1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
19 
20 /*
21  * tunables
22  */
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
37 
38 /*
39  * offset from end of service tree
40  */
41 #define CFQ_IDLE_DELAY		(HZ / 5)
42 
43 /*
44  * below this threshold, we consider thinktime immediate
45  */
46 #define CFQ_MIN_TT		(2)
47 
48 #define CFQ_SLICE_SCALE		(5)
49 #define CFQ_HW_QUEUE_MIN	(5)
50 #define CFQ_SERVICE_SHIFT       12
51 
52 #define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56 
57 #define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
60 
61 static struct kmem_cache *cfq_pool;
62 
63 #define CFQ_PRIO_LISTS		IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66 
67 #define sample_valid(samples)	((samples) > 80)
68 #define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69 
70 struct cfq_ttime {
71 	unsigned long last_end_request;
72 
73 	unsigned long ttime_total;
74 	unsigned long ttime_samples;
75 	unsigned long ttime_mean;
76 };
77 
78 /*
79  * Most of our rbtree usage is for sorting with min extraction, so
80  * if we cache the leftmost node we don't have to walk down the tree
81  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82  * move this into the elevator for the rq sorting as well.
83  */
84 struct cfq_rb_root {
85 	struct rb_root rb;
86 	struct rb_node *left;
87 	unsigned count;
88 	unsigned total_weight;
89 	u64 min_vdisktime;
90 	struct cfq_ttime ttime;
91 };
92 #define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
93 			.ttime = {.last_end_request = jiffies,},}
94 
95 /*
96  * Per process-grouping structure
97  */
98 struct cfq_queue {
99 	/* reference count */
100 	int ref;
101 	/* various state flags, see below */
102 	unsigned int flags;
103 	/* parent cfq_data */
104 	struct cfq_data *cfqd;
105 	/* service_tree member */
106 	struct rb_node rb_node;
107 	/* service_tree key */
108 	unsigned long rb_key;
109 	/* prio tree member */
110 	struct rb_node p_node;
111 	/* prio tree root we belong to, if any */
112 	struct rb_root *p_root;
113 	/* sorted list of pending requests */
114 	struct rb_root sort_list;
115 	/* if fifo isn't expired, next request to serve */
116 	struct request *next_rq;
117 	/* requests queued in sort_list */
118 	int queued[2];
119 	/* currently allocated requests */
120 	int allocated[2];
121 	/* fifo list of requests in sort_list */
122 	struct list_head fifo;
123 
124 	/* time when queue got scheduled in to dispatch first request. */
125 	unsigned long dispatch_start;
126 	unsigned int allocated_slice;
127 	unsigned int slice_dispatch;
128 	/* time when first request from queue completed and slice started. */
129 	unsigned long slice_start;
130 	unsigned long slice_end;
131 	long slice_resid;
132 
133 	/* pending priority requests */
134 	int prio_pending;
135 	/* number of requests that are on the dispatch list or inside driver */
136 	int dispatched;
137 
138 	/* io prio of this group */
139 	unsigned short ioprio, org_ioprio;
140 	unsigned short ioprio_class;
141 
142 	pid_t pid;
143 
144 	u32 seek_history;
145 	sector_t last_request_pos;
146 
147 	struct cfq_rb_root *service_tree;
148 	struct cfq_queue *new_cfqq;
149 	struct cfq_group *cfqg;
150 	/* Number of sectors dispatched from queue in single dispatch round */
151 	unsigned long nr_sectors;
152 };
153 
154 /*
155  * First index in the service_trees.
156  * IDLE is handled separately, so it has negative index
157  */
158 enum wl_prio_t {
159 	BE_WORKLOAD = 0,
160 	RT_WORKLOAD = 1,
161 	IDLE_WORKLOAD = 2,
162 	CFQ_PRIO_NR,
163 };
164 
165 /*
166  * Second index in the service_trees.
167  */
168 enum wl_type_t {
169 	ASYNC_WORKLOAD = 0,
170 	SYNC_NOIDLE_WORKLOAD = 1,
171 	SYNC_WORKLOAD = 2
172 };
173 
174 /* This is per cgroup per device grouping structure */
175 struct cfq_group {
176 	/* group service_tree member */
177 	struct rb_node rb_node;
178 
179 	/* group service_tree key */
180 	u64 vdisktime;
181 	unsigned int weight;
182 	unsigned int new_weight;
183 	bool needs_update;
184 
185 	/* number of cfqq currently on this group */
186 	int nr_cfqq;
187 
188 	/*
189 	 * Per group busy queues average. Useful for workload slice calc. We
190 	 * create the array for each prio class but at run time it is used
191 	 * only for RT and BE class and slot for IDLE class remains unused.
192 	 * This is primarily done to avoid confusion and a gcc warning.
193 	 */
194 	unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 	/*
196 	 * rr lists of queues with requests. We maintain service trees for
197 	 * RT and BE classes. These trees are subdivided in subclasses
198 	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199 	 * class there is no subclassification and all the cfq queues go on
200 	 * a single tree service_tree_idle.
201 	 * Counts are embedded in the cfq_rb_root
202 	 */
203 	struct cfq_rb_root service_trees[2][3];
204 	struct cfq_rb_root service_tree_idle;
205 
206 	unsigned long saved_workload_slice;
207 	enum wl_type_t saved_workload;
208 	enum wl_prio_t saved_serving_prio;
209 	struct blkio_group blkg;
210 #ifdef CONFIG_CFQ_GROUP_IOSCHED
211 	struct hlist_node cfqd_node;
212 	int ref;
213 #endif
214 	/* number of requests that are on the dispatch list or inside driver */
215 	int dispatched;
216 	struct cfq_ttime ttime;
217 };
218 
219 struct cfq_io_cq {
220 	struct io_cq		icq;		/* must be the first member */
221 	struct cfq_queue	*cfqq[2];
222 	struct cfq_ttime	ttime;
223 };
224 
225 /*
226  * Per block device queue structure
227  */
228 struct cfq_data {
229 	struct request_queue *queue;
230 	/* Root service tree for cfq_groups */
231 	struct cfq_rb_root grp_service_tree;
232 	struct cfq_group root_group;
233 
234 	/*
235 	 * The priority currently being served
236 	 */
237 	enum wl_prio_t serving_prio;
238 	enum wl_type_t serving_type;
239 	unsigned long workload_expires;
240 	struct cfq_group *serving_group;
241 
242 	/*
243 	 * Each priority tree is sorted by next_request position.  These
244 	 * trees are used when determining if two or more queues are
245 	 * interleaving requests (see cfq_close_cooperator).
246 	 */
247 	struct rb_root prio_trees[CFQ_PRIO_LISTS];
248 
249 	unsigned int busy_queues;
250 	unsigned int busy_sync_queues;
251 
252 	int rq_in_driver;
253 	int rq_in_flight[2];
254 
255 	/*
256 	 * queue-depth detection
257 	 */
258 	int rq_queued;
259 	int hw_tag;
260 	/*
261 	 * hw_tag can be
262 	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
263 	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
264 	 *  0 => no NCQ
265 	 */
266 	int hw_tag_est_depth;
267 	unsigned int hw_tag_samples;
268 
269 	/*
270 	 * idle window management
271 	 */
272 	struct timer_list idle_slice_timer;
273 	struct work_struct unplug_work;
274 
275 	struct cfq_queue *active_queue;
276 	struct cfq_io_cq *active_cic;
277 
278 	/*
279 	 * async queue for each priority case
280 	 */
281 	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
282 	struct cfq_queue *async_idle_cfqq;
283 
284 	sector_t last_position;
285 
286 	/*
287 	 * tunables, see top of file
288 	 */
289 	unsigned int cfq_quantum;
290 	unsigned int cfq_fifo_expire[2];
291 	unsigned int cfq_back_penalty;
292 	unsigned int cfq_back_max;
293 	unsigned int cfq_slice[2];
294 	unsigned int cfq_slice_async_rq;
295 	unsigned int cfq_slice_idle;
296 	unsigned int cfq_group_idle;
297 	unsigned int cfq_latency;
298 	unsigned int cfq_target_latency;
299 
300 	/*
301 	 * Fallback dummy cfqq for extreme OOM conditions
302 	 */
303 	struct cfq_queue oom_cfqq;
304 
305 	unsigned long last_delayed_sync;
306 
307 	/* List of cfq groups being managed on this device*/
308 	struct hlist_head cfqg_list;
309 
310 	/* Number of groups which are on blkcg->blkg_list */
311 	unsigned int nr_blkcg_linked_grps;
312 };
313 
314 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
315 
service_tree_for(struct cfq_group * cfqg,enum wl_prio_t prio,enum wl_type_t type)316 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
317 					    enum wl_prio_t prio,
318 					    enum wl_type_t type)
319 {
320 	if (!cfqg)
321 		return NULL;
322 
323 	if (prio == IDLE_WORKLOAD)
324 		return &cfqg->service_tree_idle;
325 
326 	return &cfqg->service_trees[prio][type];
327 }
328 
329 enum cfqq_state_flags {
330 	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
331 	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
332 	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
333 	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
334 	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
335 	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
336 	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
337 	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
338 	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
339 	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
340 	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
341 	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
342 	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
343 };
344 
345 #define CFQ_CFQQ_FNS(name)						\
346 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
347 {									\
348 	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
349 }									\
350 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
351 {									\
352 	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
353 }									\
354 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
355 {									\
356 	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
357 }
358 
359 CFQ_CFQQ_FNS(on_rr);
360 CFQ_CFQQ_FNS(wait_request);
361 CFQ_CFQQ_FNS(must_dispatch);
362 CFQ_CFQQ_FNS(must_alloc_slice);
363 CFQ_CFQQ_FNS(fifo_expire);
364 CFQ_CFQQ_FNS(idle_window);
365 CFQ_CFQQ_FNS(prio_changed);
366 CFQ_CFQQ_FNS(slice_new);
367 CFQ_CFQQ_FNS(sync);
368 CFQ_CFQQ_FNS(coop);
369 CFQ_CFQQ_FNS(split_coop);
370 CFQ_CFQQ_FNS(deep);
371 CFQ_CFQQ_FNS(wait_busy);
372 #undef CFQ_CFQQ_FNS
373 
374 #ifdef CONFIG_CFQ_GROUP_IOSCHED
375 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
376 	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
377 			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
378 			blkg_path(&(cfqq)->cfqg->blkg), ##args)
379 
380 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
381 	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
382 				blkg_path(&(cfqg)->blkg), ##args)       \
383 
384 #else
385 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
386 	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
387 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
388 #endif
389 #define cfq_log(cfqd, fmt, args...)	\
390 	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
391 
392 /* Traverses through cfq group service trees */
393 #define for_each_cfqg_st(cfqg, i, j, st) \
394 	for (i = 0; i <= IDLE_WORKLOAD; i++) \
395 		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
396 			: &cfqg->service_tree_idle; \
397 			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
398 			(i == IDLE_WORKLOAD && j == 0); \
399 			j++, st = i < IDLE_WORKLOAD ? \
400 			&cfqg->service_trees[i][j]: NULL) \
401 
cfq_io_thinktime_big(struct cfq_data * cfqd,struct cfq_ttime * ttime,bool group_idle)402 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
403 	struct cfq_ttime *ttime, bool group_idle)
404 {
405 	unsigned long slice;
406 	if (!sample_valid(ttime->ttime_samples))
407 		return false;
408 	if (group_idle)
409 		slice = cfqd->cfq_group_idle;
410 	else
411 		slice = cfqd->cfq_slice_idle;
412 	return ttime->ttime_mean > slice;
413 }
414 
iops_mode(struct cfq_data * cfqd)415 static inline bool iops_mode(struct cfq_data *cfqd)
416 {
417 	/*
418 	 * If we are not idling on queues and it is a NCQ drive, parallel
419 	 * execution of requests is on and measuring time is not possible
420 	 * in most of the cases until and unless we drive shallower queue
421 	 * depths and that becomes a performance bottleneck. In such cases
422 	 * switch to start providing fairness in terms of number of IOs.
423 	 */
424 	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
425 		return true;
426 	else
427 		return false;
428 }
429 
cfqq_prio(struct cfq_queue * cfqq)430 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
431 {
432 	if (cfq_class_idle(cfqq))
433 		return IDLE_WORKLOAD;
434 	if (cfq_class_rt(cfqq))
435 		return RT_WORKLOAD;
436 	return BE_WORKLOAD;
437 }
438 
439 
cfqq_type(struct cfq_queue * cfqq)440 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
441 {
442 	if (!cfq_cfqq_sync(cfqq))
443 		return ASYNC_WORKLOAD;
444 	if (!cfq_cfqq_idle_window(cfqq))
445 		return SYNC_NOIDLE_WORKLOAD;
446 	return SYNC_WORKLOAD;
447 }
448 
cfq_group_busy_queues_wl(enum wl_prio_t wl,struct cfq_data * cfqd,struct cfq_group * cfqg)449 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
450 					struct cfq_data *cfqd,
451 					struct cfq_group *cfqg)
452 {
453 	if (wl == IDLE_WORKLOAD)
454 		return cfqg->service_tree_idle.count;
455 
456 	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
457 		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
458 		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
459 }
460 
cfqg_busy_async_queues(struct cfq_data * cfqd,struct cfq_group * cfqg)461 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
462 					struct cfq_group *cfqg)
463 {
464 	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
465 		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
466 }
467 
468 static void cfq_dispatch_insert(struct request_queue *, struct request *);
469 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
470 				       struct io_context *, gfp_t);
471 
icq_to_cic(struct io_cq * icq)472 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
473 {
474 	/* cic->icq is the first member, %NULL will convert to %NULL */
475 	return container_of(icq, struct cfq_io_cq, icq);
476 }
477 
cfq_cic_lookup(struct cfq_data * cfqd,struct io_context * ioc)478 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
479 					       struct io_context *ioc)
480 {
481 	if (ioc)
482 		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
483 	return NULL;
484 }
485 
cic_to_cfqq(struct cfq_io_cq * cic,bool is_sync)486 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
487 {
488 	return cic->cfqq[is_sync];
489 }
490 
cic_set_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq,bool is_sync)491 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
492 				bool is_sync)
493 {
494 	cic->cfqq[is_sync] = cfqq;
495 }
496 
cic_to_cfqd(struct cfq_io_cq * cic)497 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
498 {
499 	return cic->icq.q->elevator->elevator_data;
500 }
501 
502 /*
503  * We regard a request as SYNC, if it's either a read or has the SYNC bit
504  * set (in which case it could also be direct WRITE).
