	addr_log1, addr_log2;
598 		unsigned char	stat, count, syndrome, check;
599 
600 		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
601 
602 		data_log1 = le32_to_cpu(readl(card->csr_remap +
603 						ERROR_DATA_LOG));
604 		data_log2 = le32_to_cpu(readl(card->csr_remap +
605 						ERROR_DATA_LOG + 4));
606 		addr_log1 = le32_to_cpu(readl(card->csr_remap +
607 						ERROR_ADDR_LOG));
608 		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
609 
610 		count = readb(card->csr_remap + ERROR_COUNT);
611 		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
612 		check = readb(card->csr_remap + ERROR_CHECK);
613 
614 		dump_dmastat(card, dma_status);
615 
616 		if (stat & 0x01)
617 			dev_printk(KERN_ERR, &card->dev->dev,
618 				"Memory access error detected (err count %d)\n",
619 				count);
620 		if (stat & 0x02)
621 			dev_printk(KERN_ERR, &card->dev->dev,
622 				"Multi-bit EDC error\n");
623 
624 		dev_printk(KERN_ERR, &card->dev->dev,
625 			"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
626 			addr_log2, addr_log1, data_log2, data_log1);
627 		dev_printk(KERN_ERR, &card->dev->dev,
628 			"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
629 			check, syndrome);
630 
631 		writeb(0, card->csr_remap + ERROR_COUNT);
632 	}
633 
634 	if (dma_status & DMASCR_PARITY_ERR_REP) {
635 		dev_printk(KERN_ERR, &card->dev->dev,
636 			"PARITY ERROR REPORTED\n");
637 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
638 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
639 	}
640 
641 	if (dma_status & DMASCR_PARITY_ERR_DET) {
642 		dev_printk(KERN_ERR, &card->dev->dev,
643 			"PARITY ERROR DETECTED\n");
644 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
645 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
646 	}
647 
648 	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
649 		dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
650 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
651 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
652 	}
653 
654 	if (dma_status & DMASCR_TARGET_ABT) {
655 		dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
656 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
657 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
658 	}
659 
660 	if (dma_status & DMASCR_MASTER_ABT) {
661 		dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
662 		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
663 		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
664 	}
665 
666 	/* and process the DMA descriptors */
667 	card->dma_status = dma_status;
668 	tasklet_schedule(&card->tasklet);
669 
670 HW_TRACE(0x36);
671 
672 	return IRQ_HANDLED;
673 }
674 
675 /*
676  * If both batteries are good, no LED
677  * If either battery has been warned, solid LED
678  * If both batteries are bad, flash the LED quickly
679  * If either battery is bad, flash the LED semi quickly
680  */
set_fault_to_battery_status(struct cardinfo * card)681 static void set_fault_to_battery_status(struct cardinfo *card)
682 {
683 	if (card->battery[0].good && card->battery[1].good)
684 		set_led(card, LED_FAULT, LED_OFF);
685 	else if (card->battery[0].warned || card->battery[1].warned)
686 		set_led(card, LED_FAULT, LED_ON);
687 	else if (!card->battery[0].good && !card->battery[1].good)
688 		set_led(card, LED_FAULT, LED_FLASH_7_0);
689 	else
690 		set_led(card, LED_FAULT, LED_FLASH_3_5);
691 }
692 
693 static void init_battery_timer(void);
694 
check_battery(struct cardinfo * card,int battery,int status)695 static int check_battery(struct cardinfo *card, int battery, int status)
696 {
697 	if (status != card->battery[battery].good) {
698 		card->battery[battery].good = !card->battery[battery].good;
699 		card->battery[battery].last_change = jiffies;
700 
701 		if (card->battery[battery].good) {
702 			dev_printk(KERN_ERR, &card->dev->dev,
703 				"Battery %d now good\n", battery + 1);
704 			card->battery[battery].warned = 0;
705 		} else
706 			dev_printk(KERN_ERR, &card->dev->dev,
707 				"Battery %d now FAILED\n", battery + 1);
708 
709 		return 1;
710 	} else if (!card->battery[battery].good &&
711 		   !card->battery[battery].warned &&
712 		   time_after_eq(jiffies, card->battery[battery].last_change +
713 				 (HZ * 60 * 60 * 5))) {
714 		dev_printk(KERN_ERR, &card->dev->dev,
715 			"Battery %d still FAILED after 5 hours\n", battery + 1);
716 		card->battery[battery].warned = 1;
717 
718 		return 1;
719 	}
720 
