1 
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3  *                            FireStream  50 (MB86695) device driver
4  */
5 
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7  * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8  * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd
9  */
10 
11 /*
12   This program is free software; you can redistribute it and/or modify
13   it under the terms of the GNU General Public License as published by
14   the Free Software Foundation; either version 2 of the License, or
15   (at your option) any later version.
16 
17   This program is distributed in the hope that it will be useful,
18   but WITHOUT ANY WARRANTY; without even the implied warranty of
19   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20   GNU General Public License for more details.
21 
22   You should have received a copy of the GNU General Public License
23   along with this program; if not, write to the Free Software
24   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25 
26   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27   system and in the file COPYING in the Linux kernel source.
28 */
29 
30 
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/errno.h>
38 #include <linux/atm.h>
39 #include <linux/atmdev.h>
40 #include <linux/sonet.h>
41 #include <linux/skbuff.h>
42 #include <linux/netdevice.h>
43 #include <linux/delay.h>
44 #include <linux/ioport.h> /* for request_region */
45 #include <linux/uio.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/capability.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <asm/byteorder.h>
52 #include <asm/string.h>
53 #include <asm/io.h>
54 #include <linux/atomic.h>
55 #include <asm/uaccess.h>
56 #include <linux/wait.h>
57 
58 #include "firestream.h"
59 
60 static int loopback = 0;
61 static int num=0x5a;
62 
63 /* According to measurements (but they look suspicious to me!) done in
64  * '97, 37% of the packets are one cell in size. So it pays to have
65  * buffers allocated at that size. A large jump in percentage of
66  * packets occurs at packets around 536 bytes in length. So it also
67  * pays to have those pre-allocated. Unfortunately, we can't fully
68  * take advantage of this as the majority of the packets is likely to
69  * be TCP/IP (As where obviously the measurement comes from) There the
70  * link would be opened with say a 1500 byte MTU, and we can't handle
71  * smaller buffers more efficiently than the larger ones. -- REW
72  */
73 
74 /* Due to the way Linux memory management works, specifying "576" as
75  * an allocation size here isn't going to help. They are allocated
76  * from 1024-byte regions anyway. With the size of the sk_buffs (quite
77  * large), it doesn't pay to allocate the smallest size (64) -- REW */
78 
79 /* This is all guesswork. Hard numbers to back this up or disprove this,
80  * are appreciated. -- REW */
81 
82 /* The last entry should be about 64k. However, the "buffer size" is
83  * passed to the chip in a 16 bit field. I don't know how "65536"
84  * would be interpreted. -- REW */
85 
86 #define NP FS_NR_FREE_POOLS
87 static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
88 /* log2:                 7     8     9    10    11    12    14     16 */
89 
90 #if 0
91 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
92 #else
93 /* debug */
94 static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
95 #endif
96 /* log2:                 10    10    9    8     7     6     5      5  */
97 /* sumlog2:              17    18    18   18    18    18    19     21 */
98 /* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
99 /* tot mem: almost 4M */
100 
101 /* NP is shorter, so that it fits on a single line. */
102 #undef NP
103 
104 
105 /* Small hardware gotcha:
106 
107    The FS50 CAM (VP/VC match registers) always take the lowest channel
108    number that matches. This is not a problem.
109 
110    However, they also ignore whether the channel is enabled or
111    not. This means that if you allocate channel 0 to 1.2 and then
112    channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113    match channel for channel 0 will "steal" the traffic from channel
114    1, even if you correctly disable channel 0.
115 
116    Workaround:
117 
118    - When disabling channels, write an invalid VP/VC value to the
119    match register. (We use 0xffffffff, which in the worst case
120    matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121    anything as some "when not in use, program to 0" bits are now
122    programmed to 1...)
123 
124    - Don't initialize the match registers to 0, as 0.0 is a valid
125    channel.
126 */
127 
128 
129 /* Optimization hints and tips.
130 
131    The FireStream chips are very capable of reducing the amount of
132    "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133    action. You could try to minimize this a bit.
134 
135    Besides that, the userspace->kernel copy and the PCI bus are the
136    performance limiting issues for this driver.
137 
138    You could queue up a bunch of outgoing packets without telling the
139    FireStream. I'm not sure that's going to win you much though. The
140    Linux layer won't tell us in advance when it's not going to give us
141    any more packets in a while. So this is tricky to implement right without
142    introducing extra delays.
143 
144    -- REW
145  */
146 
147 
148 
149 
150 /* The strings that define what the RX queue entry is all about. */
151 /* Fujitsu: Please tell me which ones can have a pointer to a
152    freepool descriptor! */
153 static char *res_strings[] = {
154 	"RX OK: streaming not EOP",
155 	"RX OK: streaming EOP",
156 	"RX OK: Single buffer packet",
157 	"RX OK: packet mode",
158 	"RX OK: F4 OAM (end to end)",
159 	"RX OK: F4 OAM (Segment)",
160 	"RX OK: F5 OAM (end to end)",
161 	"RX OK: F5 OAM (Segment)",
162 	"RX OK: RM cell",
163 	"RX OK: TRANSP cell",
164 	"RX OK: TRANSPC cell",
165 	"Unmatched cell",
166 	"reserved 12",
167 	"reserved 13",
168 	"reserved 14",
169 	"Unrecognized cell",
170 	"reserved 16",
171 	"reassemby abort: AAL5 abort",
172 	"packet purged",
173 	"packet ageing timeout",
174 	"channel ageing timeout",
175 	"calculated length error",
176 	"programmed length limit error",
177 	"aal5 crc32 error",
178 	"oam transp or transpc crc10 error",
179 	"reserved 25",
180 	"reserved 26",
181 	"reserved 27",
182 	"reserved 28",
183 	"reserved 29",
184 	"reserved 30",
185 	"reassembly abort: no buffers",
186 	"receive buffer overflow",
187 	"change in GFC",
188 	"receive buffer full",
189 	"low priority discard - no receive descriptor",
190 	"low priority discard - missing end of packet",
191 	"reserved 41",
192 	"reserved 42",
193 	"reserved 43",
194 	"reserved 44",
195 	"reserved 45",
196 	"reserved 46",
197 	"reserved 47",
198 	"reserved 48",
199 	"reserved 49",
200 	"reserved 50",
201 	"reserved 51",
202 	"reserved 52",
203 	"reserved 53",
204 	"reserved 54",
205 	"reserved 55",
206 	"reserved 56",
207 	"reserved 57",
208 	"reserved 58",
209 	"reserved 59",
210 	"reserved 60",
211 	"reserved 61",
212 	"reserved 62",
213 	"reserved 63",
214 };
215 
216 static char *irq_bitname[] = {
217 	"LPCO",
218 	"DPCO",
219 	"RBRQ0_W",
220 	"RBRQ1_W",
221 	"RBRQ2_W",
222 	"RBRQ3_W",
223 	"RBRQ0_NF",
224 	"RBRQ1_NF",
225 	"RBRQ2_NF",
226 	"RBRQ3_NF",
227 	"BFP_SC",
228 	"INIT",
229 	"INIT_ERR",
230 	"USCEO",
231 	"UPEC0",
232 	"VPFCO",
233 	"CRCCO",
234 	"HECO",
235 	"TBRQ_W",
236 	"TBRQ_NF",
237 	"CTPQ_E",
238 	"GFC_C0",
239 	"PCI_FTL",
240 	"CSQ_W",
241 	"CSQ_NF",
242 	"EXT_INT",
243 	"RXDMA_S"
244 };
245 
246 
247 #define PHY_EOF -1
248 #define PHY_CLEARALL -2
249 
250 struct reginit_item {
251 	int reg, val;
252 };
253 
254 
255 static struct reginit_item PHY_NTC_INIT[] __devinitdata = {
256 	{ PHY_CLEARALL, 0x40 },
257 	{ 0x12,  0x0001 },
258 	{ 0x13,  0x7605 },
259 	{ 0x1A,  0x0001 },
260 	{ 0x1B,  0x0005 },
261 	{ 0x38,  0x0003 },
262 	{ 0x39,  0x0006 },   /* changed here to make loopback */
263 	{ 0x01,  0x5262 },
264 	{ 0x15,  0x0213 },
265 	{ 0x00,  0x0003 },
266 	{ PHY_EOF, 0},    /* -1 signals end of list */
267 };
268 
269 
270 /* Safetyfeature: If the card interrupts more than this number of times
271    in a jiffy (1/100th of a second) then we just disable the interrupt and
272    print a message. This prevents the system from hanging.