505  */
cfq_bio_sync(struct bio * bio)506 static inline bool cfq_bio_sync(struct bio *bio)
507 {
508 	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
509 }
510 
511 /*
512  * scheduler run of queue, if there are requests pending and no one in the
513  * driver that will restart queueing
514  */
cfq_schedule_dispatch(struct cfq_data * cfqd)515 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
516 {
517 	if (cfqd->busy_queues) {
518 		cfq_log(cfqd, "schedule dispatch");
519 		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
520 	}
521 }
522 
523 /*
524  * Scale schedule slice based on io priority. Use the sync time slice only
525  * if a queue is marked sync and has sync io queued. A sync queue with async
526  * io only, should not get full sync slice length.
527  */
cfq_prio_slice(struct cfq_data * cfqd,bool sync,unsigned short prio)528 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
529 				 unsigned short prio)
530 {
531 	const int base_slice = cfqd->cfq_slice[sync];
532 
533 	WARN_ON(prio >= IOPRIO_BE_NR);
534 
535 	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
536 }
537 
538 static inline int
cfq_prio_to_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)539 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
540 {
541 	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
542 }
543 
cfq_scale_slice(unsigned long delta,struct cfq_group * cfqg)544 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
545 {
546 	u64 d = delta << CFQ_SERVICE_SHIFT;
547 
548 	d = d * BLKIO_WEIGHT_DEFAULT;
549 	do_div(d, cfqg->weight);
550 	return d;
551 }
552 
max_vdisktime(u64 min_vdisktime,u64 vdisktime)553 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
554 {
555 	s64 delta = (s64)(vdisktime - min_vdisktime);
556 	if (delta > 0)
557 		min_vdisktime = vdisktime;
558 
559 	return min_vdisktime;
560 }
561 
min_vdisktime(u64 min_vdisktime,u64 vdisktime)562 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
563 {
564 	s64 delta = (s64)(vdisktime - min_vdisktime);
565 	if (delta < 0)
566 		min_vdisktime = vdisktime;
567 
568 	return min_vdisktime;
569 }
570 
update_min_vdisktime(struct cfq_rb_root * st)571 static void update_min_vdisktime(struct cfq_rb_root *st)
572 {
573 	struct cfq_group *cfqg;
574 
575 	if (st->left) {
576 		cfqg = rb_entry_cfqg(st->left);
577 		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
578 						  cfqg->vdisktime);
579 	}
580 }
581 
582 /*
583  * get averaged number of queues of RT/BE priority.
584  * average is updated, with a formula that gives more weight to higher numbers,
585  * to quickly follows sudden increases and decrease slowly
586  */
587 
cfq_group_get_avg_queues(struct cfq_data * cfqd,struct cfq_group * cfqg,bool rt)588 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
589 					struct cfq_group *cfqg, bool rt)
590 {
591 	unsigned min_q, max_q;
592 	unsigned mult  = cfq_hist_divisor - 1;
593 	unsigned round = cfq_hist_divisor / 2;
594 	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
595 
596 	min_q = min(cfqg->busy_queues_avg[rt], busy);
597 	max_q = max(cfqg->busy_queues_avg[rt], busy);
598 	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
599 		cfq_hist_divisor;
600 	return cfqg->busy_queues_avg[rt];
601 }
602 
603 static inline unsigned
cfq_group_slice(struct cfq_data * cfqd,struct cfq_group * cfqg)604 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
605 {
606 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
607 
608 	return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
609 }
610 
611 static inline unsigned
cfq_scaled_cfqq_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)612 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
613 {
614 	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
615 	if (cfqd->cfq_latency) {
616 		/*
617 		 * interested queues (we consider only the ones with the same
618 		 * priority class in the cfq group)
619 		 */
620 		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
621 						cfq_class_rt(cfqq));
622 		unsigned sync_slice = cfqd->cfq_slice[1];
623 		unsigned expect_latency = sync_slice * iq;
624 		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
625 
626 		if (expect_latency > group_slice) {
627 			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
628 			/* scale low_slice according to IO priority
629 			 * and sync vs async */
630 			unsigned low_slice =
631 				min(slice, base_low_slice * slice / sync_slice);
632 			/* the adapted slice value is scaled to fit all iqs
633 			 * into the target latency */
634 			slice = max(slice * group_slice / expect_latency,
635 				    low_slice);
636 		}
637 	}
638 	return slice;
639 }
640 
641 static inline void
cfq_set_prio_slice(struct cfq_data * cfqd,struct cfq_queue * cfqq)642 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
643 {
644 	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
645 
646 	cfqq->slice_start = jiffies;
647 	cfqq->slice_end = jiffies + slice;
648 	cfqq->allocated_slice = slice;
649 	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
650 }
651 
652 /*
653  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
654  * isn't valid until the first request from the dispatch is activated
655  * and the slice time set.
656  */
cfq_slice_used(struct cfq_queue * cfqq)657 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
658 {
659 	if (cfq_cfqq_slice_new(cfqq))
660 		return false;
661 	if (time_before(jiffies, cfqq->slice_end))
662 		return false;
663 
664 	return true;
665 }
666 
667 /*
668  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
669  * We choose the request that is closest to the head right now. Distance
670  * behind the head is penalized and only allowed to a certain extent.
671  */
672 static struct request *
cfq_choose_req(struct cfq_data * cfqd,struct request * rq1,struct request * rq2,sector_t last)673 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
674 {
675 	sector_t s1, s2, d1 = 0, d2 = 0;
676 	unsigned long back_max;
677 #define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
678 #define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
679 	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
680 
681 	if (rq1 == NULL || rq1 == rq2)
682 		return rq2;
683 	if (rq2 == NULL)
684 		return rq1;
685 
686 	if (rq_is_sync(rq1) != rq_is_sync(rq2))
687 		return rq_is_sync(rq1) ? rq1 : rq2;
688 
689 	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
690 		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
691 
692 	s1 = blk_rq_pos(rq1);
693 	s2 = blk_rq_pos(rq2);
694 
695 	/*
696 	 * by definition, 1KiB is 2 sectors
697 	 */
698 	back_max = cfqd->cfq_back_max * 2;
699 
700 	/*
701 	 * Strict one way elevator _except_ in the case where we allow
702 	 * short backward seeks which are biased as twice the cost of a
703 	 * similar forward seek.
704 	 */
705 	if (s1 >= last)
706 		d1 = s1 - last;
707 	else if (s1 + back_max >= last)
708 		d1 = (last - s1) * cfqd->cfq_back_penalty;
709 	else
710 		wrap |= CFQ_RQ1_WRAP;
711 
712 	if (s2 >= last)
713 		d2 = s2 - last;
714 	else if (s2 + back_max >= last)
715 		d2 = (last - s2) * cfqd->cfq_back_penalty;
716 	else
717 		wrap |= CFQ_RQ2_WRAP;
718 
719 	/* Found required data */
720 
721 	/*
722 	 * By doing switch() on the bit mask "wrap" we avoid having to
723 	 * check two variables for all permutations: --> faster!
724 	 */
725 	switch (wrap) {
726 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
727 		if (d1 < d2)
728 			return rq1;
729 		else if (d2 < d1)
730 			return rq2;
731 		else {
732 			if (s1 >= s2)
733 				return rq1;
734 			else
735 				return rq2;
736 		}
737 
738 	case CFQ_RQ2_WRAP:
739 		return rq1;
740 	case CFQ_RQ1_WRAP:
741 		return rq2;
742 	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
743 	default:
744 		/*
745 		 * Since both rqs are wrapped,
746 		 * start with the one that's further behind head
747 		 * (--> only *one* back seek required),
748 		 * since back seek takes more time than forward.
749 		 */
750 		if (s1 <= s2)
751 			return rq1;
752 		else
753 			return rq2;
754 	}
755 }
756 
757 /*
758  * The below is leftmost cache rbtree addon
759  */
cfq_rb_first(struct cfq_rb_root * root)760 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
761 {
762 	/* Service tree is empty */
763 	if (!root->count)
764 		return NULL;
765 
766 	if (!root->left)
767 		root->left = rb_first(&root->rb);
768 
769 	if (root->left)
770 		return rb_entry(root->left, struct cfq_queue, rb_node);
771 
772 	return NULL;
773 }
774 
cfq_rb_first_group(struct cfq_rb_root * root)775 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
776 {
777 	if (!root->left)
778 		root->left = rb_first(&root->rb);
779 
780 	if (root->left)
781 		return rb_entry_cfqg(root->left);
782 
783 	return NULL;
784 }
785 
rb_erase_init(struct rb_node * n,struct rb_root * root)786 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
787 {
788 	rb_erase(n, root);
789 	RB_CLEAR_NODE(n);
790 }
791 
cfq_rb_erase(struct rb_node * n,struct cfq_rb_root * root)792 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
793 {
794 	if (root->left == n)
795 		root->left = NULL;
796 	rb_erase_init(n, &root->rb);
797 	--root->count;
798 }
799 
800 /*
801  * would be nice to take fifo expire time into account as well
802  */
803 static struct request *
cfq_find_next_rq(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * last)804 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
805 		  struct request *last)
806 {
807 	struct rb_node *rbnext = rb_next(&last->rb_node);
808 	struct rb_node *rbprev = rb_prev(&last->rb_node);
809 	struct request *next = NULL, *prev = NULL;
810 
811 	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
812 
813 	if (rbprev)
814 		prev = rb_entry_rq(rbprev);
815 
816 	if (rbnext)
817 		next = rb_entry_rq(rbnext);
818 	else {
819 		rbnext = rb_first(&cfqq->sort_list);
820 		if (rbnext && rbnext != &last->rb_node)
821 			next = rb_entry_rq(rbnext);
822 	}
823 
824 	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
825 }
826 
cfq_slice_offset(struct cfq_data * cfqd,struct cfq_queue * cfqq)827 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
828 				      struct cfq_queue *cfqq)
829 {
830 	/*
831 	 * just an approximation, should be ok.
832 	 */
833 	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
834 		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
835 }
836 
837 static inline s64
cfqg_key(struct cfq_rb_root * st,struct cfq_group * cfqg)838 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
839 {
840 	return cfqg->vdisktime - st->min_vdisktime;
841 }
842 
843 static void
__cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)844 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
845 {
846 	struct rb_node **node = &st->rb.rb_node;
847 	struct rb_node *parent = NULL;
848 	struct cfq_group *__cfqg;
849 	s64 key = cfqg_key(st, cfqg);
850 	int left = 1;
851 
852 	while (*node != NULL) {
853 		parent = *node;
854 		__cfqg = rb_entry_cfqg(parent);
855 
856 		if (key < cfqg_key(st, __cfqg))
857 			node = &parent->rb_left;
858 		else {
859 			node = &parent->rb_right;
860 			left = 0;
861 		}
862 	}
863 
864 	if (left)
865 		st->left = &cfqg->rb_node;
866 
867 	rb_link_node(&cfqg->rb_node, parent, node);
868 	rb_insert_color(&cfqg->rb_node, &st->rb);
869 }
870 
871 static void
cfq_update_group_weight(struct cfq_group * cfqg)872 cfq_update_group_weight(struct cfq_group *cfqg)
873 {
874 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
875 	if (cfqg->needs_update) {
876 		cfqg->weight = cfqg->new_weight;
877 		cfqg->needs_update = false;
878 	}
879 }
880 
881 static void
cfq_group_service_tree_add(struct cfq_rb_root * st,struct cfq_group * cfqg)882 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
883 {
884 	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
885 
886 	cfq_update_group_weight(cfqg);
887 	__cfq_group_service_tree_add(st, cfqg);
888 	st->total_weight += cfqg->weight;
889 }
890 
891 static void
cfq_group_notify_queue_add(struct cfq_data * cfqd,struct cfq_group * cfqg)892 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
893 {
894 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
895 	struct cfq_group *__cfqg;
896 	struct rb_node *n;
897 
898 	cfqg->nr_cfqq++;
899 	if (!RB_EMPTY_NODE(&cfqg->rb_node))
900 		return;
901 
902 	/*
903 	 * Currently put the group at the end. Later implement something
904 	 * so that groups get lesser vtime based on their weights, so that
905 	 * if group does not loose all if it was not continuously backlogged.
906 	 */
907 	n = rb_last(&st->rb);
908 	if (n) {
909 		__cfqg = rb_entry_cfqg(n);
910 		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
911 	} else
912 		cfqg->vdisktime = st->min_vdisktime;
913 	cfq_group_service_tree_add(st, cfqg);
914 }
915 
916 static void
cfq_group_service_tree_del(struct cfq_rb_root * st,struct cfq_group * cfqg)917 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
918 {
919 	st->total_weight -= cfqg->weight;
920 	if (!RB_EMPTY_NODE(&cfqg->rb_node))
921 		cfq_rb_erase(&cfqg->rb_node, st);
922 }
923 
924 static void
cfq_group_notify_queue_del(struct cfq_data * cfqd,struct cfq_group * cfqg)925 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
926 {
927 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
928 
929 	BUG_ON(cfqg->nr_cfqq < 1);
930 	cfqg->nr_cfqq--;
931 
932 	/* If there are other cfq queues under this group, don't delete it */
933 	if (cfqg->nr_cfqq)
934 		return;
935 
936 	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
937 	cfq_group_service_tree_del(st, cfqg);
938 	cfqg->saved_workload_slice = 0;
939 	cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
940 }
941 
cfq_cfqq_slice_usage(struct cfq_queue * cfqq,unsigned int * unaccounted_time)942 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
943 						unsigned int *unaccounted_time)
944 {
945 	unsigned int slice_used;
946 
947 	/*
948 	 * Queue got expired before even a single request completed or
949 	 * got expired immediately after first request completion.
950 	 */
951 	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
952 		/*
953 		 * Also charge the seek time incurred to the group, otherwise
954 		 * if there are mutiple queues in the group, each can dispatch
955 		 * a single request on seeky media and cause lots of seek time
956 		 * and group will never know it.