721 	return 0;
722 }
723 
check_batteries(struct cardinfo * card)724 static void check_batteries(struct cardinfo *card)
725 {
726 	/* NOTE: this must *never* be called while the card
727 	 * is doing (bus-to-card) DMA, or you will need the
728 	 * reset switch
729 	 */
730 	unsigned char status;
731 	int ret1, ret2;
732 
733 	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
734 	if (debug & DEBUG_BATTERY_POLLING)
735 		dev_printk(KERN_DEBUG, &card->dev->dev,
736 			"checking battery status, 1 = %s, 2 = %s\n",
737 		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
738 		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
739 
740 	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
741 	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
742 
743 	if (ret1 || ret2)
744 		set_fault_to_battery_status(card);
745 }
746 
check_all_batteries(unsigned long ptr)747 static void check_all_batteries(unsigned long ptr)
748 {
749 	int i;
750 
751 	for (i = 0; i < num_cards; i++)
752 		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
753 			struct cardinfo *card = &cards[i];
754 			spin_lock_bh(&card->lock);
755 			if (card->Active >= 0)
756 				card->check_batteries = 1;
757 			else
758 				check_batteries(card);
759 			spin_unlock_bh(&card->lock);
760 		}
761 
762 	init_battery_timer();
763 }
764 
init_battery_timer(void)765 static void init_battery_timer(void)
766 {
767 	init_timer(&battery_timer);
768 	battery_timer.function = check_all_batteries;
769 	battery_timer.expires = jiffies + (HZ * 60);
770 	add_timer(&battery_timer);
771 }
772 
del_battery_timer(void)773 static void del_battery_timer(void)
774 {
775 	del_timer(&battery_timer);
776 }
777 
778 /*
779  * Note no locks taken out here.  In a worst case scenario, we could drop
780  * a chunk of system memory.  But that should never happen, since validation
781  * happens at open or mount time, when locks are held.
782  *
783  *	That's crap, since doing that while some partitions are opened
784  * or mounted will give you really nasty results.
785  */
mm_revalidate(struct gendisk * disk)786 static int mm_revalidate(struct gendisk *disk)
787 {
788 	struct cardinfo *card = disk->private_data;
789 	set_capacity(disk, card->mm_size << 1);
790 	return 0;
791 }
792 
mm_getgeo(struct block_device * bdev,struct hd_geometry * geo)793 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
794 {
795 	struct cardinfo *card = bdev->bd_disk->private_data;
796 	int size = card->mm_size * (1024 / MM_HARDSECT);
797 
798 	/*
799 	 * get geometry: we have to fake one...  trim the size to a
800 	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
801 	 * whatever cylinders.
802 	 */
803 	geo->heads     = 64;
804 	geo->sectors   = 32;
805 	geo->cylinders = size / (geo->heads * geo->sectors);
806 	return 0;
807 }
808 
809 static const struct block_device_operations mm_fops = {
810 	.owner		= THIS_MODULE,
811 	.getgeo		= mm_getgeo,
812 	.revalidate_disk = mm_revalidate,
813 };
814 
mm_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)815 static int __devinit mm_pci_probe(struct pci_dev *dev,
816 				const struct pci_device_id *id)
817 {
818 	int ret = -ENODEV;
819 	struct cardinfo *card = &cards[num_cards];
820 	unsigned char	mem_present;
821 	unsigned char	batt_status;
822 	unsigned int	saved_bar, data;
823 	unsigned long	csr_base;
824 	unsigned long	csr_len;
825 	int		magic_number;
826 	static int	printed_version;
827 
828 	if (!printed_version++)
829 		printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
830 
831 	ret = pci_enable_device(dev);
832 	if (ret)
833 		return ret;
834 
835 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
836 	pci_set_master(dev);
837 
838 	card->dev         = dev;
839 
840 	csr_base = pci_resource_start(dev, 0);
841 	csr_len  = pci_resource_len(dev, 0);
842 	if (!csr_base || !csr_len)
843 		return -ENODEV;
844 
845 	dev_printk(KERN_INFO, &dev->dev,
846 	  "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
847 
848 	if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
849 	    pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
850 		dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
851 		return  -ENOMEM;
852 	}
853 
854 	ret = pci_request_regions(dev, DRIVER_NAME);
855 	if (ret) {
856 		dev_printk(KERN_ERR, &card->dev->dev,
857 			"Unable to request memory region\n");
858 		goto failed_req_csr;
859 	}
860 
861 	card->csr_remap = ioremap_nocache(csr_base, csr_len);
862 	if (!card->csr_remap) {