273 
274    150000 packets per second is close to the limit a PC is going to have
275    anyway. We therefore have to disable this for production. -- REW */
276 #undef IRQ_RATE_LIMIT // 100
277 
278 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
279    that great without interrupts. -- REW */
280 #undef FS_POLL_FREQ // 100
281 
282 /*
283    This driver can spew a whole lot of debugging output at you. If you
284    need maximum performance, you should disable the DEBUG define. To
285    aid in debugging in the field, I'm leaving the compile-time debug
286    features enabled, and disable them "runtime". That allows me to
287    instruct people with problems to enable debugging without requiring
288    them to recompile... -- REW
289 */
290 #define DEBUG
291 
292 #ifdef DEBUG
293 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
294 #else
295 #define fs_dprintk(f, str...) /* nothing */
296 #endif
297 
298 
299 static int fs_keystream = 0;
300 
301 #ifdef DEBUG
302 /* I didn't forget to set this to zero before shipping. Hit me with a stick
303    if you get this with the debug default not set to zero again. -- REW */
304 static int fs_debug = 0;
305 #else
306 #define fs_debug 0
307 #endif
308 
309 #ifdef MODULE
310 #ifdef DEBUG
311 module_param(fs_debug, int, 0644);
312 #endif
313 module_param(loopback, int, 0);
314 module_param(num, int, 0);
315 module_param(fs_keystream, int, 0);
316 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
317 #endif
318 
319 
320 #define FS_DEBUG_FLOW    0x00000001
321 #define FS_DEBUG_OPEN    0x00000002
322 #define FS_DEBUG_QUEUE   0x00000004
323 #define FS_DEBUG_IRQ     0x00000008
324 #define FS_DEBUG_INIT    0x00000010
325 #define FS_DEBUG_SEND    0x00000020
326 #define FS_DEBUG_PHY     0x00000040
327 #define FS_DEBUG_CLEANUP 0x00000080
328 #define FS_DEBUG_QOS     0x00000100
329 #define FS_DEBUG_TXQ     0x00000200
330 #define FS_DEBUG_ALLOC   0x00000400
331 #define FS_DEBUG_TXMEM   0x00000800
332 #define FS_DEBUG_QSIZE   0x00001000
333 
334 
335 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
336 #define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
337 
338 
339 static struct fs_dev *fs_boards = NULL;
340 
341 #ifdef DEBUG
342 
my_hd(void * addr,int len)343 static void my_hd (void *addr, int len)
344 {
345 	int j, ch;
346 	unsigned char *ptr = addr;
347 
348 	while (len > 0) {
349 		printk ("%p ", ptr);
350 		for (j=0;j < ((len < 16)?len:16);j++) {
351 			printk ("%02x %s", ptr[j], (j==7)?" ":"");
352 		}
353 		for (  ;j < 16;j++) {
354 			printk ("   %s", (j==7)?" ":"");
355 		}
356 		for (j=0;j < ((len < 16)?len:16);j++) {
357 			ch = ptr[j];
358 			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
359 		}
360 		printk ("\n");
361 		ptr += 16;
362 		len -= 16;
363 	}
364 }
365 #else /* DEBUG */
my_hd(void * addr,int len)366 static void my_hd (void *addr, int len){}
367 #endif /* DEBUG */
368 
369 /********** free an skb (as per ATM device driver documentation) **********/
370 
371 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
372  * I copied it over from the ambassador driver. -- REW */
373 
fs_kfree_skb(struct sk_buff * skb)374 static inline void fs_kfree_skb (struct sk_buff * skb)
375 {
376 	if (ATM_SKB(skb)->vcc->pop)
377 		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
378 	else
379 		dev_kfree_skb_any (skb);
380 }
381 
382 
383 
384 
385 /* It seems the ATM forum recommends this horribly complicated 16bit
386  * floating point format. Turns out the Ambassador uses the exact same
387  * encoding. I just copied it over. If Mitch agrees, I'll move it over
388  * to the atm_misc file or something like that. (and remove it from
389  * here and the ambassador driver) -- REW
390  */
391 
392 /* The good thing about this format is that it is monotonic. So,
393    a conversion routine need not be very complicated. To be able to
394    round "nearest" we need to take along a few extra bits. Lets
395    put these after 16 bits, so that we can just return the top 16
396    bits of the 32bit number as the result:
397 
398    int mr (unsigned int rate, int r)
399      {
400      int e = 16+9;
401      static int round[4]={0, 0, 0xffff, 0x8000};
402      if (!rate) return 0;
403      while (rate & 0xfc000000) {
404        rate >>= 1;
405        e++;
406      }
407      while (! (rate & 0xfe000000)) {
408        rate <<= 1;
409        e--;
410      }
411 
412 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
413      rate &= ~0x02000000;
414 // Next add in the exponent
415      rate |= e << (16+9);
416 // And perform the rounding:
417      return (rate + round[r]) >> 16;
418    }
419 
420    14 lines-of-code. Compare that with the 120 that the Ambassador
421    guys needed. (would be 8 lines shorter if I'd try to really reduce
422    the number of lines:
423 
424    int mr (unsigned int rate, int r)
425    {
426      int e = 16+9;
427      static int round[4]={0, 0, 0xffff, 0x8000};
428      if (!rate) return 0;
429      for (;  rate & 0xfc000000 ;rate >>= 1, e++);
430      for (;!(rate & 0xfe000000);rate <<= 1, e--);
431      return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
432    }
433 
434    Exercise for the reader: Remove one more line-of-code, without
435    cheating. (Just joining two lines is cheating). (I know it's
436    possible, don't think you've beat me if you found it... If you
437    manage to lose two lines or more, keep me updated! ;-)
438 
439    -- REW */
440 
441 
442 #define ROUND_UP      1
443 #define ROUND_DOWN    2
444 #define ROUND_NEAREST 3
445 /********** make rate (not quite as much fun as Horizon) **********/
446 
make_rate(unsigned int rate,int r,u16 * bits,unsigned int * actual)447 static int make_rate(unsigned int rate, int r,
448 		      u16 *bits, unsigned int *actual)
449 {
450 	unsigned char exp = -1; /* hush gcc */
451 	unsigned int man = -1;  /* hush gcc */
452 
453 	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
454 
455 	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
456 	   given 5-bit e and 9-bit m:
457 	   rate = EITHER (1+m/2^9)*2^e    OR 0
458 	   bits = EITHER 1<<14 | e<<9 | m OR 0
459 	   (bit 15 is "reserved", bit 14 "non-zero")
460 	   smallest rate is 0 (special representation)
461 	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
462 	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
463 	   simple algorithm:
464 	   find position of top bit, this gives e
465 	   remove top bit and shift (rounding if feeling clever) by 9-e
466 	*/
467 	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
468 	   representable. // This should move into the ambassador driver
469 	   when properly merged. -- REW */
470 
471 	if (rate > 0xffc00000U) {
472 		/* larger than largest representable rate */
473 
474 		if (r == ROUND_UP) {
475 			return -EINVAL;
476 		} else {
477 			exp = 31;
478 			man = 511;
479 		}
480 
481 	} else if (rate) {
482 		/* representable rate */
483 
484 		exp = 31;
485 		man = rate;
486 
487 		/* invariant: rate = man*2^(exp-31) */
488 		while (!(man & (1<<31))) {
489 			exp = exp - 1;
490 			man = man<<1;
491 		}
492 
493 		/* man has top bit set
494 		   rate = (2^31+(man-2^31))*2^(exp-31)
495 		   rate = (1+(man-2^31)/2^31)*2^exp
496 		*/
497 		man = man<<1;
498 		man &= 0xffffffffU; /* a nop on 32-bit systems */
499 		/* rate = (1+man/2^32)*2^exp
500 
501 		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
502 		   time to lose significance... we want m in the range 0 to 2^9-1
503 		   rounding presents a minor problem... we first decide which way
504 		   we are rounding (based on given rounding direction and possibly
505 		   the bits of the mantissa that are to be discarded).