957 		 */
958 		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
959 					1);
960 	} else {
961 		slice_used = jiffies - cfqq->slice_start;
962 		if (slice_used > cfqq->allocated_slice) {
963 			*unaccounted_time = slice_used - cfqq->allocated_slice;
964 			slice_used = cfqq->allocated_slice;
965 		}
966 		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
967 			*unaccounted_time += cfqq->slice_start -
968 					cfqq->dispatch_start;
969 	}
970 
971 	return slice_used;
972 }
973 
cfq_group_served(struct cfq_data * cfqd,struct cfq_group * cfqg,struct cfq_queue * cfqq)974 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
975 				struct cfq_queue *cfqq)
976 {
977 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
978 	unsigned int used_sl, charge, unaccounted_sl = 0;
979 	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
980 			- cfqg->service_tree_idle.count;
981 
982 	BUG_ON(nr_sync < 0);
983 	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
984 
985 	if (iops_mode(cfqd))
986 		charge = cfqq->slice_dispatch;
987 	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
988 		charge = cfqq->allocated_slice;
989 
990 	/* Can't update vdisktime while group is on service tree */
991 	cfq_group_service_tree_del(st, cfqg);
992 	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
993 	/* If a new weight was requested, update now, off tree */
994 	cfq_group_service_tree_add(st, cfqg);
995 
996 	/* This group is being expired. Save the context */
997 	if (time_after(cfqd->workload_expires, jiffies)) {
998 		cfqg->saved_workload_slice = cfqd->workload_expires
999 						- jiffies;
1000 		cfqg->saved_workload = cfqd->serving_type;
1001 		cfqg->saved_serving_prio = cfqd->serving_prio;
1002 	} else
1003 		cfqg->saved_workload_slice = 0;
1004 
1005 	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1006 					st->min_vdisktime);
1007 	cfq_log_cfqq(cfqq->cfqd, cfqq,
1008 		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1009 		     used_sl, cfqq->slice_dispatch, charge,
1010 		     iops_mode(cfqd), cfqq->nr_sectors);
1011 	cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1012 					  unaccounted_sl);
1013 	cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1014 }
1015 
1016 #ifdef CONFIG_CFQ_GROUP_IOSCHED
cfqg_of_blkg(struct blkio_group * blkg)1017 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1018 {
1019 	if (blkg)
1020 		return container_of(blkg, struct cfq_group, blkg);
1021 	return NULL;
1022 }
1023 
cfq_update_blkio_group_weight(void * key,struct blkio_group * blkg,unsigned int weight)1024 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1025 					  unsigned int weight)
1026 {
1027 	struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1028 	cfqg->new_weight = weight;
1029 	cfqg->needs_update = true;
1030 }
1031 
cfq_init_add_cfqg_lists(struct cfq_data * cfqd,struct cfq_group * cfqg,struct blkio_cgroup * blkcg)1032 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1033 			struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1034 {
1035 	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1036 	unsigned int major, minor;
1037 
1038 	/*
1039 	 * Add group onto cgroup list. It might happen that bdi->dev is
1040 	 * not initialized yet. Initialize this new group without major
1041 	 * and minor info and this info will be filled in once a new thread
1042 	 * comes for IO.
1043 	 */
1044 	if (bdi->dev) {
1045 		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1046 		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1047 					(void *)cfqd, MKDEV(major, minor));
1048 	} else
1049 		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1050 					(void *)cfqd, 0);
1051 
1052 	cfqd->nr_blkcg_linked_grps++;
1053 	cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1054 
1055 	/* Add group on cfqd list */
1056 	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1057 }
1058 
1059 /*
1060  * Should be called from sleepable context. No request queue lock as per
1061  * cpu stats are allocated dynamically and alloc_percpu needs to be called
1062  * from sleepable context.
1063  */
cfq_alloc_cfqg(struct cfq_data * cfqd)1064 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1065 {
1066 	struct cfq_group *cfqg = NULL;
1067 	int i, j, ret;
1068 	struct cfq_rb_root *st;
1069 
1070 	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1071 	if (!cfqg)
1072 		return NULL;
1073 
1074 	for_each_cfqg_st(cfqg, i, j, st)
1075 		*st = CFQ_RB_ROOT;
1076 	RB_CLEAR_NODE(&cfqg->rb_node);
1077 
1078 	cfqg->ttime.last_end_request = jiffies;
1079 
1080 	/*
1081 	 * Take the initial reference that will be released on destroy
1082 	 * This can be thought of a joint reference by cgroup and
1083 	 * elevator which will be dropped by either elevator exit
1084 	 * or cgroup deletion path depending on who is exiting first.
1085 	 */
1086 	cfqg->ref = 1;
1087 
1088 	ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1089 	if (ret) {
1090 		kfree(cfqg);
1091 		return NULL;
1092 	}
1093 
1094 	return cfqg;
1095 }
1096 
1097 static struct cfq_group *
cfq_find_cfqg(struct cfq_data * cfqd,struct blkio_cgroup * blkcg)1098 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1099 {
1100 	struct cfq_group *cfqg = NULL;
1101 	void *key = cfqd;
1102 	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1103 	unsigned int major, minor;
1104 
1105 	/*
1106 	 * This is the common case when there are no blkio cgroups.
1107 	 * Avoid lookup in this case
1108 	 */
1109 	if (blkcg == &blkio_root_cgroup)
1110 		cfqg = &cfqd->root_group;
1111 	else
1112 		cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1113 
1114 	if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1115 		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1116 		cfqg->blkg.dev = MKDEV(major, minor);
1117 	}
1118 
1119 	return cfqg;
1120 }
1121 
1122 /*
1123  * Search for the cfq group current task belongs to. request_queue lock must
1124  * be held.
1125  */
cfq_get_cfqg(struct cfq_data * cfqd)1126 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1127 {
1128 	struct blkio_cgroup *blkcg;
1129 	struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1130 	struct request_queue *q = cfqd->queue;
1131 
1132 	rcu_read_lock();
1133 	blkcg = task_blkio_cgroup(current);
1134 	cfqg = cfq_find_cfqg(cfqd, blkcg);
1135 	if (cfqg) {
1136 		rcu_read_unlock();
1137 		return cfqg;
1138 	}
1139 
1140 	/*
1141 	 * Need to allocate a group. Allocation of group also needs allocation
1142 	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1143 	 * we need to drop rcu lock and queue_lock before we call alloc.
1144 	 *
1145 	 * Not taking any queue reference here and assuming that queue is
1146 	 * around by the time we return. CFQ queue allocation code does
1147 	 * the same. It might be racy though.
1148 	 */
1149 
1150 	rcu_read_unlock();
1151 	spin_unlock_irq(q->queue_lock);
1152 
1153 	cfqg = cfq_alloc_cfqg(cfqd);
1154 
1155 	spin_lock_irq(q->queue_lock);
1156 
1157 	rcu_read_lock();
1158 	blkcg = task_blkio_cgroup(current);
1159 
1160 	/*
1161 	 * If some other thread already allocated the group while we were
1162 	 * not holding queue lock, free up the group
1163 	 */
1164 	__cfqg = cfq_find_cfqg(cfqd, blkcg);
1165 
1166 	if (__cfqg) {
1167 		kfree(cfqg);
1168 		rcu_read_unlock();
1169 		return __cfqg;
1170 	}
1171 
1172 	if (!cfqg)
1173 		cfqg = &cfqd->root_group;
1174 
1175 	cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1176 	rcu_read_unlock();
1177 	return cfqg;
1178 }
1179 
cfq_ref_get_cfqg(struct cfq_group * cfqg)1180 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1181 {
1182 	cfqg->ref++;
1183 	return cfqg;
1184 }
1185 
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)1186 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1187 {
1188 	/* Currently, all async queues are mapped to root group */
1189 	if (!cfq_cfqq_sync(cfqq))
1190 		cfqg = &cfqq->cfqd->root_group;
1191 
1192 	cfqq->cfqg = cfqg;
1193 	/* cfqq reference on cfqg */
1194 	cfqq->cfqg->ref++;
1195 }
1196 
cfq_put_cfqg(struct cfq_group * cfqg)1197 static void cfq_put_cfqg(struct cfq_group *cfqg)
1198 {
1199 	struct cfq_rb_root *st;
1200 	int i, j;
1201 
1202 	BUG_ON(cfqg->ref <= 0);
1203 	cfqg->ref--;
1204 	if (cfqg->ref)
1205 		return;
1206 	for_each_cfqg_st(cfqg, i, j, st)
1207 		BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1208 	free_percpu(cfqg->blkg.stats_cpu);
1209 	kfree(cfqg);
1210 }
1211 
cfq_destroy_cfqg(struct cfq_data * cfqd,struct cfq_group * cfqg)1212 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1213 {
1214 	/* Something wrong if we are trying to remove same group twice */
1215 	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1216 
1217 	hlist_del_init(&cfqg->cfqd_node);
1218 
1219 	BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1220 	cfqd->nr_blkcg_linked_grps--;
1221 
1222 	/*
1223 	 * Put the reference taken at the time of creation so that when all
1224 	 * queues are gone, group can be destroyed.
1225 	 */
1226 	cfq_put_cfqg(cfqg);
1227 }
1228 
cfq_release_cfq_groups(struct cfq_data * cfqd)1229 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1230 {
1231 	struct hlist_node *pos, *n;
1232 	struct cfq_group *cfqg;
1233 
1234 	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1235 		/*
1236 		 * If cgroup removal path got to blk_group first and removed
1237 		 * it from cgroup list, then it will take care of destroying
1238 		 * cfqg also.
1239 		 */
1240 		if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1241 			cfq_destroy_cfqg(cfqd, cfqg);
1242 	}
1243 }
1244 
1245 /*
1246  * Blk cgroup controller notification saying that blkio_group object is being
1247  * delinked as associated cgroup object is going away. That also means that
1248  * no new IO will come in this group. So get rid of this group as soon as
1249  * any pending IO in the group is finished.
1250  *
1251  * This function is called under rcu_read_lock(). key is the rcu protected
1252  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1253  * read lock.
1254  *
1255  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1256  * it should not be NULL as even if elevator was exiting, cgroup deltion
1257  * path got to it first.
1258  */
cfq_unlink_blkio_group(void * key,struct blkio_group * blkg)1259 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1260 {
1261 	unsigned long  flags;
1262 	struct cfq_data *cfqd = key;
1263 
1264 	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1265 	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1266 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1267 }
1268 
1269 #else /* GROUP_IOSCHED */
cfq_get_cfqg(struct cfq_data * cfqd)1270 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1271 {
1272 	return &cfqd->root_group;
1273 }
1274 
cfq_ref_get_cfqg(struct cfq_group * cfqg)1275 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1276 {
1277 	return cfqg;
1278 }
1279 
1280 static inline void
cfq_link_cfqq_cfqg(struct cfq_queue * cfqq,struct cfq_group * cfqg)1281 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1282 	cfqq->cfqg = cfqg;
1283 }
1284 
cfq_release_cfq_groups(struct cfq_data * cfqd)1285 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
cfq_put_cfqg(struct cfq_group * cfqg)1286 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1287 
1288 #endif /* GROUP_IOSCHED */
1289 
1290 /*
1291  * The cfqd->service_trees holds all pending cfq_queue's that have
1292  * requests waiting to be processed. It is sorted in the order that
1293  * we will service the queues.
1294  */
cfq_service_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool add_front)1295 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1296 				 bool add_front)
1297 {
1298 	struct rb_node **p, *parent;
1299 	struct cfq_queue *__cfqq;
1300 	unsigned long rb_key;
1301 	struct cfq_rb_root *service_tree;
1302 	int left;
1303 	int new_cfqq = 1;
1304 
1305 	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1306 						cfqq_type(cfqq));
1307 	if (cfq_class_idle(cfqq)) {
1308 		rb_key = CFQ_IDLE_DELAY;
1309 		parent = rb_last(&service_tree->rb);
1310 		if (parent && parent != &cfqq->rb_node) {
1311 			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1312 			rb_key += __cfqq->rb_key;
1313 		} else
1314 			rb_key += jiffies;
1315 	} else if (!add_front) {
1316 		/*
1317 		 * Get our rb key offset. Subtract any residual slice
1318 		 * value carried from last service. A negative resid
1319 		 * count indicates slice overrun, and this should position
1320 		 * the next service time further away in the tree.
1321 		 */
1322 		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1323 		rb_key -= cfqq->slice_resid;
1324 		cfqq->slice_resid = 0;
1325 	} else {
1326 		rb_key = -HZ;
1327 		__cfqq = cfq_rb_first(service_tree);
1328 		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1329 	}
1330 
1331 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1332 		new_cfqq = 0;
1333 		/*
1334 		 * same position, nothing more to do
1335 		 */
1336 		if (rb_key == cfqq->rb_key &&
1337 		    cfqq->service_tree == service_tree)
1338 			return;
1339 
1340 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1341 		cfqq->service_tree = NULL;
1342 	}
1343 
1344 	left = 1;
1345 	parent = NULL;
1346 	cfqq->service_tree = service_tree;
1347 	p = &service_tree->rb.rb_node;
1348 	while (*p) {
1349 		struct rb_node **n;
1350 
1351 		parent = *p;
1352 		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1353 
1354 		/*
1355 		 * sort by key, that represents service time.
1356 		 */
1357 		if (time_before(rb_key, __cfqq->rb_key))
1358 			n = &(*p)->rb_left;
1359 		else {
1360 			n = &(*p)->rb_right;
1361 			left = 0;
1362 		}
1363 
1364 		p = n;
1365 	}
1366 
1367 	if (left)
1368 		service_tree->left = &cfqq->rb_node;
1369 
1370 	cfqq->rb_key = rb_key;
1371 	rb_link_node(&cfqq->rb_node, parent, p);
1372 	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1373 	service_tree->count++;
1374 	if (add_front || !new_cfqq)
1375 		return;
1376 	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1377 }
1378 
1379 static struct cfq_queue *
cfq_prio_tree_lookup(struct cfq_data * cfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)1380 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1381 		     sector_t sector, struct rb_node **ret_parent,
1382 		     struct rb_node ***rb_link)
1383 {
1384 	struct rb_node **p, *parent;
1385 	struct cfq_queue *cfqq = NULL;
1386 
1387 	parent = NULL;
1388 	p = &root->rb_node;
1389 	while (*p) {
1390 		struct rb_node **n;
1391 
1392 		parent = *p;
1393 		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1394 
1395 		/*
1396 		 * Sort strictly based on sector.  Smallest to the left,
1397 		 * largest to the right.