863 		dev_printk(KERN_ERR, &card->dev->dev,
864 			"Unable to remap memory region\n");
865 		ret = -ENOMEM;
866 
867 		goto failed_remap_csr;
868 	}
869 
870 	dev_printk(KERN_INFO, &card->dev->dev,
871 		"CSR 0x%08lx -> 0x%p (0x%lx)\n",
872 	       csr_base, card->csr_remap, csr_len);
873 
874 	switch (card->dev->device) {
875 	case 0x5415:
876 		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
877 		magic_number = 0x59;
878 		break;
879 
880 	case 0x5425:
881 		card->flags |= UM_FLAG_NO_BYTE_STATUS;
882 		magic_number = 0x5C;
883 		break;
884 
885 	case 0x6155:
886 		card->flags |= UM_FLAG_NO_BYTE_STATUS |
887 				UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
888 		magic_number = 0x99;
889 		break;
890 
891 	default:
892 		magic_number = 0x100;
893 		break;
894 	}
895 
896 	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
897 		dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
898 		ret = -ENOMEM;
899 		goto failed_magic;
900 	}
901 
902 	card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
903 						PAGE_SIZE * 2,
904 						&card->mm_pages[0].page_dma);
905 	card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
906 						PAGE_SIZE * 2,
907 						&card->mm_pages[1].page_dma);
908 	if (card->mm_pages[0].desc == NULL ||
909 	    card->mm_pages[1].desc == NULL) {
910 		dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
911 		goto failed_alloc;
912 	}
913 	reset_page(&card->mm_pages[0]);
914 	reset_page(&card->mm_pages[1]);
915 	card->Ready = 0;	/* page 0 is ready */
916 	card->Active = -1;	/* no page is active */
917 	card->bio = NULL;
918 	card->biotail = &card->bio;
919 
920 	card->queue = blk_alloc_queue(GFP_KERNEL);
921 	if (!card->queue)
922 		goto failed_alloc;
923 
924 	blk_queue_make_request(card->queue, mm_make_request);
925 	card->queue->queue_lock = &card->lock;
926 	card->queue->queuedata = card;
927 
928 	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
929 
930 	card->check_batteries = 0;
931 
932 	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
933 	switch (mem_present) {
934 	case MEM_128_MB:
935 		card->mm_size = 1024 * 128;
936 		break;
937 	case MEM_256_MB:
938 		card->mm_size = 1024 * 256;
939 		break;
940 	case MEM_512_MB:
941 		card->mm_size = 1024 * 512;
942 		break;
943 	case MEM_1_GB:
944 		card->mm_size = 1024 * 1024;
945 		break;
946 	case MEM_2_GB:
947 		card->mm_size = 1024 * 2048;
948 		break;
949 	default:
950 		card->mm_size = 0;
951 		break;
952 	}
953 
954 	/* Clear the LED's we control */
955 	set_led(card, LED_REMOVE, LED_OFF);
956 	set_led(card, LED_FAULT, LED_OFF);
957 
958 	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
959 
960 	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
961 	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
962 	card->battery[0].last_change = card->battery[1].last_change = jiffies;
963 
964 	if (card->flags & UM_FLAG_NO_BATT)
965 		dev_printk(KERN_INFO, &card->dev->dev,
966 			"Size %d KB\n", card->mm_size);
967 	else {
968 		dev_printk(KERN_INFO, &card->dev->dev,
969 			"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
970 		       card->mm_size,
971 		       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
972 		       card->battery[0].good ? "OK" : "FAILURE",
973 		       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
974 		       card->battery[1].good ? "OK" : "FAILURE");
975 
976 		set_fault_to_battery_status(card);
977 	}
978 
979 	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
980 	data = 0xffffffff;
981 	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
982 	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
983 	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
984 	data &= 0xfffffff0;
985 	data = ~data;
986 	data += 1;
987 
988 	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
989 			card)) {
990 		dev_printk(KERN_ERR, &card->dev->dev,
991 			"Unable to allocate IRQ\n");
992 		ret = -ENODEV;
993 		goto failed_req_irq;
994 	}
995 
996 	dev_printk(KERN_INFO, &card->dev->dev,
997 		"Window size %d bytes, IRQ %d\n", data, dev->irq);
998 
999 	spin_lock_init(&card->lock);
1000 
1001 	pci_set_drvdata(dev, card);
1002 
1003 	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
1004 		pci_write_cmd = 0x07;	/* then Memory Write command */
1005 
1006 	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1007 		unsigned short cfg_command;