506 		*/
507 
508 		switch (r) {
509 		case ROUND_DOWN: {
510 			/* just truncate */
511 			man = man>>(32-9);
512 			break;
513 		}
514 		case ROUND_UP: {
515 			/* check all bits that we are discarding */
516 			if (man & (~0U>>9)) {
517 				man = (man>>(32-9)) + 1;
518 				if (man == (1<<9)) {
519 					/* no need to check for round up outside of range */
520 					man = 0;
521 					exp += 1;
522 				}
523 			} else {
524 				man = (man>>(32-9));
525 			}
526 			break;
527 		}
528 		case ROUND_NEAREST: {
529 			/* check msb that we are discarding */
530 			if (man & (1<<(32-9-1))) {
531 				man = (man>>(32-9)) + 1;
532 				if (man == (1<<9)) {
533 					/* no need to check for round up outside of range */
534 					man = 0;
535 					exp += 1;
536 				}
537 			} else {
538 				man = (man>>(32-9));
539 			}
540 			break;
541 		}
542 		}
543 
544 	} else {
545 		/* zero rate - not representable */
546 
547 		if (r == ROUND_DOWN) {
548 			return -EINVAL;
549 		} else {
550 			exp = 0;
551 			man = 0;
552 		}
553 	}
554 
555 	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
556 
557 	if (bits)
558 		*bits = /* (1<<14) | */ (exp<<9) | man;
559 
560 	if (actual)
561 		*actual = (exp >= 9)
562 			? (1 << exp) + (man << (exp-9))
563 			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
564 
565 	return 0;
566 }
567 
568 
569 
570 
571 /* FireStream access routines */
572 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
573    certain registers or to just log all accesses. */
574 
write_fs(struct fs_dev * dev,int offset,u32 val)575 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
576 {
577 	writel (val, dev->base + offset);
578 }
579 
580 
read_fs(struct fs_dev * dev,int offset)581 static inline u32  read_fs (struct fs_dev *dev, int offset)
582 {
583 	return readl (dev->base + offset);
584 }
585 
586 
587 
get_qentry(struct fs_dev * dev,struct queue * q)588 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
589 {
590 	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
591 }
592 
593 
submit_qentry(struct fs_dev * dev,struct queue * q,struct FS_QENTRY * qe)594 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
595 {
596 	u32 wp;
597 	struct FS_QENTRY *cqe;
598 
599 	/* XXX Sanity check: the write pointer can be checked to be
600 	   still the same as the value passed as qe... -- REW */
601 	/*  udelay (5); */
602 	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
603 		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
604 			    q->offset);
605 		schedule ();
606 	}
607 
608 	wp &= ~0xf;
609 	cqe = bus_to_virt (wp);
610 	if (qe != cqe) {
611 		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
612 	}
613 
614 	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
615 
616 	{
617 		static int c;
618 		if (!(c++ % 100))
619 			{
620 				int rp, wp;
621 				rp =  read_fs (dev, Q_RP(q->offset));
622 				wp =  read_fs (dev, Q_WP(q->offset));
623 				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
624 					    q->offset, rp, wp, wp-rp);
625 			}
626 	}
627 }
628 
629 #ifdef DEBUG_EXTRA
630 static struct FS_QENTRY pq[60];
631 static int qp;
632 
633 static struct FS_BPENTRY dq[60];
634 static int qd;
635 static void *da[60];
636 #endif
637 
submit_queue(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)638 static void submit_queue (struct fs_dev *dev, struct queue *q,
639 			  u32 cmd, u32 p1, u32 p2, u32 p3)
640 {
641 	struct FS_QENTRY *qe;
642 
643 	qe = get_qentry (dev, q);
644 	qe->cmd = cmd;
645 	qe->p0 = p1;
646 	qe->p1 = p2;
647 	qe->p2 = p3;
648 	submit_qentry (dev,  q, qe);
649 
650 #ifdef DEBUG_EXTRA
651 	pq[qp].cmd = cmd;
652 	pq[qp].p0 = p1;
653 	pq[qp].p1 = p2;
654 	pq[qp].p2 = p3;
655 	qp++;
656 	if (qp >= 60) qp = 0;
657 #endif
658 }
659 
660 /* Test the "other" way one day... -- REW */
661 #if 1
662 #define submit_command submit_queue
663 #else
664 
submit_command(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)665 static void submit_command (struct fs_dev *dev, struct queue *q,
666 			    u32 cmd, u32 p1, u32 p2, u32 p3)
667 {
668 	write_fs (dev, CMDR0, cmd);
669 	write_fs (dev, CMDR1, p1);
670 	write_fs (dev, CMDR2, p2);
671 	write_fs (dev, CMDR3, p3);
672 }
673 #endif
674 
675 
676 
process_return_queue(struct fs_dev * dev,struct queue * q)677 static void process_return_queue (struct fs_dev *dev, struct queue *q)
678 {
679 	long rq;
680 	struct FS_QENTRY *qe;
681 	void *tc;
682 
683 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
684 		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
685 		qe = bus_to_virt (rq);
686 
687 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
688 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
689 
690 		switch (STATUS_CODE (qe)) {
691 		case 5:
692 			tc = bus_to_virt (qe->p0);
693 			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
694 			kfree (tc);
695 			break;
696 		}
697 
698 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
699 	}
700 }
701 
702 
process_txdone_queue(struct fs_dev * dev,struct queue * q)703 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
704 {
705 	long rq;
706 	long tmp;
707 	struct FS_QENTRY *qe;
708 	struct sk_buff *skb;
709 	struct FS_BPENTRY *td;
710 
711 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
712 		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
713 		qe = bus_to_virt (rq);
714 
715 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
716 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
717 
718 		if (STATUS_CODE (qe) != 2)
719 			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
720 				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
721 
722 
723 		switch (STATUS_CODE (qe)) {
724 		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
725 			/* Fall through */
726 		case 0x02:
727 			/* Process a real txdone entry. */
728 			tmp = qe->p0;
729 			if (tmp & 0x0f)
730 				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
731 			tmp &= ~0x0f;
732 			td = bus_to_virt (tmp);
733 
734 			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
735 				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
736 
737 			skb = td->skb;
738 			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
739 				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
740 				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
741 			}
742 			td->dev->ntxpckts--;
743 
744 			{
745 				static int c=0;
746 
747 				if (!(c++ % 100)) {
748 					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
749 				}
750 			}
751 
752 			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
753 
754 			fs_dprintk (FS_DEBUG_TXMEM, "i");
755 			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
756 			fs_kfree_skb (skb);
757 
758 			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
759 			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
760 			kfree (td);
761 			break;
762 		default:
763 			/* Here we get the tx purge inhibit command ... */
764 			/* Action, I believe, is "don't do anything". -- REW */
765 			;
766 		}
767 
768 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
769 	}
770 }
771 
772 
process_incoming(struct fs_dev * dev,struct queue * q)773 static void process_incoming (struct fs_dev *dev, struct queue *q)
774 {
775 	long rq;
776 	struct FS_QENTRY *qe;
777 	struct FS_BPENTRY *pe;
778 	struct sk_buff *skb;
779 	unsigned int channo;
780 	struct atm_vcc *atm_vcc;
781 
782 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
783 		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
784 		qe = bus_to_virt (rq);
785 
786 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ",