1398 		 */
1399 		if (sector > blk_rq_pos(cfqq->next_rq))
1400 			n = &(*p)->rb_right;
1401 		else if (sector < blk_rq_pos(cfqq->next_rq))
1402 			n = &(*p)->rb_left;
1403 		else
1404 			break;
1405 		p = n;
1406 		cfqq = NULL;
1407 	}
1408 
1409 	*ret_parent = parent;
1410 	if (rb_link)
1411 		*rb_link = p;
1412 	return cfqq;
1413 }
1414 
cfq_prio_tree_add(struct cfq_data * cfqd,struct cfq_queue * cfqq)1415 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1416 {
1417 	struct rb_node **p, *parent;
1418 	struct cfq_queue *__cfqq;
1419 
1420 	if (cfqq->p_root) {
1421 		rb_erase(&cfqq->p_node, cfqq->p_root);
1422 		cfqq->p_root = NULL;
1423 	}
1424 
1425 	if (cfq_class_idle(cfqq))
1426 		return;
1427 	if (!cfqq->next_rq)
1428 		return;
1429 
1430 	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1431 	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1432 				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1433 	if (!__cfqq) {
1434 		rb_link_node(&cfqq->p_node, parent, p);
1435 		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1436 	} else
1437 		cfqq->p_root = NULL;
1438 }
1439 
1440 /*
1441  * Update cfqq's position in the service tree.
1442  */
cfq_resort_rr_list(struct cfq_data * cfqd,struct cfq_queue * cfqq)1443 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1444 {
1445 	/*
1446 	 * Resorting requires the cfqq to be on the RR list already.
1447 	 */
1448 	if (cfq_cfqq_on_rr(cfqq)) {
1449 		cfq_service_tree_add(cfqd, cfqq, 0);
1450 		cfq_prio_tree_add(cfqd, cfqq);
1451 	}
1452 }
1453 
1454 /*
1455  * add to busy list of queues for service, trying to be fair in ordering
1456  * the pending list according to last request service
1457  */
cfq_add_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)1458 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1459 {
1460 	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1461 	BUG_ON(cfq_cfqq_on_rr(cfqq));
1462 	cfq_mark_cfqq_on_rr(cfqq);
1463 	cfqd->busy_queues++;
1464 	if (cfq_cfqq_sync(cfqq))
1465 		cfqd->busy_sync_queues++;
1466 
1467 	cfq_resort_rr_list(cfqd, cfqq);
1468 }
1469 
1470 /*
1471  * Called when the cfqq no longer has requests pending, remove it from
1472  * the service tree.
1473  */
cfq_del_cfqq_rr(struct cfq_data * cfqd,struct cfq_queue * cfqq)1474 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1475 {
1476 	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1477 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1478 	cfq_clear_cfqq_on_rr(cfqq);
1479 
1480 	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1481 		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1482 		cfqq->service_tree = NULL;
1483 	}
1484 	if (cfqq->p_root) {
1485 		rb_erase(&cfqq->p_node, cfqq->p_root);
1486 		cfqq->p_root = NULL;
1487 	}
1488 
1489 	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1490 	BUG_ON(!cfqd->busy_queues);
1491 	cfqd->busy_queues--;
1492 	if (cfq_cfqq_sync(cfqq))
1493 		cfqd->busy_sync_queues--;
1494 }
1495 
1496 /*
1497  * rb tree support functions
1498  */
cfq_del_rq_rb(struct request * rq)1499 static void cfq_del_rq_rb(struct request *rq)
1500 {
1501 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1502 	const int sync = rq_is_sync(rq);
1503 
1504 	BUG_ON(!cfqq->queued[sync]);
1505 	cfqq->queued[sync]--;
1506 
1507 	elv_rb_del(&cfqq->sort_list, rq);
1508 
1509 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1510 		/*
1511 		 * Queue will be deleted from service tree when we actually
1512 		 * expire it later. Right now just remove it from prio tree
1513 		 * as it is empty.
1514 		 */
1515 		if (cfqq->p_root) {
1516 			rb_erase(&cfqq->p_node, cfqq->p_root);
1517 			cfqq->p_root = NULL;
1518 		}
1519 	}
1520 }
1521 
cfq_add_rq_rb(struct request * rq)1522 static void cfq_add_rq_rb(struct request *rq)
1523 {
1524 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1525 	struct cfq_data *cfqd = cfqq->cfqd;
1526 	struct request *prev;
1527 
1528 	cfqq->queued[rq_is_sync(rq)]++;
1529 
1530 	elv_rb_add(&cfqq->sort_list, rq);
1531 
1532 	if (!cfq_cfqq_on_rr(cfqq))
1533 		cfq_add_cfqq_rr(cfqd, cfqq);
1534 
1535 	/*
1536 	 * check if this request is a better next-serve candidate
1537 	 */
1538 	prev = cfqq->next_rq;
1539 	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1540 
1541 	/*
1542 	 * adjust priority tree position, if ->next_rq changes
1543 	 */
1544 	if (prev != cfqq->next_rq)
1545 		cfq_prio_tree_add(cfqd, cfqq);
1546 
1547 	BUG_ON(!cfqq->next_rq);
1548 }
1549 
cfq_reposition_rq_rb(struct cfq_queue * cfqq,struct request * rq)1550 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1551 {
1552 	elv_rb_del(&cfqq->sort_list, rq);
1553 	cfqq->queued[rq_is_sync(rq)]--;
1554 	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1555 					rq_data_dir(rq), rq_is_sync(rq));
1556 	cfq_add_rq_rb(rq);
1557 	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1558 			&cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1559 			rq_is_sync(rq));
1560 }
1561 
1562 static struct request *
cfq_find_rq_fmerge(struct cfq_data * cfqd,struct bio * bio)1563 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1564 {
1565 	struct task_struct *tsk = current;
1566 	struct cfq_io_cq *cic;
1567 	struct cfq_queue *cfqq;
1568 
1569 	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1570 	if (!cic)
1571 		return NULL;
1572 
1573 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1574 	if (cfqq) {
1575 		sector_t sector = bio->bi_sector + bio_sectors(bio);
1576 
1577 		return elv_rb_find(&cfqq->sort_list, sector);
1578 	}
1579 
1580 	return NULL;
1581 }
1582 
cfq_activate_request(struct request_queue * q,struct request * rq)1583 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1584 {
1585 	struct cfq_data *cfqd = q->elevator->elevator_data;
1586 
1587 	cfqd->rq_in_driver++;
1588 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1589 						cfqd->rq_in_driver);
1590 
1591 	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1592 }
1593 
cfq_deactivate_request(struct request_queue * q,struct request * rq)1594 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1595 {
1596 	struct cfq_data *cfqd = q->elevator->elevator_data;
1597 
1598 	WARN_ON(!cfqd->rq_in_driver);
1599 	cfqd->rq_in_driver--;
1600 	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1601 						cfqd->rq_in_driver);
1602 }
1603 
cfq_remove_request(struct request * rq)1604 static void cfq_remove_request(struct request *rq)
1605 {
1606 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1607 
1608 	if (cfqq->next_rq == rq)
1609 		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1610 
1611 	list_del_init(&rq->queuelist);
1612 	cfq_del_rq_rb(rq);
1613 
1614 	cfqq->cfqd->rq_queued--;
1615 	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1616 					rq_data_dir(rq), rq_is_sync(rq));
1617 	if (rq->cmd_flags & REQ_PRIO) {
1618 		WARN_ON(!cfqq->prio_pending);
1619 		cfqq->prio_pending--;
1620 	}
1621 }
1622 
cfq_merge(struct request_queue * q,struct request ** req,struct bio * bio)1623 static int cfq_merge(struct request_queue *q, struct request **req,
1624 		     struct bio *bio)
1625 {
1626 	struct cfq_data *cfqd = q->elevator->elevator_data;
1627 	struct request *__rq;
1628 
1629 	__rq = cfq_find_rq_fmerge(cfqd, bio);
1630 	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1631 		*req = __rq;
1632 		return ELEVATOR_FRONT_MERGE;
1633 	}
1634 
1635 	return ELEVATOR_NO_MERGE;
1636 }
1637 
cfq_merged_request(struct request_queue * q,struct request * req,int type)1638 static void cfq_merged_request(struct request_queue *q, struct request *req,
1639 			       int type)
1640 {
1641 	if (type == ELEVATOR_FRONT_MERGE) {
1642 		struct cfq_queue *cfqq = RQ_CFQQ(req);
1643 
1644 		cfq_reposition_rq_rb(cfqq, req);
1645 	}
1646 }
1647 
cfq_bio_merged(struct request_queue * q,struct request * req,struct bio * bio)1648 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1649 				struct bio *bio)
1650 {
1651 	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1652 					bio_data_dir(bio), cfq_bio_sync(bio));
1653 }
1654 
1655 static void
cfq_merged_requests(struct request_queue * q,struct request * rq,struct request * next)1656 cfq_merged_requests(struct request_queue *q, struct request *rq,
1657 		    struct request *next)
1658 {
1659 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1660 	struct cfq_data *cfqd = q->elevator->elevator_data;
1661 
1662 	/*
1663 	 * reposition in fifo if next is older than rq
1664 	 */
1665 	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1666 	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1667 		list_move(&rq->queuelist, &next->queuelist);
1668 		rq_set_fifo_time(rq, rq_fifo_time(next));
1669 	}
1670 
1671 	if (cfqq->next_rq == next)
1672 		cfqq->next_rq = rq;
1673 	cfq_remove_request(next);
1674 	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1675 					rq_data_dir(next), rq_is_sync(next));
1676 
1677 	cfqq = RQ_CFQQ(next);
1678 	/*
1679 	 * all requests of this queue are merged to other queues, delete it
1680 	 * from the service tree. If it's the active_queue,
1681 	 * cfq_dispatch_requests() will choose to expire it or do idle
1682 	 */
1683 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1684 	    cfqq != cfqd->active_queue)
1685 		cfq_del_cfqq_rr(cfqd, cfqq);
1686 }
1687 
cfq_allow_merge(struct request_queue * q,struct request * rq,struct bio * bio)1688 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1689 			   struct bio *bio)
1690 {
1691 	struct cfq_data *cfqd = q->elevator->elevator_data;
1692 	struct cfq_io_cq *cic;
1693 	struct cfq_queue *cfqq;
1694 
1695 	/*
1696 	 * Disallow merge of a sync bio into an async request.
1697 	 */
1698 	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1699 		return false;
1700 
1701 	/*
1702 	 * Lookup the cfqq that this bio will be queued with and allow
1703 	 * merge only if rq is queued there.
1704 	 */
1705 	cic = cfq_cic_lookup(cfqd, current->io_context);
1706 	if (!cic)
1707 		return false;
1708 
1709 	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1710 	return cfqq == RQ_CFQQ(rq);
1711 }
1712 
cfq_del_timer(struct cfq_data * cfqd,struct cfq_queue * cfqq)1713 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1714 {
1715 	del_timer(&cfqd->idle_slice_timer);
1716 	cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1717 }
1718 
__cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)1719 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1720 				   struct cfq_queue *cfqq)
1721 {
1722 	if (cfqq) {
1723 		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1724 				cfqd->serving_prio, cfqd->serving_type);
1725 		cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1726 		cfqq->slice_start = 0;
1727 		cfqq->dispatch_start = jiffies;
1728 		cfqq->allocated_slice = 0;
1729 		cfqq->slice_end = 0;
1730 		cfqq->slice_dispatch = 0;
1731 		cfqq->nr_sectors = 0;
1732 
1733 		cfq_clear_cfqq_wait_request(cfqq);
1734 		cfq_clear_cfqq_must_dispatch(cfqq);
1735 		cfq_clear_cfqq_must_alloc_slice(cfqq);
1736 		cfq_clear_cfqq_fifo_expire(cfqq);
1737 		cfq_mark_cfqq_slice_new(cfqq);
1738 
1739 		cfq_del_timer(cfqd, cfqq);
1740 	}
1741 
1742 	cfqd->active_queue = cfqq;
1743 }
1744 
1745 /*
1746  * current cfqq expired its slice (or was too idle), select new one
1747  */
1748 static void
__cfq_slice_expired(struct cfq_data * cfqd,struct cfq_queue * cfqq,bool timed_out)1749 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1750 		    bool timed_out)
1751 {
1752 	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1753 
1754 	if (cfq_cfqq_wait_request(cfqq))
1755 		cfq_del_timer(cfqd, cfqq);
1756 
1757 	cfq_clear_cfqq_wait_request(cfqq);
1758 	cfq_clear_cfqq_wait_busy(cfqq);
1759 
1760 	/*
1761 	 * If this cfqq is shared between multiple processes, check to
1762 	 * make sure that those processes are still issuing I/Os within
1763 	 * the mean seek distance.  If not, it may be time to break the
1764 	 * queues apart again.
1765 	 */
1766 	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1767 		cfq_mark_cfqq_split_coop(cfqq);
1768 
1769 	/*
1770 	 * store what was left of this slice, if the queue idled/timed out
1771 	 */
1772 	if (timed_out) {
1773 		if (cfq_cfqq_slice_new(cfqq))
1774 			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1775 		else
1776 			cfqq->slice_resid = cfqq->slice_end - jiffies;
1777 		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1778 	}
1779 
1780 	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1781 
1782 	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1783 		cfq_del_cfqq_rr(cfqd, cfqq);
1784 
1785 	cfq_resort_rr_list(cfqd, cfqq);
1786 
1787 	if (cfqq == cfqd->active_queue)
1788 		cfqd->active_queue = NULL;
1789 
1790 	if (cfqd->active_cic) {
1791 		put_io_context(cfqd->active_cic->icq.ioc);
1792 		cfqd->active_cic = NULL;
1793 	}
1794 }
1795 
cfq_slice_expired(struct cfq_data * cfqd,bool timed_out)1796 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1797 {
1798 	struct cfq_queue *cfqq = cfqd->active_queue;
1799 
1800 	if (cfqq)
1801 		__cfq_slice_expired(cfqd, cfqq, timed_out);
1802 }
1803 
1804 /*
1805  * Get next queue for service. Unless we have a queue preemption,
1806  * we'll simply select the first cfqq in the service tree.
1807  */
cfq_get_next_queue(struct cfq_data * cfqd)1808 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1809 {
1810 	struct cfq_rb_root *service_tree =
1811 		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1812 					cfqd->serving_type);
1813 
1814 	if (!cfqd->rq_queued)
1815 		return NULL;
1816 
1817 	/* There is nothing to dispatch */
1818 	if (!service_tree)
1819 		return NULL;
1820 	if (RB_EMPTY_ROOT(&service_tree->rb))
1821 		return NULL;
1822 	return cfq_rb_first(service_tree);
1823 }
1824 
cfq_get_next_queue_forced(struct cfq_data * cfqd)1825 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1826 {
1827 	struct cfq_group *cfqg;
1828 	struct cfq_queue *cfqq;
1829 	int i, j;
1830 	struct cfq_rb_root *st;
1831 
1832 	if (!cfqd->rq_queued)
1833 		return NULL;
1834 
1835 	cfqg = cfq_get_next_cfqg(cfqd);
1836 	if (!cfqg)
1837 		return NULL;
1838 
1839 	for_each_cfqg_st(cfqg, i, j, st)
1840 		if ((cfqq = cfq_rb_first(st)) != NULL)
1841 			return cfqq;
1842 	return NULL;
1843 }
1844 
1845 /*
1846  * Get and set a new active queue for service.