1008 		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1009 		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1010 		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1011 	}
1012 	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1013 
1014 	num_cards++;
1015 
1016 	if (!get_userbit(card, MEMORY_INITIALIZED)) {
1017 		dev_printk(KERN_INFO, &card->dev->dev,
1018 		  "memory NOT initialized. Consider over-writing whole device.\n");
1019 		card->init_size = 0;
1020 	} else {
1021 		dev_printk(KERN_INFO, &card->dev->dev,
1022 			"memory already initialized\n");
1023 		card->init_size = card->mm_size;
1024 	}
1025 
1026 	/* Enable ECC */
1027 	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1028 
1029 	return 0;
1030 
1031  failed_req_irq:
1032  failed_alloc:
1033 	if (card->mm_pages[0].desc)
1034 		pci_free_consistent(card->dev, PAGE_SIZE*2,
1035 				    card->mm_pages[0].desc,
1036 				    card->mm_pages[0].page_dma);
1037 	if (card->mm_pages[1].desc)
1038 		pci_free_consistent(card->dev, PAGE_SIZE*2,
1039 				    card->mm_pages[1].desc,
1040 				    card->mm_pages[1].page_dma);
1041  failed_magic:
1042 	iounmap(card->csr_remap);
1043  failed_remap_csr:
1044 	pci_release_regions(dev);
1045  failed_req_csr:
1046 
1047 	return ret;
1048 }
1049 
mm_pci_remove(struct pci_dev * dev)1050 static void mm_pci_remove(struct pci_dev *dev)
1051 {
1052 	struct cardinfo *card = pci_get_drvdata(dev);
1053 
1054 	tasklet_kill(&card->tasklet);
1055 	free_irq(dev->irq, card);
1056 	iounmap(card->csr_remap);
1057 
1058 	if (card->mm_pages[0].desc)
1059 		pci_free_consistent(card->dev, PAGE_SIZE*2,
1060 				    card->mm_pages[0].desc,
1061 				    card->mm_pages[0].page_dma);
1062 	if (card->mm_pages[1].desc)
1063 		pci_free_consistent(card->dev, PAGE_SIZE*2,
1064 				    card->mm_pages[1].desc,
1065 				    card->mm_pages[1].page_dma);
1066 	blk_cleanup_queue(card->queue);
1067 
1068 	pci_release_regions(dev);
1069 	pci_disable_device(dev);
1070 }
1071 
1072 static const struct pci_device_id mm_pci_ids[] = {
1073     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1074     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1075     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1076     {
1077 	.vendor	=	0x8086,
1078 	.device	=	0xB555,
1079 	.subvendor =	0x1332,
1080 	.subdevice =	0x5460,
1081 	.class =	0x050000,
1082 	.class_mask =	0,
1083     }, { /* end: all zeroes */ }
1084 };
1085 
1086 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1087 
1088 static struct pci_driver mm_pci_driver = {
1089 	.name		= DRIVER_NAME,
1090 	.id_table	= mm_pci_ids,
1091 	.probe		= mm_pci_probe,
1092 	.remove		= mm_pci_remove,
1093 };
1094 
mm_init(void)1095 static int __init mm_init(void)
1096 {
1097 	int retval, i;
1098 	int err;
1099 
1100 	retval = pci_register_driver(&mm_pci_driver);
1101 	if (retval)
1102 		return -ENOMEM;
1103 
1104 	err = major_nr = register_blkdev(0, DRIVER_NAME);
1105 	if (err < 0) {
1106 		pci_unregister_driver(&mm_pci_driver);
1107 		return -EIO;
1108 	}
1109 
1110 	for (i = 0; i < num_cards; i++) {
1111 		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1112 		if (!mm_gendisk[i])
1113 			goto out;
1114 	}
1115 
1116 	for (i = 0; i < num_cards; i++) {
1117 		struct gendisk *disk = mm_gendisk[i];
1118 		sprintf(disk->disk_name, "umem%c", 'a'+i);
1119 		spin_lock_init(&cards[i].lock);
1120 		disk->major = major_nr;
1121 		disk->first_minor  = i << MM_SHIFT;
1122 		disk->fops = &mm_fops;
1123 		disk->private_data = &cards[i];
1124 		disk->queue = cards[i].queue;
1125 		set_capacity(disk, cards[i].mm_size << 1);
1126 		add_disk(disk);
1127 	}
1128 
1129 	init_battery_timer();
1130 	printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1131 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1132 	return 0;
1133 
1134 out:
1135 	pci_unregister_driver(&mm_pci_driver);
1136 	unregister_blkdev(major_nr, DRIVER_NAME);
1137 	while (i--)
1138 		put_disk(mm_gendisk[i]);
1139 	return -ENOMEM;
1140 }
1141 
mm_cleanup(void)1142 static void __exit mm_cleanup(void)
1143 {
1144 	int i;
1145 
1146 	del_battery_timer();
1147 
1148 	for (i = 0; i < num_cards ; i++) {
1149 		del_gendisk(mm_gendisk[i]);
1150 		put_disk(mm_gendisk[i]);
1151 	}
1152 
1153 	pci_unregister_driver(&mm_pci_driver);
1154 
1155 	unregister_blkdev(major_nr, DRIVER_NAME);
1156 }
1157 
1158 module_init(mm_init);
1159 module_exit(mm_cleanup);
1160 
1161 MODULE_AUTHOR(DRIVER_AUTHOR);
1162 MODULE_DESCRIPTION(DRIVER_DESC);
1163 MODULE_LICENSE("GPL");
1164