787 			    qe->cmd, qe->p0, qe->p1, qe->p2);
788 
789 		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
790 			    STATUS_CODE (qe),
791 			    res_strings[STATUS_CODE(qe)]);
792 
793 		pe = bus_to_virt (qe->p0);
794 		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
795 			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
796 			    pe->skb, pe->fp);
797 
798 		channo = qe->cmd & 0xffff;
799 
800 		if (channo < dev->nchannels)
801 			atm_vcc = dev->atm_vccs[channo];
802 		else
803 			atm_vcc = NULL;
804 
805 		/* Single buffer packet */
806 		switch (STATUS_CODE (qe)) {
807 		case 0x1:
808 			/* Fall through for streaming mode */
809 		case 0x2:/* Packet received OK.... */
810 			if (atm_vcc) {
811 				skb = pe->skb;
812 				pe->fp->n--;
813 #if 0
814 				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
815 				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
816 #endif
817 				skb_put (skb, qe->p1 & 0xffff);
818 				ATM_SKB(skb)->vcc = atm_vcc;
819 				atomic_inc(&atm_vcc->stats->rx);
820 				__net_timestamp(skb);
821 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
822 				atm_vcc->push (atm_vcc, skb);
823 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
824 				kfree (pe);
825 			} else {
826 				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
827 			}
828 			break;
829 		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
830 			     has been consumed and needs to be processed. -- REW */
831 			if (qe->p1 & 0xffff) {
832 				pe = bus_to_virt (qe->p0);
833 				pe->fp->n--;
834 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
835 				dev_kfree_skb_any (pe->skb);
836 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
837 				kfree (pe);
838 			}
839 			if (atm_vcc)
840 				atomic_inc(&atm_vcc->stats->rx_drop);
841 			break;
842 		case 0x1f: /*  Reassembly abort: no buffers. */
843 			/* Silently increment error counter. */
844 			if (atm_vcc)
845 				atomic_inc(&atm_vcc->stats->rx_drop);
846 			break;
847 		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
848 			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
849 				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
850 		}
851 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
852 	}
853 }
854 
855 
856 
857 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
858 
fs_open(struct atm_vcc * atm_vcc)859 static int fs_open(struct atm_vcc *atm_vcc)
860 {
861 	struct fs_dev *dev;
862 	struct fs_vcc *vcc;
863 	struct fs_transmit_config *tc;
864 	struct atm_trafprm * txtp;
865 	struct atm_trafprm * rxtp;
866 	/*  struct fs_receive_config *rc;*/
867 	/*  struct FS_QENTRY *qe; */
868 	int error;
869 	int bfp;
870 	int to;
871 	unsigned short tmc0;
872 	short vpi = atm_vcc->vpi;
873 	int vci = atm_vcc->vci;
874 
875 	func_enter ();
876 
877 	dev = FS_DEV(atm_vcc->dev);
878 	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
879 		    dev, atm_vcc);
880 
881 	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
882 		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
883 
884 	if ((atm_vcc->qos.aal != ATM_AAL5) &&
885 	    (atm_vcc->qos.aal != ATM_AAL2))
886 	  return -EINVAL; /* XXX AAL0 */
887 
888 	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
889 		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
890 
891 	/* XXX handle qos parameters (rate limiting) ? */
892 
893 	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
894 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
895 	if (!vcc) {
896 		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
897 		return -ENOMEM;
898 	}
899 
900 	atm_vcc->dev_data = vcc;
901 	vcc->last_skb = NULL;
902 
903 	init_waitqueue_head (&vcc->close_wait);
904 
905 	txtp = &atm_vcc->qos.txtp;
906 	rxtp = &atm_vcc->qos.rxtp;
907 
908 	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
909 		if (IS_FS50(dev)) {
910 			/* Increment the channel numer: take a free one next time.  */
911 			for (to=33;to;to--, dev->channo++) {
912 				/* We only have 32 channels */
913 				if (dev->channo >= 32)
914 					dev->channo = 0;
915 				/* If we need to do RX, AND the RX is inuse, try the next */
916 				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
917 					continue;
918 				/* If we need to do TX, AND the TX is inuse, try the next */
919 				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
920 					continue;
921 				/* Ok, both are free! (or not needed) */
922 				break;
923 			}
924 			if (!to) {
925 				printk ("No more free channels for FS50..\n");
926 				return -EBUSY;
927 			}
928 			vcc->channo = dev->channo;
929 			dev->channo &= dev->channel_mask;
930 
931 		} else {
932 			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
933 			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
934 			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
935 				printk ("Channel is in use for FS155.\n");
936 				return -EBUSY;
937 			}
938 		}
939 		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
940 			    vcc->channo, vcc->channo);
941 	}
942 
943 	if (DO_DIRECTION (txtp)) {
944 		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
945 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
946 			    tc, sizeof (struct fs_transmit_config));
947 		if (!tc) {
948 			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
949 			return -ENOMEM;
950 		}
951 
952 		/* Allocate the "open" entry from the high priority txq. This makes
953 		   it most likely that the chip will notice it. It also prevents us
954 		   from having to wait for completion. On the other hand, we may
955 		   need to wait for completion anyway, to see if it completed
956 		   successfully. */
957 
958 		switch (atm_vcc->qos.aal) {
959 		case ATM_AAL2:
960 		case ATM_AAL0:
961 		  tc->flags = 0
962 		    | TC_FLAGS_TRANSPARENT_PAYLOAD
963 		    | TC_FLAGS_PACKET
964 		    | (1 << 28)
965 		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
966 		    | TC_FLAGS_CAL0;
967 		  break;
968 		case ATM_AAL5:
969 		  tc->flags = 0
970 			| TC_FLAGS_AAL5
971 			| TC_FLAGS_PACKET  /* ??? */
972 			| TC_FLAGS_TYPE_CBR
973 			| TC_FLAGS_CAL0;
974 		  break;
975 		default:
976 			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
977 			tc->flags = 0;
978 		}
979 		/* Docs are vague about this atm_hdr field. By the way, the FS
980 		 * chip makes odd errors if lower bits are set.... -- REW */
981 		tc->atm_hdr =  (vpi << 20) | (vci << 4);
982 		tmc0 = 0;
983 		{
984 			int pcr = atm_pcr_goal (txtp);
985 
986 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
987 
988 			/* XXX Hmm. officially we're only allowed to do this if rounding
989 			   is round_down -- REW */
990 			if (IS_FS50(dev)) {
991 				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
992 			} else {
993 				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
994 			}
995 			if (!pcr) {
996 				/* no rate cap */
997 				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
998 			} else {
999 				int r;
1000 				if (pcr < 0) {
1001 					r = ROUND_DOWN;
1002 					pcr = -pcr;
1003 				} else {
1004 					r = ROUND_UP;
1005 				}
1006 				error = make_rate (pcr, r, &tmc0, NULL);
1007 				if (error) {
1008 					kfree(tc);
1009 					return error;
1010 				}
1011 			}
1012 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1013 		}
1014 
1015 		tc->TMC[0] = tmc0 | 0x4000;
1016 		tc->TMC[1] = 0; /* Unused */
1017 		tc->TMC[2] = 0; /* Unused */
1018 		tc->TMC[3] = 0; /* Unused */
1019 
1020 		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1021 		tc->rtag[0] = 0; /* What should I do with routing tags???