1847  */
cfq_set_active_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)1848 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1849 					      struct cfq_queue *cfqq)
1850 {
1851 	if (!cfqq)
1852 		cfqq = cfq_get_next_queue(cfqd);
1853 
1854 	__cfq_set_active_queue(cfqd, cfqq);
1855 	return cfqq;
1856 }
1857 
cfq_dist_from_last(struct cfq_data * cfqd,struct request * rq)1858 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1859 					  struct request *rq)
1860 {
1861 	if (blk_rq_pos(rq) >= cfqd->last_position)
1862 		return blk_rq_pos(rq) - cfqd->last_position;
1863 	else
1864 		return cfqd->last_position - blk_rq_pos(rq);
1865 }
1866 
cfq_rq_close(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)1867 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1868 			       struct request *rq)
1869 {
1870 	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1871 }
1872 
cfqq_close(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)1873 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1874 				    struct cfq_queue *cur_cfqq)
1875 {
1876 	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1877 	struct rb_node *parent, *node;
1878 	struct cfq_queue *__cfqq;
1879 	sector_t sector = cfqd->last_position;
1880 
1881 	if (RB_EMPTY_ROOT(root))
1882 		return NULL;
1883 
1884 	/*
1885 	 * First, if we find a request starting at the end of the last
1886 	 * request, choose it.
1887 	 */
1888 	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1889 	if (__cfqq)
1890 		return __cfqq;
1891 
1892 	/*
1893 	 * If the exact sector wasn't found, the parent of the NULL leaf
1894 	 * will contain the closest sector.
1895 	 */
1896 	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1897 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1898 		return __cfqq;
1899 
1900 	if (blk_rq_pos(__cfqq->next_rq) < sector)
1901 		node = rb_next(&__cfqq->p_node);
1902 	else
1903 		node = rb_prev(&__cfqq->p_node);
1904 	if (!node)
1905 		return NULL;
1906 
1907 	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1908 	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1909 		return __cfqq;
1910 
1911 	return NULL;
1912 }
1913 
1914 /*
1915  * cfqd - obvious
1916  * cur_cfqq - passed in so that we don't decide that the current queue is
1917  * 	      closely cooperating with itself.
1918  *
1919  * So, basically we're assuming that that cur_cfqq has dispatched at least
1920  * one request, and that cfqd->last_position reflects a position on the disk
1921  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1922  * assumption.
1923  */
cfq_close_cooperator(struct cfq_data * cfqd,struct cfq_queue * cur_cfqq)1924 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1925 					      struct cfq_queue *cur_cfqq)
1926 {
1927 	struct cfq_queue *cfqq;
1928 
1929 	if (cfq_class_idle(cur_cfqq))
1930 		return NULL;
1931 	if (!cfq_cfqq_sync(cur_cfqq))
1932 		return NULL;
1933 	if (CFQQ_SEEKY(cur_cfqq))
1934 		return NULL;
1935 
1936 	/*
1937 	 * Don't search priority tree if it's the only queue in the group.
1938 	 */
1939 	if (cur_cfqq->cfqg->nr_cfqq == 1)
1940 		return NULL;
1941 
1942 	/*
1943 	 * We should notice if some of the queues are cooperating, eg
1944 	 * working closely on the same area of the disk. In that case,
1945 	 * we can group them together and don't waste time idling.
1946 	 */
1947 	cfqq = cfqq_close(cfqd, cur_cfqq);
1948 	if (!cfqq)
1949 		return NULL;
1950 
1951 	/* If new queue belongs to different cfq_group, don't choose it */
1952 	if (cur_cfqq->cfqg != cfqq->cfqg)
1953 		return NULL;
1954 
1955 	/*
1956 	 * It only makes sense to merge sync queues.
1957 	 */
1958 	if (!cfq_cfqq_sync(cfqq))
1959 		return NULL;
1960 	if (CFQQ_SEEKY(cfqq))
1961 		return NULL;
1962 
1963 	/*
1964 	 * Do not merge queues of different priority classes
1965 	 */
1966 	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1967 		return NULL;
1968 
1969 	return cfqq;
1970 }
1971 
1972 /*
1973  * Determine whether we should enforce idle window for this queue.
1974  */
1975 
cfq_should_idle(struct cfq_data * cfqd,struct cfq_queue * cfqq)1976 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1977 {
1978 	enum wl_prio_t prio = cfqq_prio(cfqq);
1979 	struct cfq_rb_root *service_tree = cfqq->service_tree;
1980 
1981 	BUG_ON(!service_tree);
1982 	BUG_ON(!service_tree->count);
1983 
1984 	if (!cfqd->cfq_slice_idle)
1985 		return false;
1986 
1987 	/* We never do for idle class queues. */
1988 	if (prio == IDLE_WORKLOAD)
1989 		return false;
1990 
1991 	/* We do for queues that were marked with idle window flag. */
1992 	if (cfq_cfqq_idle_window(cfqq) &&
1993 	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1994 		return true;
1995 
1996 	/*
1997 	 * Otherwise, we do only if they are the last ones
1998 	 * in their service tree.
1999 	 */
2000 	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2001 	   !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2002 		return true;
2003 	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2004 			service_tree->count);
2005 	return false;
2006 }
2007 
cfq_arm_slice_timer(struct cfq_data * cfqd)2008 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2009 {
2010 	struct cfq_queue *cfqq = cfqd->active_queue;
2011 	struct cfq_io_cq *cic;
2012 	unsigned long sl, group_idle = 0;
2013 
2014 	/*
2015 	 * SSD device without seek penalty, disable idling. But only do so
2016 	 * for devices that support queuing, otherwise we still have a problem
2017 	 * with sync vs async workloads.
2018 	 */
2019 	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2020 		return;
2021 
2022 	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2023 	WARN_ON(cfq_cfqq_slice_new(cfqq));
2024 
2025 	/*
2026 	 * idle is disabled, either manually or by past process history
2027 	 */
2028 	if (!cfq_should_idle(cfqd, cfqq)) {
2029 		/* no queue idling. Check for group idling */
2030 		if (cfqd->cfq_group_idle)
2031 			group_idle = cfqd->cfq_group_idle;
2032 		else
2033 			return;
2034 	}
2035 
2036 	/*
2037 	 * still active requests from this queue, don't idle
2038 	 */
2039 	if (cfqq->dispatched)
2040 		return;
2041 
2042 	/*
2043 	 * task has exited, don't wait
2044 	 */
2045 	cic = cfqd->active_cic;
2046 	if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
2047 		return;
2048 
2049 	/*
2050 	 * If our average think time is larger than the remaining time
2051 	 * slice, then don't idle. This avoids overrunning the allotted
2052 	 * time slice.
2053 	 */
2054 	if (sample_valid(cic->ttime.ttime_samples) &&
2055 	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2056 		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2057 			     cic->ttime.ttime_mean);
2058 		return;
2059 	}
2060 
2061 	/* There are other queues in the group, don't do group idle */
2062 	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2063 		return;
2064 
2065 	cfq_mark_cfqq_wait_request(cfqq);
2066 
2067 	if (group_idle)
2068 		sl = cfqd->cfq_group_idle;
2069 	else
2070 		sl = cfqd->cfq_slice_idle;
2071 
2072 	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2073 	cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2074 	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2075 			group_idle ? 1 : 0);
2076 }
2077 
2078 /*
2079  * Move request from internal lists to the request queue dispatch list.
2080  */
cfq_dispatch_insert(struct request_queue * q,struct request * rq)2081 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2082 {
2083 	struct cfq_data *cfqd = q->elevator->elevator_data;
2084 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2085 
2086 	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2087 
2088 	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2089 	cfq_remove_request(rq);
2090 	cfqq->dispatched++;
2091 	(RQ_CFQG(rq))->dispatched++;
2092 	elv_dispatch_sort(q, rq);
2093 
2094 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2095 	cfqq->nr_sectors += blk_rq_sectors(rq);
2096 	cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2097 					rq_data_dir(rq), rq_is_sync(rq));
2098 }
2099 
2100 /*
2101  * return expired entry, or NULL to just start from scratch in rbtree
2102  */
cfq_check_fifo(struct cfq_queue * cfqq)2103 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2104 {
2105 	struct request *rq = NULL;
2106 
2107 	if (cfq_cfqq_fifo_expire(cfqq))
2108 		return NULL;
2109 
2110 	cfq_mark_cfqq_fifo_expire(cfqq);
2111 
2112 	if (list_empty(&cfqq->fifo))
2113 		return NULL;
2114 
2115 	rq = rq_entry_fifo(cfqq->fifo.next);
2116 	if (time_before(jiffies, rq_fifo_time(rq)))
2117 		rq = NULL;
2118 
2119 	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2120 	return rq;
2121 }
2122 
2123 static inline int
cfq_prio_to_maxrq(struct cfq_data * cfqd,struct cfq_queue * cfqq)2124 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2125 {
2126 	const int base_rq = cfqd->cfq_slice_async_rq;
2127 
2128 	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2129 
2130 	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2131 }
2132 
2133 /*
2134  * Must be called with the queue_lock held.
2135  */
cfqq_process_refs(struct cfq_queue * cfqq)2136 static int cfqq_process_refs(struct cfq_queue *cfqq)
2137 {
2138 	int process_refs, io_refs;
2139 
2140 	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2141 	process_refs = cfqq->ref - io_refs;
2142 	BUG_ON(process_refs < 0);
2143 	return process_refs;
2144 }
2145 
cfq_setup_merge(struct cfq_queue * cfqq,struct cfq_queue * new_cfqq)2146 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2147 {
2148 	int process_refs, new_process_refs;
2149 	struct cfq_queue *__cfqq;
2150 
2151 	/*
2152 	 * If there are no process references on the new_cfqq, then it is
2153 	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2154 	 * chain may have dropped their last reference (not just their
2155 	 * last process reference).
2156 	 */
2157 	if (!cfqq_process_refs(new_cfqq))
2158 		return;
2159 
2160 	/* Avoid a circular list and skip interim queue merges */
2161 	while ((__cfqq = new_cfqq->new_cfqq)) {
2162 		if (__cfqq == cfqq)
2163 			return;
2164 		new_cfqq = __cfqq;
2165 	}
2166 
2167 	process_refs = cfqq_process_refs(cfqq);
2168 	new_process_refs = cfqq_process_refs(new_cfqq);
2169 	/*
2170 	 * If the process for the cfqq has gone away, there is no
2171 	 * sense in merging the queues.
2172 	 */
2173 	if (process_refs == 0 || new_process_refs == 0)
2174 		return;
2175 
2176 	/*
2177 	 * Merge in the direction of the lesser amount of work.
2178 	 */
2179 	if (new_process_refs >= process_refs) {
2180 		cfqq->new_cfqq = new_cfqq;
2181 		new_cfqq->ref += process_refs;
2182 	} else {
2183 		new_cfqq->new_cfqq = cfqq;
2184 		cfqq->ref += new_process_refs;
2185 	}
2186 }
2187 
cfq_choose_wl(struct cfq_data * cfqd,struct cfq_group * cfqg,enum wl_prio_t prio)2188 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2189 				struct cfq_group *cfqg, enum wl_prio_t prio)
2190 {
2191 	struct cfq_queue *queue;
2192 	int i;
2193 	bool key_valid = false;
2194 	unsigned long lowest_key = 0;
2195 	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2196 
2197 	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2198 		/* select the one with lowest rb_key */
2199 		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2200 		if (queue &&
2201 		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2202 			lowest_key = queue->rb_key;
2203 			cur_best = i;
2204 			key_valid = true;
2205 		}
2206 	}
2207 
2208 	return cur_best;
2209 }
2210 
choose_service_tree(struct cfq_data * cfqd,struct cfq_group * cfqg)2211 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2212 {
2213 	unsigned slice;
2214 	unsigned count;
2215 	struct cfq_rb_root *st;
2216 	unsigned group_slice;
2217 	enum wl_prio_t original_prio = cfqd->serving_prio;
2218 
2219 	/* Choose next priority. RT > BE > IDLE */
2220 	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2221 		cfqd->serving_prio = RT_WORKLOAD;
2222 	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2223 		cfqd->serving_prio = BE_WORKLOAD;
2224 	else {
2225 		cfqd->serving_prio = IDLE_WORKLOAD;
2226 		cfqd->workload_expires = jiffies + 1;
2227 		return;
2228 	}
2229 
2230 	if (original_prio != cfqd->serving_prio)
2231 		goto new_workload;
2232 
2233 	/*
2234 	 * For RT and BE, we have to choose also the type
2235 	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2236 	 * expiration time
2237 	 */
2238 	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2239 	count = st->count;
2240 
2241 	/*
2242 	 * check workload expiration, and that we still have other queues ready
2243 	 */
2244 	if (count && !time_after(jiffies, cfqd->workload_expires))
2245 		return;
2246 
2247 new_workload:
2248 	/* otherwise select new workload type */
2249 	cfqd->serving_type =
2250 		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2251 	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2252 	count = st->count;
2253 
2254 	/*
2255 	 * the workload slice is computed as a fraction of target latency
2256 	 * proportional to the number of queues in that workload, over
2257 	 * all the queues in the same priority class
2258 	 */
2259 	group_slice = cfq_group_slice(cfqd, cfqg);
2260 
2261 	slice = group_slice * count /
2262 		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2263 		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2264 
2265 	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2266 		unsigned int tmp;
2267 
2268 		/*
2269 		 * Async queues are currently system wide. Just taking
2270 		 * proportion of queues with-in same group will lead to higher
2271 		 * async ratio system wide as generally root group is going
2272 		 * to have higher weight. A more accurate thing would be to
2273 		 * calculate system wide asnc/sync ratio.