1022 				    -- Not used -- AS -- Thanks -- REW*/
1023 		tc->rtag[1] = 0;
1024 		tc->rtag[2] = 0;
1025 
1026 		if (fs_debug & FS_DEBUG_OPEN) {
1027 			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1028 			my_hd (tc, sizeof (*tc));
1029 		}
1030 
1031 		/* We now use the "submit_command" function to submit commands to
1032 		   the firestream. There is a define up near the definition of
1033 		   that routine that switches this routine between immediate write
1034 		   to the immediate command registers and queuing the commands in
1035 		   the HPTXQ for execution. This last technique might be more
1036 		   efficient if we know we're going to submit a whole lot of
1037 		   commands in one go, but this driver is not setup to be able to
1038 		   use such a construct. So it probably doen't matter much right
1039 		   now. -- REW */
1040 
1041 		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1042 		submit_command (dev, &dev->hp_txq,
1043 				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1044 				virt_to_bus (tc), 0, 0);
1045 
1046 		submit_command (dev, &dev->hp_txq,
1047 				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1048 				0, 0, 0);
1049 		set_bit (vcc->channo, dev->tx_inuse);
1050 	}
1051 
1052 	if (DO_DIRECTION (rxtp)) {
1053 		dev->atm_vccs[vcc->channo] = atm_vcc;
1054 
1055 		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1056 			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1057 		if (bfp >= FS_NR_FREE_POOLS) {
1058 			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1059 				    atm_vcc->qos.rxtp.max_sdu);
1060 			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1061 
1062 			/* XXX clear tx inuse. Close TX part? */
1063 			dev->atm_vccs[vcc->channo] = NULL;
1064 			kfree (vcc);
1065 			return -EINVAL;
1066 		}
1067 
1068 		switch (atm_vcc->qos.aal) {
1069 		case ATM_AAL0:
1070 		case ATM_AAL2:
1071 			submit_command (dev, &dev->hp_txq,
1072 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1073 					RC_FLAGS_TRANSP |
1074 					RC_FLAGS_BFPS_BFP * bfp |
1075 					RC_FLAGS_RXBM_PSB, 0, 0);
1076 			break;
1077 		case ATM_AAL5:
1078 			submit_command (dev, &dev->hp_txq,
1079 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1080 					RC_FLAGS_AAL5 |
1081 					RC_FLAGS_BFPS_BFP * bfp |
1082 					RC_FLAGS_RXBM_PSB, 0, 0);
1083 			break;
1084 		};
1085 		if (IS_FS50 (dev)) {
1086 			submit_command (dev, &dev->hp_txq,
1087 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1088 					0x80 + vcc->channo,
1089 					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1090 		}
1091 		submit_command (dev, &dev->hp_txq,
1092 				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1093 				0, 0, 0);
1094 	}
1095 
1096 	/* Indicate we're done! */
1097 	set_bit(ATM_VF_READY, &atm_vcc->flags);
1098 
1099 	func_exit ();
1100 	return 0;
1101 }
1102 
1103 
fs_close(struct atm_vcc * atm_vcc)1104 static void fs_close(struct atm_vcc *atm_vcc)
1105 {
1106 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1107 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1108 	struct atm_trafprm * txtp;
1109 	struct atm_trafprm * rxtp;
1110 
1111 	func_enter ();
1112 
1113 	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1114 
1115 	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1116 	if (vcc->last_skb) {
1117 		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1118 			    vcc->last_skb);
1119 		/* We're going to wait for the last packet to get sent on this VC. It would
1120 		   be impolite not to send them don't you think?
1121 		   XXX
1122 		   We don't know which packets didn't get sent. So if we get interrupted in
1123 		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1124 		   On the other hand, it's awfully convenient that we can abort a "close" that
1125 		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1126 		interruptible_sleep_on (& vcc->close_wait);
1127 	}
1128 
1129 	txtp = &atm_vcc->qos.txtp;
1130 	rxtp = &atm_vcc->qos.rxtp;
1131 
1132 
1133 	/* See App note XXX (Unpublished as of now) for the reason for the
1134 	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1135 
1136 	if (DO_DIRECTION (txtp)) {
1137 		submit_command (dev,  &dev->hp_txq,
1138 				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1139 		clear_bit (vcc->channo, dev->tx_inuse);
1140 	}
1141 
1142 	if (DO_DIRECTION (rxtp)) {
1143 		submit_command (dev,  &dev->hp_txq,
1144 				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1145 		dev->atm_vccs [vcc->channo] = NULL;
1146 
1147 		/* This means that this is configured as a receive channel */
1148 		if (IS_FS50 (dev)) {
1149 			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1150 			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1151 			   (0xfff...) -- REW */
1152 			submit_command (dev, &dev->hp_txq,
1153 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1154 					0x80 + vcc->channo, -1, 0 );
1155 		}
1156 	}
1157 
1158 	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1159 	kfree (vcc);
1160 
1161 	func_exit ();
1162 }
1163 
1164 
fs_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1165 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1166 {
1167 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1168 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1169 	struct FS_BPENTRY *td;
1170 
1171 	func_enter ();
1172 
1173 	fs_dprintk (FS_DEBUG_TXMEM, "I");
1174 	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1175 		    atm_vcc, skb, vcc, dev);
1176 
1177 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1178 
1179 	ATM_SKB(skb)->vcc = atm_vcc;
1180 
1181 	vcc->last_skb = skb;
1182 
1183 	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1184 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1185 	if (!td) {
1186 		/* Oops out of mem */
1187 		return -ENOMEM;
1188 	}
1189 
1190 	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1191 		    *(int *) skb->data);
1192 
1193 	td->flags =  TD_EPI | TD_DATA | skb->len;
1194 	td->next = 0;
1195 	td->bsa  = virt_to_bus (skb->data);
1196 	td->skb = skb;
1197 	td->dev = dev;
1198 	dev->ntxpckts++;
1199 
1200 #ifdef DEBUG_EXTRA
1201 	da[qd] = td;
1202 	dq[qd].flags = td->flags;
1203 	dq[qd].next  = td->next;
1204 	dq[qd].bsa   = td->bsa;
1205 	dq[qd].skb   = td->skb;
1206 	dq[qd].dev   = td->dev;
1207 	qd++;
1208 	if (qd >= 60) qd = 0;
1209 #endif
1210 
1211 	submit_queue (dev, &dev->hp_txq,
1212 		      QE_TRANSMIT_DE | vcc->channo,
1213 		      virt_to_bus (td), 0,
1214 		      virt_to_bus (td));
1215 
1216 	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1217 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1218 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1219 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1220 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1221 
1222 	func_exit ();
1223 	return 0;
1224 }
1225 
1226 
1227 /* Some function placeholders for functions we don't yet support. */
1228 
1229 #if 0
1230 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1231 {
1232 	func_enter ();
1233 	func_exit ();
1234 	return -ENOIOCTLCMD;
1235 }
1236 
1237 
1238 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1239 			 void __user *optval,int optlen)
1240 {
1241 	func_enter ();
1242 	func_exit ();
1243 	return 0;
1244 }
1245 
1246 
1247 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1248 			 void __user *optval,unsigned int optlen)
1249 {
1250 	func_enter ();
1251 	func_exit ();
1252 	return 0;
1253 }
1254 
1255 
1256 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1257 		       unsigned long addr)
1258 {
1259 	func_enter ();
1260 	func_exit ();
1261 }
1262 
1263 
1264 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1265 {
1266 	func_enter ();
1267 	func_exit ();
1268 	return 0;
1269 }
1270 
1271 
1272 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1273 {
1274 	func_enter ();
1275 	func_exit ();
1276 	return 0;
1277 };
1278 
1279 #endif
1280 
1281 
1282 static const struct atmdev_ops ops = {
1283 	.open =         fs_open,
1284 	.close =        fs_close,
1285 	.send =         fs_send,
1286 	.owner =        THIS_MODULE,
1287 	/* ioctl:          fs_ioctl, */
1288 	/* getsockopt:     fs_getsockopt, */
1289 	/* setsockopt:     fs_setsockopt, */
1290 	/* change_qos:     fs_change_qos, */
1291 
1292 	/* For now implement these internally here... */
1293 	/* phy_put:        fs_phy_put, */
1294 	/* phy_get:        fs_phy_get, */
1295 };
1296 
1297 
undocumented_pci_fix(struct pci_dev * pdev)1298 static void __devinit undocumented_pci_fix (struct pci_dev *pdev)
1299 {
1300 	u32 tint;
1301 
1302 	/* The Windows driver says: */
1303 	/* Switch off FireStream Retry Limit Threshold
1304 	 */
1305 
1306 	/* The register at 0x28 is documented as "reserved", no further
1307 	   comments. */
1308 
1309 	pci_read_config_dword (pdev, 0x28, &tint);
1310 	if (tint != 0x80) {
1311 		tint = 0x80;
1312 		pci_write_config_dword (pdev, 0x28, tint);
1313 	}
1314 }
1315 
1316 
1317 
1318 /**************************************************************************
1319  *                              PHY routines                              *
1320  **************************************************************************/
1321 
write_phy(struct fs_dev * dev,int regnum,int val)1322 static void __devinit write_phy (struct fs_dev *dev, int regnum, int val)
1323 {
1324 	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1325 			regnum, val, 0);
1326 }
1327 
init_phy(struct fs_dev * dev,struct reginit_item * reginit)1328 static int __devinit init_phy (struct fs_dev *dev, struct reginit_item *reginit)
1329 {
1330 	int i;
1331 
1332 	func_enter ();
1333 	while (reginit->reg != PHY_EOF) {
1334 		if (reginit->reg == PHY_CLEARALL) {
1335 			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1336 			for (i=0;i<reginit->val;i++) {
1337 				write_phy (dev, i, 0);
1338 			}
1339 		} else {
1340 			write_phy (dev, reginit->reg, reginit->val);
1341 		}
1342 		reginit++;
1343 	}
1344 	func_exit ();
1345 	return 0;
1346 }
1347 
reset_chip(struct fs_dev * dev)1348 static void reset_chip (struct fs_dev *dev)
1349 {
1350 	int i;
1351 
1352 	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1353 
1354 	/* Undocumented delay */
1355 	udelay (128);
1356 
1357 	/* The "internal registers are documented to all reset to zero, but
1358 	   comments & code in the Windows driver indicates that the pools are
1359 	   NOT reset. */
1360 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1361 		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1362 		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1363 		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1364 		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1365 		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1366 	}
1367 
1368 	/* The same goes for the match channel registers, although those are
1369 	   NOT documented that way in the Windows driver. -- REW */
1370 	/* The Windows driver DOES write 0 to these registers somewhere in
1371 	   the init sequence. However, a small hardware-feature, will
1372 	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1373 	   allocated happens to have no disabled channels that have a lower
1374 	   number. -- REW */
1375 
1376 	/* Clear the match channel registers. */
1377 	if (IS_FS50 (dev)) {
1378 		for (i=0;i<FS50_NR_CHANNELS;i++) {
1379 			write_fs (dev, 0x200 + i * 4, -1);
1380 		}
1381 	}
1382 }
1383 
aligned_kmalloc(int size,gfp_t flags,int alignment)1384 static void __devinit *aligned_kmalloc (int size, gfp_t flags, int alignment)
1385 {
1386 	void  *t;
1387 
1388 	if (alignment <= 0x10) {
1389 		t = kmalloc (size, flags);
1390 		if ((unsigned long)t & (alignment-1)) {
1391 			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1392 			kfree (t);
1393 			return aligned_kmalloc (size, flags, alignment * 4);
1394 		}
1395 		return t;
1396 	}
1397 	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1398 	return NULL;
1399 }
1400 
init_q(struct fs_dev * dev,struct queue * txq,int queue,int nentries,int is_rq)1401 static int __devinit init_q (struct fs_dev *dev,
1402 			  struct queue *txq, int queue, int nentries, int is_rq)
1403 {
1404 	int sz = nentries * sizeof (struct FS_QENTRY);
1405 	struct FS_QENTRY *p;
1406 
1407 	func_enter ();
1408 
1409 	fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1410 		    queue, nentries);
1411 
1412 	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1413 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1414 
1415 	if (!p) return 0;
1416 
1417 	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1418 	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1419 	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1420 	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1421 	if (is_rq) {
1422 		/* Configuration for the receive queue: 0: interrupt immediately,
1423 		   no pre-warning to empty queues: We do our best to keep the
1424 		   queue filled anyway. */
1425 		write_fs (dev, Q_CNF(queue), 0 );
1426 	}
1427 
1428 	txq->sa = p;
1429 	txq->ea = p;
1430 	txq->offset = queue;
1431 
1432 	func_exit ();
1433 	return 1;
1434 }
1435 
1436 
init_fp(struct fs_dev * dev,struct freepool * fp,int queue,int bufsize,int nr_buffers)1437 static int __devinit init_fp (struct fs_dev *dev,
1438 			   struct freepool *fp, int queue, int bufsize, int nr_buffers)
1439 {
1440 	func_enter ();
1441 
1442 	fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1443 
1444 	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1445 	write_fs (dev, FP_SA(queue),  0);
1446 	write_fs (dev, FP_EA(queue),  0);
1447 	write_fs (dev, FP_CTU(queue), 0);
1448 	write_fs (dev, FP_CNT(queue), 0);
1449 
1450 	fp->offset = queue;
1451 	fp->bufsize = bufsize;
1452 	fp->nr_buffers = nr_buffers;
1453 
1454 	func_exit ();
1455 	return 1;
1456 }
1457 
1458 
nr_buffers_in_freepool(struct fs_dev * dev,struct freepool * fp)1459 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1460 {
1461 #if 0
1462 	/* This seems to be unreliable.... */
1463 	return read_fs (dev, FP_CNT (fp->offset));
1464 #else
1465 	return fp->n;
1466 #endif
1467 }
1468 
1469 
1470 /* Check if this gets going again if a pool ever runs out.  -- Yes, it
1471    does. I've seen "receive abort: no buffers" and things started
1472    working again after that...  -- REW */
1473 
top_off_fp(struct fs_dev * dev,struct freepool * fp,gfp_t gfp_flags)1474 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1475 			gfp_t gfp_flags)
1476 {
1477 	struct FS_BPENTRY *qe, *ne;
1478 	struct sk_buff *skb;
1479 	int n = 0;
1480 	u32 qe_tmp;
1481 
1482 	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1483 		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1484 		    fp->nr_buffers);
1485 	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1486 
1487 		skb = alloc_skb (fp->bufsize, gfp_flags);
1488 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1489 		if (!skb) break;
1490 		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1491 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1492 		if (!ne) {
1493 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1494 			dev_kfree_skb_any (skb);
1495 			break;
1496 		}
1497 
1498 		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1499 			    skb, ne, skb->data, skb->head);
1500 		n++;
1501 		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1502 		ne->next  = virt_to_bus (NULL);
1503 		ne->bsa   = virt_to_bus (skb->data);
1504 		ne->aal_bufsize = fp->bufsize;
1505 		ne->skb = skb;
1506 		ne->fp = fp;
1507 
1508 		/*
1509 		 * FIXME: following code encodes and decodes
1510 		 * machine pointers (could be 64-bit) into a
1511 		 * 32-bit register.