2274 		 */
2275 		tmp = cfqd->cfq_target_latency *
2276 			cfqg_busy_async_queues(cfqd, cfqg);
2277 		tmp = tmp/cfqd->busy_queues;
2278 		slice = min_t(unsigned, slice, tmp);
2279 
2280 		/* async workload slice is scaled down according to
2281 		 * the sync/async slice ratio. */
2282 		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2283 	} else
2284 		/* sync workload slice is at least 2 * cfq_slice_idle */
2285 		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2286 
2287 	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2288 	cfq_log(cfqd, "workload slice:%d", slice);
2289 	cfqd->workload_expires = jiffies + slice;
2290 }
2291 
cfq_get_next_cfqg(struct cfq_data * cfqd)2292 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2293 {
2294 	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2295 	struct cfq_group *cfqg;
2296 
2297 	if (RB_EMPTY_ROOT(&st->rb))
2298 		return NULL;
2299 	cfqg = cfq_rb_first_group(st);
2300 	update_min_vdisktime(st);
2301 	return cfqg;
2302 }
2303 
cfq_choose_cfqg(struct cfq_data * cfqd)2304 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2305 {
2306 	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2307 
2308 	cfqd->serving_group = cfqg;
2309 
2310 	/* Restore the workload type data */
2311 	if (cfqg->saved_workload_slice) {
2312 		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2313 		cfqd->serving_type = cfqg->saved_workload;
2314 		cfqd->serving_prio = cfqg->saved_serving_prio;
2315 	} else
2316 		cfqd->workload_expires = jiffies - 1;
2317 
2318 	choose_service_tree(cfqd, cfqg);
2319 }
2320 
2321 /*
2322  * Select a queue for service. If we have a current active queue,
2323  * check whether to continue servicing it, or retrieve and set a new one.
2324  */
cfq_select_queue(struct cfq_data * cfqd)2325 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2326 {
2327 	struct cfq_queue *cfqq, *new_cfqq = NULL;
2328 
2329 	cfqq = cfqd->active_queue;
2330 	if (!cfqq)
2331 		goto new_queue;
2332 
2333 	if (!cfqd->rq_queued)
2334 		return NULL;
2335 
2336 	/*
2337 	 * We were waiting for group to get backlogged. Expire the queue
2338 	 */
2339 	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2340 		goto expire;
2341 
2342 	/*
2343 	 * The active queue has run out of time, expire it and select new.
2344 	 */
2345 	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2346 		/*
2347 		 * If slice had not expired at the completion of last request
2348 		 * we might not have turned on wait_busy flag. Don't expire
2349 		 * the queue yet. Allow the group to get backlogged.
2350 		 *
2351 		 * The very fact that we have used the slice, that means we
2352 		 * have been idling all along on this queue and it should be
2353 		 * ok to wait for this request to complete.
2354 		 */
2355 		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2356 		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2357 			cfqq = NULL;
2358 			goto keep_queue;
2359 		} else
2360 			goto check_group_idle;
2361 	}
2362 
2363 	/*
2364 	 * The active queue has requests and isn't expired, allow it to
2365 	 * dispatch.
2366 	 */
2367 	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2368 		goto keep_queue;
2369 
2370 	/*
2371 	 * If another queue has a request waiting within our mean seek
2372 	 * distance, let it run.  The expire code will check for close
2373 	 * cooperators and put the close queue at the front of the service
2374 	 * tree.  If possible, merge the expiring queue with the new cfqq.
2375 	 */
2376 	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2377 	if (new_cfqq) {
2378 		if (!cfqq->new_cfqq)
2379 			cfq_setup_merge(cfqq, new_cfqq);
2380 		goto expire;
2381 	}
2382 
2383 	/*
2384 	 * No requests pending. If the active queue still has requests in
2385 	 * flight or is idling for a new request, allow either of these
2386 	 * conditions to happen (or time out) before selecting a new queue.
2387 	 */
2388 	if (timer_pending(&cfqd->idle_slice_timer)) {
2389 		cfqq = NULL;
2390 		goto keep_queue;
2391 	}
2392 
2393 	/*
2394 	 * This is a deep seek queue, but the device is much faster than
2395 	 * the queue can deliver, don't idle
2396 	 **/
2397 	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2398 	    (cfq_cfqq_slice_new(cfqq) ||
2399 	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2400 		cfq_clear_cfqq_deep(cfqq);
2401 		cfq_clear_cfqq_idle_window(cfqq);
2402 	}
2403 
2404 	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2405 		cfqq = NULL;
2406 		goto keep_queue;
2407 	}
2408 
2409 	/*
2410 	 * If group idle is enabled and there are requests dispatched from
2411 	 * this group, wait for requests to complete.
2412 	 */
2413 check_group_idle:
2414 	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2415 	    cfqq->cfqg->dispatched &&
2416 	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2417 		cfqq = NULL;
2418 		goto keep_queue;
2419 	}
2420 
2421 expire:
2422 	cfq_slice_expired(cfqd, 0);
2423 new_queue:
2424 	/*
2425 	 * Current queue expired. Check if we have to switch to a new
2426 	 * service tree
2427 	 */
2428 	if (!new_cfqq)
2429 		cfq_choose_cfqg(cfqd);
2430 
2431 	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2432 keep_queue:
2433 	return cfqq;
2434 }
2435 
__cfq_forced_dispatch_cfqq(struct cfq_queue * cfqq)2436 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2437 {
2438 	int dispatched = 0;
2439 
2440 	while (cfqq->next_rq) {
2441 		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2442 		dispatched++;
2443 	}
2444 
2445 	BUG_ON(!list_empty(&cfqq->fifo));
2446 
2447 	/* By default cfqq is not expired if it is empty. Do it explicitly */
2448 	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2449 	return dispatched;
2450 }
2451 
2452 /*
2453  * Drain our current requests. Used for barriers and when switching
2454  * io schedulers on-the-fly.
2455  */
cfq_forced_dispatch(struct cfq_data * cfqd)2456 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2457 {
2458 	struct cfq_queue *cfqq;
2459 	int dispatched = 0;
2460 
2461 	/* Expire the timeslice of the current active queue first */
2462 	cfq_slice_expired(cfqd, 0);
2463 	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2464 		__cfq_set_active_queue(cfqd, cfqq);
2465 		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2466 	}
2467 
2468 	BUG_ON(cfqd->busy_queues);
2469 
2470 	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2471 	return dispatched;
2472 }
2473 
cfq_slice_used_soon(struct cfq_data * cfqd,struct cfq_queue * cfqq)2474 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2475 	struct cfq_queue *cfqq)
2476 {
2477 	/* the queue hasn't finished any request, can't estimate */
2478 	if (cfq_cfqq_slice_new(cfqq))
2479 		return true;
2480 	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2481 		cfqq->slice_end))
2482 		return true;
2483 
2484 	return false;
2485 }
2486 
cfq_may_dispatch(struct cfq_data * cfqd,struct cfq_queue * cfqq)2487 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2488 {
2489 	unsigned int max_dispatch;
2490 
2491 	/*
2492 	 * Drain async requests before we start sync IO
2493 	 */
2494 	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2495 		return false;
2496 
2497 	/*
2498 	 * If this is an async queue and we have sync IO in flight, let it wait
2499 	 */
2500 	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2501 		return false;
2502 
2503 	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2504 	if (cfq_class_idle(cfqq))
2505 		max_dispatch = 1;
2506 
2507 	/*
2508 	 * Does this cfqq already have too much IO in flight?
2509 	 */
2510 	if (cfqq->dispatched >= max_dispatch) {
2511 		bool promote_sync = false;
2512 		/*
2513 		 * idle queue must always only have a single IO in flight
2514 		 */
2515 		if (cfq_class_idle(cfqq))
2516 			return false;
2517 
2518 		/*
2519 		 * If there is only one sync queue
2520 		 * we can ignore async queue here and give the sync
2521 		 * queue no dispatch limit. The reason is a sync queue can
2522 		 * preempt async queue, limiting the sync queue doesn't make
2523 		 * sense. This is useful for aiostress test.
2524 		 */
2525 		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2526 			promote_sync = true;
2527 
2528 		/*
2529 		 * We have other queues, don't allow more IO from this one
2530 		 */
2531 		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2532 				!promote_sync)
2533 			return false;
2534 
2535 		/*
2536 		 * Sole queue user, no limit
2537 		 */
2538 		if (cfqd->busy_queues == 1 || promote_sync)
2539 			max_dispatch = -1;
2540 		else
2541 			/*
2542 			 * Normally we start throttling cfqq when cfq_quantum/2
2543 			 * requests have been dispatched. But we can drive
2544 			 * deeper queue depths at the beginning of slice
2545 			 * subjected to upper limit of cfq_quantum.
2546 			 * */
2547 			max_dispatch = cfqd->cfq_quantum;
2548 	}
2549 
2550 	/*
2551 	 * Async queues must wait a bit before being allowed dispatch.
2552 	 * We also ramp up the dispatch depth gradually for async IO,
2553 	 * based on the last sync IO we serviced
2554 	 */
2555 	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2556 		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2557 		unsigned int depth;
2558 
2559 		depth = last_sync / cfqd->cfq_slice[1];
2560 		if (!depth && !cfqq->dispatched)
2561 			depth = 1;
2562 		if (depth < max_dispatch)
2563 			max_dispatch = depth;
2564 	}
2565 
2566 	/*
2567 	 * If we're below the current max, allow a dispatch
2568 	 */
2569 	return cfqq->dispatched < max_dispatch;
2570 }
2571 
2572 /*
2573  * Dispatch a request from cfqq, moving them to the request queue
2574  * dispatch list.
2575  */
cfq_dispatch_request(struct cfq_data * cfqd,struct cfq_queue * cfqq)2576 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2577 {
2578 	struct request *rq;
2579 
2580 	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2581 
2582 	if (!cfq_may_dispatch(cfqd, cfqq))
2583 		return false;
2584 
2585 	/*
2586 	 * follow expired path, else get first next available
2587 	 */
2588 	rq = cfq_check_fifo(cfqq);
2589 	if (!rq)
2590 		rq = cfqq->next_rq;
2591 
2592 	/*
2593 	 * insert request into driver dispatch list
2594 	 */
2595 	cfq_dispatch_insert(cfqd->queue, rq);
2596 
2597 	if (!cfqd->active_cic) {
2598 		struct cfq_io_cq *cic = RQ_CIC(rq);
2599 
2600 		atomic_long_inc(&cic->icq.ioc->refcount);
2601 		cfqd->active_cic = cic;
2602 	}
2603 
2604 	return true;
2605 }
2606 
2607 /*
2608  * Find the cfqq that we need to service and move a request from that to the
2609  * dispatch list
2610  */
cfq_dispatch_requests(struct request_queue * q,int force)2611 static int cfq_dispatch_requests(struct request_queue *q, int force)
2612 {
2613 	struct cfq_data *cfqd = q->elevator->elevator_data;
2614 	struct cfq_queue *cfqq;
2615 
2616 	if (!cfqd->busy_queues)
2617 		return 0;
2618 
2619 	if (unlikely(force))
2620 		return cfq_forced_dispatch(cfqd);
2621 
2622 	cfqq = cfq_select_queue(cfqd);
2623 	if (!cfqq)
2624 		return 0;
2625 
2626 	/*
2627 	 * Dispatch a request from this cfqq, if it is allowed
2628 	 */
2629 	if (!cfq_dispatch_request(cfqd, cfqq))
2630 		return 0;
2631 
2632 	cfqq->slice_dispatch++;
2633 	cfq_clear_cfqq_must_dispatch(cfqq);
2634 
2635 	/*
2636 	 * expire an async queue immediately if it has used up its slice. idle
2637 	 * queue always expire after 1 dispatch round.
2638 	 */
2639 	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2640 	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2641 	    cfq_class_idle(cfqq))) {
2642 		cfqq->slice_end = jiffies + 1;
2643 		cfq_slice_expired(cfqd, 0);
2644 	}
2645 
2646 	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2647 	return 1;
2648 }
2649 
2650 /*
2651  * task holds one reference to the queue, dropped when task exits. each rq
2652  * in-flight on this queue also holds a reference, dropped when rq is freed.
2653  *
2654  * Each cfq queue took a reference on the parent group. Drop it now.
2655  * queue lock must be held here.