1512 		 */
1513 
1514 		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1515 		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1516 		if (qe_tmp) {
1517 			qe = bus_to_virt ((long) qe_tmp);
1518 			qe->next = virt_to_bus(ne);
1519 			qe->flags &= ~FP_FLAGS_EPI;
1520 		} else
1521 			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1522 
1523 		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1524 		fp->n++;   /* XXX Atomic_inc? */
1525 		write_fs (dev, FP_CTU(fp->offset), 1);
1526 	}
1527 
1528 	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1529 }
1530 
free_queue(struct fs_dev * dev,struct queue * txq)1531 static void __devexit free_queue (struct fs_dev *dev, struct queue *txq)
1532 {
1533 	func_enter ();
1534 
1535 	write_fs (dev, Q_SA(txq->offset), 0);
1536 	write_fs (dev, Q_EA(txq->offset), 0);
1537 	write_fs (dev, Q_RP(txq->offset), 0);
1538 	write_fs (dev, Q_WP(txq->offset), 0);
1539 	/* Configuration ? */
1540 
1541 	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1542 	kfree (txq->sa);
1543 
1544 	func_exit ();
1545 }
1546 
free_freepool(struct fs_dev * dev,struct freepool * fp)1547 static void __devexit free_freepool (struct fs_dev *dev, struct freepool *fp)
1548 {
1549 	func_enter ();
1550 
1551 	write_fs (dev, FP_CNF(fp->offset), 0);
1552 	write_fs (dev, FP_SA (fp->offset), 0);
1553 	write_fs (dev, FP_EA (fp->offset), 0);
1554 	write_fs (dev, FP_CNT(fp->offset), 0);
1555 	write_fs (dev, FP_CTU(fp->offset), 0);
1556 
1557 	func_exit ();
1558 }
1559 
1560 
1561 
fs_irq(int irq,void * dev_id)1562 static irqreturn_t fs_irq (int irq, void *dev_id)
1563 {
1564 	int i;
1565 	u32 status;
1566 	struct fs_dev *dev = dev_id;
1567 
1568 	status = read_fs (dev, ISR);
1569 	if (!status)
1570 		return IRQ_NONE;
1571 
1572 	func_enter ();
1573 
1574 #ifdef IRQ_RATE_LIMIT
1575 	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1576 	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1577 	{
1578 		static int lastjif;
1579 		static int nintr=0;
1580 
1581 		if (lastjif == jiffies) {
1582 			if (++nintr > IRQ_RATE_LIMIT) {
1583 				free_irq (dev->irq, dev_id);
1584 				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1585 					dev->irq);
1586 			}
1587 		} else {
1588 			lastjif = jiffies;
1589 			nintr = 0;
1590 		}
1591 	}
1592 #endif
1593 	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1594 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1595 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1596 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1597 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1598 
1599 	/* print the bits in the ISR register. */
1600 	if (fs_debug & FS_DEBUG_IRQ) {
1601 		/* The FS_DEBUG things are unnecessary here. But this way it is
1602 		   clear for grep that these are debug prints. */
1603 		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1604 		for (i=0;i<27;i++)
1605 			if (status & (1 << i))
1606 				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1607 		fs_dprintk (FS_DEBUG_IRQ, "\n");
1608 	}
1609 
1610 	if (status & ISR_RBRQ0_W) {
1611 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1612 		process_incoming (dev, &dev->rx_rq[0]);
1613 		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1614 		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1615 		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1616 	}
1617 
1618 	if (status & ISR_RBRQ1_W) {
1619 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1620 		process_incoming (dev, &dev->rx_rq[1]);
1621 		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1622 		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1623 	}
1624 
1625 	if (status & ISR_RBRQ2_W) {
1626 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1627 		process_incoming (dev, &dev->rx_rq[2]);
1628 		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1629 		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1630 	}
1631 
1632 	if (status & ISR_RBRQ3_W) {
1633 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1634 		process_incoming (dev, &dev->rx_rq[3]);
1635 		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1636 		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1637 	}
1638 
1639 	if (status & ISR_CSQ_W) {
1640 		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1641 		process_return_queue (dev, &dev->st_q);
1642 	}
1643 
1644 	if (status & ISR_TBRQ_W) {
1645 		fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1646 		process_txdone_queue (dev, &dev->tx_relq);
1647 	}
1648 
1649 	func_exit ();
1650 	return IRQ_HANDLED;
1651 }
1652 
1653 
1654 #ifdef FS_POLL_FREQ
fs_poll(unsigned long data)1655 static void fs_poll (unsigned long data)
1656 {
1657 	struct fs_dev *dev = (struct fs_dev *) data;
1658 
1659 	fs_irq (0, dev);
1660 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1661 	add_timer (&dev->timer);
1662 }
1663 #endif
1664 
fs_init(struct fs_dev * dev)1665 static int __devinit fs_init (struct fs_dev *dev)
1666 {
1667 	struct pci_dev  *pci_dev;
1668 	int isr, to;
1669 	int i;
1670 
1671 	func_enter ();
1672 	pci_dev = dev->pci_dev;
1673 
1674 	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1675 		IS_FS50(dev)?50:155,
1676 		(unsigned long long)pci_resource_start(pci_dev, 0),
1677 		dev->pci_dev->irq);
1678 
1679 	if (fs_debug & FS_DEBUG_INIT)
1680 		my_hd ((unsigned char *) dev, sizeof (*dev));
1681 
1682 	undocumented_pci_fix (pci_dev);
1683 
1684 	dev->hw_base = pci_resource_start(pci_dev, 0);
1685 
1686 	dev->base = ioremap(dev->hw_base, 0x1000);
1687 
1688 	reset_chip (dev);
1689 
1690 	write_fs (dev, SARMODE0, 0
1691 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1692 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1693 		  | (1 * SARMODE0_CWRE)
1694 		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1695 			  SARMODE0_PRPWT_FS155_3)
1696 		  | (1 * SARMODE0_CALSUP_1)
1697 		  | (IS_FS50(dev) ? (0
1698 				   | SARMODE0_RXVCS_32
1699 				   | SARMODE0_ABRVCS_32
1700 				   | SARMODE0_TXVCS_32):
1701 		                  (0
1702 				   | SARMODE0_RXVCS_1k
1703 				   | SARMODE0_ABRVCS_1k
1704 				   | SARMODE0_TXVCS_1k)));
1705 
1706 	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1707 	   1ms. */
1708 	to = 100;
1709 	while (--to) {
1710 		isr = read_fs (dev, ISR);
1711 
1712 		/* This bit is documented as "RESERVED" */
1713 		if (isr & ISR_INIT_ERR) {
1714 			printk (KERN_ERR "Error initializing the FS... \n");
1715 			goto unmap;
1716 		}
1717 		if (isr & ISR_INIT) {
1718 			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1719 			break;
1720 		}
1721 
1722 		/* Try again after 10ms. */
1723 		msleep(10);
1724 	}
1725 
1726 	if (!to) {
1727 		printk (KERN_ERR "timeout initializing the FS... \n");
1728 		goto unmap;
1729 	}
1730 
1731 	/* XXX fix for fs155 */
1732 	dev->channel_mask = 0x1f;
1733 	dev->channo = 0;
1734 
1735 	/* AN3: 10 */
1736 	write_fs (dev, SARMODE1, 0
1737 		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1738 		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1739 		  | (1 * SARMODE1_DCRM)
1740 		  | (1 * SARMODE1_DCOAM)
1741 		  | (0 * SARMODE1_OAMCRC)
1742 		  | (0 * SARMODE1_DUMPE)
1743 		  | (0 * SARMODE1_GPLEN)
1744 		  | (0 * SARMODE1_GNAM)
1745 		  | (0 * SARMODE1_GVAS)
1746 		  | (0 * SARMODE1_GPAS)
1747 		  | (1 * SARMODE1_GPRI)
1748 		  | (0 * SARMODE1_PMS)
1749 		  | (0 * SARMODE1_GFCR)
1750 		  | (1 * SARMODE1_HECM2)
1751 		  | (1 * SARMODE1_HECM1)
1752 		  | (1 * SARMODE1_HECM0)
1753 		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1754 		  | (0 * 0xff) /* XXX FS155 */);
1755 
1756 
1757 	/* Cal prescale etc */
1758 
1759 	/* AN3: 11 */
1760 	write_fs (dev, TMCONF, 0x0000000f);
1761 	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1762 	write_fs (dev, 0x80, 0x000F00E4);
1763 
1764 	/* AN3: 12 */
1765 	write_fs (dev, CELLOSCONF, 0
1766 		  | (   0 * CELLOSCONF_CEN)
1767 		  | (       CELLOSCONF_SC1)
1768 		  | (0x80 * CELLOSCONF_COBS)
1769 		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1770 		  | (num  * CELLOSCONF_COST));/* after a hint from Hang.