2656  */
cfq_put_queue(struct cfq_queue * cfqq)2657 static void cfq_put_queue(struct cfq_queue *cfqq)
2658 {
2659 	struct cfq_data *cfqd = cfqq->cfqd;
2660 	struct cfq_group *cfqg;
2661 
2662 	BUG_ON(cfqq->ref <= 0);
2663 
2664 	cfqq->ref--;
2665 	if (cfqq->ref)
2666 		return;
2667 
2668 	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2669 	BUG_ON(rb_first(&cfqq->sort_list));
2670 	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2671 	cfqg = cfqq->cfqg;
2672 
2673 	if (unlikely(cfqd->active_queue == cfqq)) {
2674 		__cfq_slice_expired(cfqd, cfqq, 0);
2675 		cfq_schedule_dispatch(cfqd);
2676 	}
2677 
2678 	BUG_ON(cfq_cfqq_on_rr(cfqq));
2679 	kmem_cache_free(cfq_pool, cfqq);
2680 	cfq_put_cfqg(cfqg);
2681 }
2682 
cfq_put_cooperator(struct cfq_queue * cfqq)2683 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2684 {
2685 	struct cfq_queue *__cfqq, *next;
2686 
2687 	/*
2688 	 * If this queue was scheduled to merge with another queue, be
2689 	 * sure to drop the reference taken on that queue (and others in
2690 	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2691 	 */
2692 	__cfqq = cfqq->new_cfqq;
2693 	while (__cfqq) {
2694 		if (__cfqq == cfqq) {
2695 			WARN(1, "cfqq->new_cfqq loop detected\n");
2696 			break;
2697 		}
2698 		next = __cfqq->new_cfqq;
2699 		cfq_put_queue(__cfqq);
2700 		__cfqq = next;
2701 	}
2702 }
2703 
cfq_exit_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq)2704 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2705 {
2706 	if (unlikely(cfqq == cfqd->active_queue)) {
2707 		__cfq_slice_expired(cfqd, cfqq, 0);
2708 		cfq_schedule_dispatch(cfqd);
2709 	}
2710 
2711 	cfq_put_cooperator(cfqq);
2712 
2713 	cfq_put_queue(cfqq);
2714 }
2715 
cfq_init_icq(struct io_cq * icq)2716 static void cfq_init_icq(struct io_cq *icq)
2717 {
2718 	struct cfq_io_cq *cic = icq_to_cic(icq);
2719 
2720 	cic->ttime.last_end_request = jiffies;
2721 }
2722 
cfq_exit_icq(struct io_cq * icq)2723 static void cfq_exit_icq(struct io_cq *icq)
2724 {
2725 	struct cfq_io_cq *cic = icq_to_cic(icq);
2726 	struct cfq_data *cfqd = cic_to_cfqd(cic);
2727 
2728 	if (cic->cfqq[BLK_RW_ASYNC]) {
2729 		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2730 		cic->cfqq[BLK_RW_ASYNC] = NULL;
2731 	}
2732 
2733 	if (cic->cfqq[BLK_RW_SYNC]) {
2734 		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2735 		cic->cfqq[BLK_RW_SYNC] = NULL;
2736 	}
2737 }
2738 
cfq_init_prio_data(struct cfq_queue * cfqq,struct io_context * ioc)2739 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2740 {
2741 	struct task_struct *tsk = current;
2742 	int ioprio_class;
2743 
2744 	if (!cfq_cfqq_prio_changed(cfqq))
2745 		return;
2746 
2747 	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2748 	switch (ioprio_class) {
2749 	default:
2750 		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2751 	case IOPRIO_CLASS_NONE:
2752 		/*
2753 		 * no prio set, inherit CPU scheduling settings
2754 		 */
2755 		cfqq->ioprio = task_nice_ioprio(tsk);
2756 		cfqq->ioprio_class = task_nice_ioclass(tsk);
2757 		break;
2758 	case IOPRIO_CLASS_RT:
2759 		cfqq->ioprio = task_ioprio(ioc);
2760 		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2761 		break;
2762 	case IOPRIO_CLASS_BE:
2763 		cfqq->ioprio = task_ioprio(ioc);
2764 		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2765 		break;
2766 	case IOPRIO_CLASS_IDLE:
2767 		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2768 		cfqq->ioprio = 7;
2769 		cfq_clear_cfqq_idle_window(cfqq);
2770 		break;
2771 	}
2772 
2773 	/*
2774 	 * keep track of original prio settings in case we have to temporarily
2775 	 * elevate the priority of this queue
2776 	 */
2777 	cfqq->org_ioprio = cfqq->ioprio;
2778 	cfq_clear_cfqq_prio_changed(cfqq);
2779 }
2780 
changed_ioprio(struct cfq_io_cq * cic)2781 static void changed_ioprio(struct cfq_io_cq *cic)
2782 {
2783 	struct cfq_data *cfqd = cic_to_cfqd(cic);
2784 	struct cfq_queue *cfqq;
2785 
2786 	if (unlikely(!cfqd))
2787 		return;
2788 
2789 	cfqq = cic->cfqq[BLK_RW_ASYNC];
2790 	if (cfqq) {
2791 		struct cfq_queue *new_cfqq;
2792 		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2793 						GFP_ATOMIC);
2794 		if (new_cfqq) {
2795 			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2796 			cfq_put_queue(cfqq);
2797 		}
2798 	}
2799 
2800 	cfqq = cic->cfqq[BLK_RW_SYNC];
2801 	if (cfqq)
2802 		cfq_mark_cfqq_prio_changed(cfqq);
2803 }
2804 
cfq_init_cfqq(struct cfq_data * cfqd,struct cfq_queue * cfqq,pid_t pid,bool is_sync)2805 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2806 			  pid_t pid, bool is_sync)
2807 {
2808 	RB_CLEAR_NODE(&cfqq->rb_node);
2809 	RB_CLEAR_NODE(&cfqq->p_node);
2810 	INIT_LIST_HEAD(&cfqq->fifo);
2811 
2812 	cfqq->ref = 0;
2813 	cfqq->cfqd = cfqd;
2814 
2815 	cfq_mark_cfqq_prio_changed(cfqq);
2816 
2817 	if (is_sync) {
2818 		if (!cfq_class_idle(cfqq))
2819 			cfq_mark_cfqq_idle_window(cfqq);
2820 		cfq_mark_cfqq_sync(cfqq);
2821 	}
2822 	cfqq->pid = pid;
2823 }
2824 
2825 #ifdef CONFIG_CFQ_GROUP_IOSCHED
changed_cgroup(struct cfq_io_cq * cic)2826 static void changed_cgroup(struct cfq_io_cq *cic)
2827 {
2828 	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2829 	struct cfq_data *cfqd = cic_to_cfqd(cic);
2830 	struct request_queue *q;
2831 
2832 	if (unlikely(!cfqd))
2833 		return;
2834 
2835 	q = cfqd->queue;
2836 
2837 	if (sync_cfqq) {
2838 		/*
2839 		 * Drop reference to sync queue. A new sync queue will be
2840 		 * assigned in new group upon arrival of a fresh request.
2841 		 */
2842 		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2843 		cic_set_cfqq(cic, NULL, 1);
2844 		cfq_put_queue(sync_cfqq);
2845 	}
2846 }
2847 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2848 
2849 static struct cfq_queue *
cfq_find_alloc_queue(struct cfq_data * cfqd,bool is_sync,struct io_context * ioc,gfp_t gfp_mask)2850 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2851 		     struct io_context *ioc, gfp_t gfp_mask)
2852 {
2853 	struct cfq_queue *cfqq, *new_cfqq = NULL;
2854 	struct cfq_io_cq *cic;
2855 	struct cfq_group *cfqg;
2856 
2857 retry:
2858 	cfqg = cfq_get_cfqg(cfqd);
2859 	cic = cfq_cic_lookup(cfqd, ioc);
2860 	/* cic always exists here */
2861 	cfqq = cic_to_cfqq(cic, is_sync);
2862 
2863 	/*
2864 	 * Always try a new alloc if we fell back to the OOM cfqq
2865 	 * originally, since it should just be a temporary situation.
2866 	 */
2867 	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2868 		cfqq = NULL;
2869 		if (new_cfqq) {
2870 			cfqq = new_cfqq;
2871 			new_cfqq = NULL;
2872 		} else if (gfp_mask & __GFP_WAIT) {
2873 			spin_unlock_irq(cfqd->queue->queue_lock);
2874 			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2875 					gfp_mask | __GFP_ZERO,
2876 					cfqd->queue->node);
2877 			spin_lock_irq(cfqd->queue->queue_lock);
2878 			if (new_cfqq)
2879 				goto retry;
2880 		} else {
2881 			cfqq = kmem_cache_alloc_node(cfq_pool,
2882 					gfp_mask | __GFP_ZERO,
2883 					cfqd->queue->node);
2884 		}
2885 
2886 		if (cfqq) {
2887 			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2888 			cfq_init_prio_data(cfqq, ioc);
2889 			cfq_link_cfqq_cfqg(cfqq, cfqg);
2890 			cfq_log_cfqq(cfqd, cfqq, "alloced");
2891 		} else
2892 			cfqq = &cfqd->oom_cfqq;
2893 	}
2894 
2895 	if (new_cfqq)
2896 		kmem_cache_free(cfq_pool, new_cfqq);
2897 
2898 	return cfqq;
2899 }
2900 
2901 static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data * cfqd,int ioprio_class,int ioprio)2902 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2903 {
2904 	switch (ioprio_class) {
2905 	case IOPRIO_CLASS_RT:
2906 		return &cfqd->async_cfqq[0][ioprio];
2907 	case IOPRIO_CLASS_BE:
2908 		return &cfqd->async_cfqq[1][ioprio];
2909 	case IOPRIO_CLASS_IDLE:
2910 		return &cfqd->async_idle_cfqq;
2911 	default:
2912 		BUG();
2913 	}
2914 }
2915 
2916 static struct cfq_queue *
cfq_get_queue(struct cfq_data * cfqd,bool is_sync,struct io_context * ioc,gfp_t gfp_mask)2917 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2918 	      gfp_t gfp_mask)
2919 {
2920 	const int ioprio = task_ioprio(ioc);
2921 	const int ioprio_class = task_ioprio_class(ioc);
2922 	struct cfq_queue **async_cfqq = NULL;
2923 	struct cfq_queue *cfqq = NULL;
2924 
2925 	if (!is_sync) {
2926 		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2927 		cfqq = *async_cfqq;
2928 	}
2929 
2930 	if (!cfqq)
2931 		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2932 
2933 	/*
2934 	 * pin the queue now that it's allocated, scheduler exit will prune it
2935 	 */
2936 	if (!is_sync && !(*async_cfqq)) {
2937 		cfqq->ref++;
2938 		*async_cfqq = cfqq;
2939 	}
2940 
2941 	cfqq->ref++;
2942 	return cfqq;
2943 }
2944 
2945 static void
__cfq_update_io_thinktime(struct cfq_ttime * ttime,unsigned long slice_idle)2946 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
2947 {
2948 	unsigned long elapsed = jiffies - ttime->last_end_request;
2949 	elapsed = min(elapsed, 2UL * slice_idle);
2950 
2951 	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2952 	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2953 	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2954 }
2955 
2956 static void
cfq_update_io_thinktime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)2957 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2958 			struct cfq_io_cq *cic)
2959 {
2960 	if (cfq_cfqq_sync(cfqq)) {
2961 		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
2962 		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2963 			cfqd->cfq_slice_idle);
2964 	}
2965 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2966 	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2967 #endif
2968 }
2969 
2970 static void
cfq_update_io_seektime(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)2971 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2972 		       struct request *rq)
2973 {
2974 	sector_t sdist = 0;
2975 	sector_t n_sec = blk_rq_sectors(rq);
2976 	if (cfqq->last_request_pos) {
2977 		if (cfqq->last_request_pos < blk_rq_pos(rq))
2978 			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2979 		else
2980 			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2981 	}
2982 
2983 	cfqq->seek_history <<= 1;
2984 	if (blk_queue_nonrot(cfqd->queue))
2985 		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2986 	else
2987 		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2988 }
2989 
2990 /*
2991  * Disable idle window if the process thinks too long or seeks so much that
2992  * it doesn't matter
2993  */
2994 static void
cfq_update_idle_window(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct cfq_io_cq * cic)2995 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2996 		       struct cfq_io_cq *cic)
2997 {
2998 	int old_idle, enable_idle;
2999 
3000 	/*
3001 	 * Don't idle for async or idle io prio class
3002 	 */
3003 	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3004 		return;
3005 
3006 	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3007 
3008 	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3009 		cfq_mark_cfqq_deep(cfqq);
3010 
3011 	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3012 		enable_idle = 0;
3013 	else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3014 		 !cfqd->cfq_slice_idle ||
3015 		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3016 		enable_idle = 0;
3017 	else if (sample_valid(cic->ttime.ttime_samples)) {
3018 		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3019 			enable_idle = 0;
3020 		else
3021 			enable_idle = 1;
3022 	}
3023 
3024 	if (old_idle != enable_idle) {
3025 		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3026 		if (enable_idle)
3027 			cfq_mark_cfqq_idle_window(cfqq);
3028 		else
3029 			cfq_clear_cfqq_idle_window(cfqq);
3030 	}
3031 }
3032 
3033 /*
3034  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3035  * no or if we aren't sure, a 1 will cause a preempt.
3036  */
3037 static bool
cfq_should_preempt(struct cfq_data * cfqd,struct cfq_queue * new_cfqq,struct request * rq)3038 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3039 		   struct request *rq)
3040 {
3041 	struct cfq_queue *cfqq;
3042 
3043 	cfqq = cfqd->active_queue;
3044 	if (!cfqq)
3045 		return false;
3046 
3047 	if (cfq_class_idle(new_cfqq))
3048 		return false;
3049 
3050 	if (cfq_class_idle(cfqq))
3051 		return true;
3052 
3053 	/*
3054 	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3055 	 */
3056 	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3057 		return false;
3058 
3059 	/*
3060 	 * if the new request is sync, but the currently running queue is
3061 	 * not, let the sync request have priority.
3062 	 */
3063 	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3064 		return true;
3065 
3066 	if (new_cfqq->cfqg != cfqq->cfqg)
3067 		return false;
3068 
3069 	if (cfq_slice_used(cfqq))
3070 		return true;
3071 
3072 	/* Allow preemption only if we are idling on sync-noidle tree */
3073 	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3074 	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3075 	    new_cfqq->service_tree->count == 2 &&
3076 	    RB_EMPTY_ROOT(&cfqq->sort_list))
3077 		return true;
3078 
3079 	/*
3080 	 * So both queues are sync. Let the new request get disk time if
3081 	 * it's a metadata request and the current queue is doing regular IO.
3082 	 */
3083 	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3084 		return true;
3085 
3086 	/*
3087 	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3088 	 */
3089 	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3090 		return true;
3091 
3092 	/* An idle queue should not be idle now for some reason */
3093 	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3094 		return true;
3095 
3096 	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3097 		return false;
3098 
3099 	/*
3100 	 * if this request is as-good as one we would expect from the
3101 	 * current cfqq, let it preempt
3102 	 */
3103 	if (cfq_rq_close(cfqd, cfqq, rq))
3104 		return true;
3105 
3106 	return false;
3107 }
3108 
3109 /*
3110  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3111  * let it have half of its nominal slice.
3112  */
cfq_preempt_queue(struct cfq_data * cfqd,struct cfq_queue * cfqq)3113 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3114 {
3115 	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3116 
3117 	cfq_log_cfqq(cfqd, cfqq, "preempt");
3118 	cfq_slice_expired(cfqd, 1);
3119 
3120 	/*
3121 	 * workload type is changed, don't save slice, otherwise preempt
3122 	 * doesn't happen
3123 	 */
3124 	if (old_type != cfqq_type(cfqq))
3125 		cfqq->cfqg->saved_workload_slice = 0;
3126 
3127 	/*
3128 	 * Put the new queue at the front of the of the current list,
3129 	 * so we know that it will be selected next.
3130 	 */
3131 	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3132 
3133 	cfq_service_tree_add(cfqd, cfqq, 1);
3134 
3135 	cfqq->slice_end = 0;
3136 	cfq_mark_cfqq_slice_new(cfqq);
3137 }
3138 
3139 /*
3140  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3141  * something we should do about it
3142  */
3143 static void
cfq_rq_enqueued(struct cfq_data * cfqd,struct cfq_queue * cfqq,struct request * rq)3144 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3145 		struct request *rq)
3146 {
3147 	struct cfq_io_cq *cic = RQ_CIC(rq);
3148 
3149 	cfqd->rq_queued++;
3150 	if (rq->cmd_flags & REQ_PRIO)
3151 		cfqq->prio_pending++;
3152 
3153 	cfq_update_io_thinktime(cfqd, cfqq, cic);
3154 	cfq_update_io_seektime(cfqd, cfqq, rq);
3155 	cfq_update_idle_window(cfqd, cfqq, cic);
3156 
3157 	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3158 
3159 	if (cfqq == cfqd->active_queue) {
3160 		/*
3161 		 * Remember that we saw a request from this process, but
3162 		 * don't start queuing just yet. Otherwise we risk seeing lots
3163 		 * of tiny requests, because we disrupt the normal plugging
3164 		 * and merging. If the request is already larger than a single
3165 		 * page, let it rip immediately. For that case we assume that
3166 		 * merging is already done. Ditto for a busy system that
3167 		 * has other work pending, don't risk delaying until the
3168 		 * idle timer unplug to continue working.