1771 					       * performance jumped 50->70... */
1772 
1773 	/* Magic value by Hang */
1774 	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1775 
1776 	if (IS_FS50 (dev)) {
1777 		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1778 		dev->atm_dev->ci_range.vpi_bits = 12;
1779 		dev->atm_dev->ci_range.vci_bits = 16;
1780 		dev->nchannels = FS50_NR_CHANNELS;
1781 	} else {
1782 		write_fs (dev, RAS0, RAS0_DCD_XHLT
1783 			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1784 			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1785 		/* We can chose the split arbitrarily. We might be able to
1786 		   support more. Whatever. This should do for now. */
1787 		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1788 		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1789 
1790 		/* Address bits we can't use should be compared to 0. */
1791 		write_fs (dev, RAC, 0);
1792 
1793 		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1794 		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1795 		 * other bits, then compare with 0, which is exactly what we
1796 		 * want. */
1797 		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1798 		dev->nchannels = FS155_NR_CHANNELS;
1799 	}
1800 	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1801 				 GFP_KERNEL);
1802 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1803 		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1804 
1805 	if (!dev->atm_vccs) {
1806 		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1807 		/* XXX Clean up..... */
1808 		goto unmap;
1809 	}
1810 
1811 	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1812 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1813 		    dev->atm_vccs, dev->nchannels / 8);
1814 
1815 	if (!dev->tx_inuse) {
1816 		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1817 		/* XXX Clean up..... */
1818 		goto unmap;
1819 	}
1820 	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1821 	/* -- RAS2 : FS50 only: Default is OK. */
1822 
1823 	/* DMAMODE, default should be OK. -- REW */
1824 	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1825 
1826 	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1827 	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1828 	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1829 	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1830 
1831 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1832 		init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1833 			 rx_buf_sizes[i], rx_pool_sizes[i]);
1834 		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1835 	}
1836 
1837 
1838 	for (i=0;i < FS_NR_RX_QUEUES;i++)
1839 		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1840 
1841 	dev->irq = pci_dev->irq;
1842 	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1843 		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1844 		/* XXX undo all previous stuff... */
1845 		goto unmap;
1846 	}
1847 	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1848 
1849 	/* We want to be notified of most things. Just the statistics count
1850 	   overflows are not interesting */
1851 	write_fs (dev, IMR, 0
1852 		  | ISR_RBRQ0_W
1853 		  | ISR_RBRQ1_W
1854 		  | ISR_RBRQ2_W
1855 		  | ISR_RBRQ3_W
1856 		  | ISR_TBRQ_W
1857 		  | ISR_CSQ_W);
1858 
1859 	write_fs (dev, SARMODE0, 0
1860 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1861 		  | (1 * SARMODE0_GINT)
1862 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1863 		  | (0 * SARMODE0_CWRE)
1864 		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1865 		                  SARMODE0_PRPWT_FS155_3)
1866 		  | (1 * SARMODE0_CALSUP_1)
1867 		  | (IS_FS50 (dev)?(0
1868 				    | SARMODE0_RXVCS_32
1869 				    | SARMODE0_ABRVCS_32
1870 				    | SARMODE0_TXVCS_32):
1871 		                   (0
1872 				    | SARMODE0_RXVCS_1k
1873 				    | SARMODE0_ABRVCS_1k
1874 				    | SARMODE0_TXVCS_1k))
1875 		  | (1 * SARMODE0_RUN));
1876 
1877 	init_phy (dev, PHY_NTC_INIT);
1878 
1879 	if (loopback == 2) {
1880 		write_phy (dev, 0x39, 0x000e);
1881 	}
1882 
1883 #ifdef FS_POLL_FREQ
1884 	init_timer (&dev->timer);
1885 	dev->timer.data = (unsigned long) dev;
1886 	dev->timer.function = fs_poll;
1887 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1888 	add_timer (&dev->timer);
1889 #endif
1890 
1891 	dev->atm_dev->dev_data = dev;
1892 
1893 	func_exit ();
1894 	return 0;
1895 unmap:
1896 	iounmap(dev->base);
1897 	return 1;
1898 }
1899 
firestream_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)1900 static int __devinit firestream_init_one (struct pci_dev *pci_dev,
1901 				       const struct pci_device_id *ent)
1902 {
1903 	struct atm_dev *atm_dev;
1904 	struct fs_dev *fs_dev;
1905 
1906 	if (pci_enable_device(pci_dev))
1907 		goto err_out;
1908 
1909 	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1910 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1911 		    fs_dev, sizeof (struct fs_dev));
1912 	if (!fs_dev)
1913 		goto err_out;
1914 	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1915 	if (!atm_dev)
1916 		goto err_out_free_fs_dev;
1917 
1918 	fs_dev->pci_dev = pci_dev;
1919 	fs_dev->atm_dev = atm_dev;
1920 	fs_dev->flags = ent->driver_data;
1921 
1922 	if (fs_init(fs_dev))
1923 		goto err_out_free_atm_dev;
1924 
1925 	fs_dev->next = fs_boards;
1926 	fs_boards = fs_dev;
1927 	return 0;
1928 
1929  err_out_free_atm_dev:
1930 	atm_dev_deregister(atm_dev);
1931  err_out_free_fs_dev:
1932  	kfree(fs_dev);
1933  err_out:
1934 	return -ENODEV;
1935 }
1936 
firestream_remove_one(struct pci_dev * pdev)1937 static void __devexit firestream_remove_one (struct pci_dev *pdev)
1938 {
1939 	int i;
1940 	struct fs_dev *dev, *nxtdev;
1941 	struct fs_vcc *vcc;
1942 	struct FS_BPENTRY *fp, *nxt;
1943 
1944 	func_enter ();
1945 
1946 #if 0
1947 	printk ("hptxq:\n");
1948 	for (i=0;i<60;i++) {
1949 		printk ("%d: %08x %08x %08x %08x \n",
1950 			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1951 		qp++;
1952 		if (qp >= 60) qp = 0;
1953 	}
1954 
1955 	printk ("descriptors:\n");
1956 	for (i=0;i<60;i++) {
1957 		printk ("%d: %p: %08x %08x %p %p\n",
1958 			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1959 		qd++;
1960 		if (qd >= 60) qd = 0;
1961 	}
1962 #endif
1963 
1964 	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1965 		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1966 
1967 		/* XXX Hit all the tx channels too! */
1968 
1969 		for (i=0;i < dev->nchannels;i++) {
1970 			if (dev->atm_vccs[i]) {
1971 				vcc = FS_VCC (dev->atm_vccs[i]);
1972 				submit_command (dev,  &dev->hp_txq,
1973 						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1974 				submit_command (dev,  &dev->hp_txq,
1975 						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1976 
1977 			}
1978 		}
1979 
1980 		/* XXX Wait a while for the chip to release all buffers. */
1981 
1982 		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1983 			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1984 			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1985 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1986 				dev_kfree_skb_any (fp->skb);
1987 				nxt = bus_to_virt (fp->next);
1988 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1989 				kfree (fp);
1990 			}
1991 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1992 			dev_kfree_skb_any (fp->skb);
1993 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1994 			kfree (fp);
1995 		}
1996 
1997 		/* Hang the chip in "reset", prevent it clobbering memory that is
1998 		   no longer ours. */
1999 		reset_chip (dev);
2000 
2001 		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2002 		free_irq (dev->irq, dev);
2003 		del_timer (&dev->timer);
2004 
2005 		atm_dev_deregister(dev->atm_dev);
2006 		free_queue (dev, &dev->hp_txq);
2007 		free_queue (dev, &dev->lp_txq);
2008 		free_queue (dev, &dev->tx_relq);
2009 		free_queue (dev, &dev->st_q);
2010 
2011 		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2012 		kfree (dev->atm_vccs);
2013 
2014 		for (i=0;i< FS_NR_FREE_POOLS;i++)
2015 			free_freepool (dev, &dev->rx_fp[i]);
2016 
2017 		for (i=0;i < FS_NR_RX_QUEUES;i++)
2018 			free_queue (dev, &dev->rx_rq[i]);
2019 
2020 		iounmap(dev->base);
2021 		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2022 		nxtdev = dev->next;
2023 		kfree (dev);
2024 	}
2025 
2026 	func_exit ();
2027 }
2028 
2029 static struct pci_device_id firestream_pci_tbl[] = {
2030 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2031 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2032 	{ 0, }
2033 };
2034 
2035 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2036 
2037 static struct pci_driver firestream_driver = {
2038 	.name		= "firestream",
2039 	.id_table	= firestream_pci_tbl,
2040 	.probe		= firestream_init_one,
2041 	.remove		= __devexit_p(firestream_remove_one),
2042 };
2043 
firestream_init_module(void)2044 static int __init firestream_init_module (void)
2045 {
2046 	int error;
2047 
2048 	func_enter ();
2049 	error = pci_register_driver(&firestream_driver);
2050 	func_exit ();
2051 	return error;
2052 }
2053 
firestream_cleanup_module(void)2054 static void __exit firestream_cleanup_module(void)
2055 {
2056 	pci_unregister_driver(&firestream_driver);
2057 }
2058 
2059 module_init(firestream_init_module);
2060 module_exit(firestream_cleanup_module);
2061 
2062 MODULE_LICENSE("GPL");
2063 
2064 
2065 
2066