3169 		 */
3170 		if (cfq_cfqq_wait_request(cfqq)) {
3171 			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3172 			    cfqd->busy_queues > 1) {
3173 				cfq_del_timer(cfqd, cfqq);
3174 				cfq_clear_cfqq_wait_request(cfqq);
3175 				__blk_run_queue(cfqd->queue);
3176 			} else {
3177 				cfq_blkiocg_update_idle_time_stats(
3178 						&cfqq->cfqg->blkg);
3179 				cfq_mark_cfqq_must_dispatch(cfqq);
3180 			}
3181 		}
3182 	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3183 		/*
3184 		 * not the active queue - expire current slice if it is
3185 		 * idle and has expired it's mean thinktime or this new queue
3186 		 * has some old slice time left and is of higher priority or
3187 		 * this new queue is RT and the current one is BE
3188 		 */
3189 		cfq_preempt_queue(cfqd, cfqq);
3190 		__blk_run_queue(cfqd->queue);
3191 	}
3192 }
3193 
cfq_insert_request(struct request_queue * q,struct request * rq)3194 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3195 {
3196 	struct cfq_data *cfqd = q->elevator->elevator_data;
3197 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3198 
3199 	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3200 	cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3201 
3202 	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3203 	list_add_tail(&rq->queuelist, &cfqq->fifo);
3204 	cfq_add_rq_rb(rq);
3205 	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3206 			&cfqd->serving_group->blkg, rq_data_dir(rq),
3207 			rq_is_sync(rq));
3208 	cfq_rq_enqueued(cfqd, cfqq, rq);
3209 }
3210 
3211 /*
3212  * Update hw_tag based on peak queue depth over 50 samples under
3213  * sufficient load.
3214  */
cfq_update_hw_tag(struct cfq_data * cfqd)3215 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3216 {
3217 	struct cfq_queue *cfqq = cfqd->active_queue;
3218 
3219 	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3220 		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3221 
3222 	if (cfqd->hw_tag == 1)
3223 		return;
3224 
3225 	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3226 	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3227 		return;
3228 
3229 	/*
3230 	 * If active queue hasn't enough requests and can idle, cfq might not
3231 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3232 	 * case
3233 	 */
3234 	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3235 	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3236 	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3237 		return;
3238 
3239 	if (cfqd->hw_tag_samples++ < 50)
3240 		return;
3241 
3242 	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3243 		cfqd->hw_tag = 1;
3244 	else
3245 		cfqd->hw_tag = 0;
3246 }
3247 
cfq_should_wait_busy(struct cfq_data * cfqd,struct cfq_queue * cfqq)3248 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3249 {
3250 	struct cfq_io_cq *cic = cfqd->active_cic;
3251 
3252 	/* If the queue already has requests, don't wait */
3253 	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3254 		return false;
3255 
3256 	/* If there are other queues in the group, don't wait */
3257 	if (cfqq->cfqg->nr_cfqq > 1)
3258 		return false;
3259 
3260 	/* the only queue in the group, but think time is big */
3261 	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3262 		return false;
3263 
3264 	if (cfq_slice_used(cfqq))
3265 		return true;
3266 
3267 	/* if slice left is less than think time, wait busy */
3268 	if (cic && sample_valid(cic->ttime.ttime_samples)
3269 	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3270 		return true;
3271 
3272 	/*
3273 	 * If think times is less than a jiffy than ttime_mean=0 and above
3274 	 * will not be true. It might happen that slice has not expired yet
3275 	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3276 	 * case where think time is less than a jiffy, mark the queue wait
3277 	 * busy if only 1 jiffy is left in the slice.
3278 	 */
3279 	if (cfqq->slice_end - jiffies == 1)
3280 		return true;
3281 
3282 	return false;
3283 }
3284 
cfq_completed_request(struct request_queue * q,struct request * rq)3285 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3286 {
3287 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3288 	struct cfq_data *cfqd = cfqq->cfqd;
3289 	const int sync = rq_is_sync(rq);
3290 	unsigned long now;
3291 
3292 	now = jiffies;
3293 	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3294 		     !!(rq->cmd_flags & REQ_NOIDLE));
3295 
3296 	cfq_update_hw_tag(cfqd);
3297 
3298 	WARN_ON(!cfqd->rq_in_driver);
3299 	WARN_ON(!cfqq->dispatched);
3300 	cfqd->rq_in_driver--;
3301 	cfqq->dispatched--;
3302 	(RQ_CFQG(rq))->dispatched--;
3303 	cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3304 			rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3305 			rq_data_dir(rq), rq_is_sync(rq));
3306 
3307 	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3308 
3309 	if (sync) {
3310 		struct cfq_rb_root *service_tree;
3311 
3312 		RQ_CIC(rq)->ttime.last_end_request = now;
3313 
3314 		if (cfq_cfqq_on_rr(cfqq))
3315 			service_tree = cfqq->service_tree;
3316 		else
3317 			service_tree = service_tree_for(cfqq->cfqg,
3318 				cfqq_prio(cfqq), cfqq_type(cfqq));
3319 		service_tree->ttime.last_end_request = now;
3320 		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3321 			cfqd->last_delayed_sync = now;
3322 	}
3323 
3324 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3325 	cfqq->cfqg->ttime.last_end_request = now;
3326 #endif
3327 
3328 	/*
3329 	 * If this is the active queue, check if it needs to be expired,
3330 	 * or if we want to idle in case it has no pending requests.
3331 	 */
3332 	if (cfqd->active_queue == cfqq) {
3333 		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3334 
3335 		if (cfq_cfqq_slice_new(cfqq)) {
3336 			cfq_set_prio_slice(cfqd, cfqq);
3337 			cfq_clear_cfqq_slice_new(cfqq);
3338 		}
3339 
3340 		/*
3341 		 * Should we wait for next request to come in before we expire
3342 		 * the queue.
3343 		 */
3344 		if (cfq_should_wait_busy(cfqd, cfqq)) {
3345 			unsigned long extend_sl = cfqd->cfq_slice_idle;
3346 			if (!cfqd->cfq_slice_idle)
3347 				extend_sl = cfqd->cfq_group_idle;
3348 			cfqq->slice_end = jiffies + extend_sl;
3349 			cfq_mark_cfqq_wait_busy(cfqq);
3350 			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3351 		}
3352 
3353 		/*
3354 		 * Idling is not enabled on:
3355 		 * - expired queues
3356 		 * - idle-priority queues
3357 		 * - async queues
3358 		 * - queues with still some requests queued
3359 		 * - when there is a close cooperator
3360 		 */
3361 		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3362 			cfq_slice_expired(cfqd, 1);
3363 		else if (sync && cfqq_empty &&
3364 			 !cfq_close_cooperator(cfqd, cfqq)) {
3365 			cfq_arm_slice_timer(cfqd);
3366 		}
3367 	}
3368 
3369 	if (!cfqd->rq_in_driver)
3370 		cfq_schedule_dispatch(cfqd);
3371 }
3372 
__cfq_may_queue(struct cfq_queue * cfqq)3373 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3374 {
3375 	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3376 		cfq_mark_cfqq_must_alloc_slice(cfqq);
3377 		return ELV_MQUEUE_MUST;
3378 	}
3379 
3380 	return ELV_MQUEUE_MAY;
3381 }
3382 
cfq_may_queue(struct request_queue * q,int rw)3383 static int cfq_may_queue(struct request_queue *q, int rw)
3384 {
3385 	struct cfq_data *cfqd = q->elevator->elevator_data;
3386 	struct task_struct *tsk = current;
3387 	struct cfq_io_cq *cic;
3388 	struct cfq_queue *cfqq;
3389 
3390 	/*
3391 	 * don't force setup of a queue from here, as a call to may_queue
3392 	 * does not necessarily imply that a request actually will be queued.
3393 	 * so just lookup a possibly existing queue, or return 'may queue'
3394 	 * if that fails
3395 	 */
3396 	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3397 	if (!cic)
3398 		return ELV_MQUEUE_MAY;
3399 
3400 	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3401 	if (cfqq) {
3402 		cfq_init_prio_data(cfqq, cic->icq.ioc);
3403 
3404 		return __cfq_may_queue(cfqq);
3405 	}
3406 
3407 	return ELV_MQUEUE_MAY;
3408 }
3409 
3410 /*
3411  * queue lock held here
3412  */
cfq_put_request(struct request * rq)3413 static void cfq_put_request(struct request *rq)
3414 {
3415 	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3416 
3417 	if (cfqq) {
3418 		const int rw = rq_data_dir(rq);
3419 
3420 		BUG_ON(!cfqq->allocated[rw]);
3421 		cfqq->allocated[rw]--;
3422 
3423 		/* Put down rq reference on cfqg */
3424 		cfq_put_cfqg(RQ_CFQG(rq));
3425 		rq->elv.priv[0] = NULL;
3426 		rq->elv.priv[1] = NULL;
3427 
3428 		cfq_put_queue(cfqq);
3429 	}
3430 }
3431 
3432 static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data * cfqd,struct cfq_io_cq * cic,struct cfq_queue * cfqq)3433 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3434 		struct cfq_queue *cfqq)
3435 {
3436 	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3437 	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3438 	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3439 	cfq_put_queue(cfqq);
3440 	return cic_to_cfqq(cic, 1);
3441 }
3442 
3443 /*
3444  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3445  * was the last process referring to said cfqq.
3446  */
3447 static struct cfq_queue *
split_cfqq(struct cfq_io_cq * cic,struct cfq_queue * cfqq)3448 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3449 {
3450 	if (cfqq_process_refs(cfqq) == 1) {
3451 		cfqq->pid = current->pid;
3452 		cfq_clear_cfqq_coop(cfqq);
3453 		cfq_clear_cfqq_split_coop(cfqq);
3454 		return cfqq;
3455 	}
3456 
3457 	cic_set_cfqq(cic, NULL, 1);
3458 
3459 	cfq_put_cooperator(cfqq);
3460 
3461 	cfq_put_queue(cfqq);
3462 	return NULL;
3463 }
3464 /*
3465  * Allocate cfq data structures associated with this request.
3466  */
3467 static int
cfq_set_request(struct request_queue * q,struct request * rq,gfp_t gfp_mask)3468 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3469 {
3470 	struct cfq_data *cfqd = q->elevator->elevator_data;
3471 	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3472 	const int rw = rq_data_dir(rq);
3473 	const bool is_sync = rq_is_sync(rq);
3474 	struct cfq_queue *cfqq;
3475 	unsigned int changed;
3476 
3477 	might_sleep_if(gfp_mask & __GFP_WAIT);
3478 
3479 	spin_lock_irq(q->queue_lock);
3480 
3481 	/* handle changed notifications */
3482 	changed = icq_get_changed(&cic->icq);
3483 	if (unlikely(changed & ICQ_IOPRIO_CHANGED))
3484 		changed_ioprio(cic);
3485 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3486 	if (unlikely(changed & ICQ_CGROUP_CHANGED))
3487 		changed_cgroup(cic);
3488 #endif
3489 
3490 new_queue:
3491 	cfqq = cic_to_cfqq(cic, is_sync);
3492 	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3493 		cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3494 		cic_set_cfqq(cic, cfqq, is_sync);
3495 	} else {
3496 		/*
3497 		 * If the queue was seeky for too long, break it apart.
3498 		 */
3499 		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3500 			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3501 			cfqq = split_cfqq(cic, cfqq);
3502 			if (!cfqq)
3503 				goto new_queue;
3504 		}
3505 
3506 		/*
3507 		 * Check to see if this queue is scheduled to merge with
3508 		 * another, closely cooperating queue.  The merging of
3509 		 * queues happens here as it must be done in process context.
3510 		 * The reference on new_cfqq was taken in merge_cfqqs.
3511 		 */
3512 		if (cfqq->new_cfqq)
3513 			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3514 	}
3515 
3516 	cfqq->allocated[rw]++;
3517 
3518 	cfqq->ref++;
3519 	rq->elv.priv[0] = cfqq;
3520 	rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
3521 	spin_unlock_irq(q->queue_lock);
3522 	return 0;
3523 }
3524 
cfq_kick_queue(struct work_struct * work)3525 static void cfq_kick_queue(struct work_struct *work)
3526 {
3527 	struct cfq_data *cfqd =
3528 		container_of(work, struct cfq_data, unplug_work);
3529 	struct request_queue *q = cfqd->queue;
3530 
3531 	spin_lock_irq(q->queue_lock);
3532 	__blk_run_queue(cfqd->queue);
3533 	spin_unlock_irq(q->queue_lock);
3534 }
3535 
3536 /*
3537  * Timer running if the active_queue is currently idling inside its time slice
3538  */
cfq_idle_slice_timer(unsigned long data)3539 static void cfq_idle_slice_timer(unsigned long data)
3540 {
3541 	struct cfq_data *cfqd = (struct cfq_data *) data;
3542 	struct cfq_queue *cfqq;
3543 	unsigned long flags;
3544 	int timed_out = 1;
3545 
3546 	cfq_log(cfqd, "idle timer fired");
3547 
3548 	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3549 
3550 	cfqq = cfqd->active_queue;
3551 	if (cfqq) {
3552 		timed_out = 0;
3553 
3554 		/*
3555 		 * We saw a request before the queue expired, let it through
3556 		 */
3557 		if (cfq_cfqq_must_dispatch(cfqq))
3558 			goto out_kick;
3559 
3560 		/*
3561 		 * expired
3562 		 */
3563 		if (cfq_slice_used(cfqq))
3564 			goto expire;
3565 
3566 		/*
3567 		 * only expire and reinvoke request handler, if there are
3568 		 * other queues with pending requests
3569 		 */
3570 		if (!cfqd->busy_queues)
3571 			goto out_cont;
3572 
3573 		/*
3574 		 * not expired and it has a request pending, let it dispatch
3575 		 */
3576 		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3577 			goto out_kick;
3578 
3579 		/*
3580 		 * Queue depth flag is reset only when the idle didn't succeed
3581 		 */
3582 		cfq_clear_cfqq_deep(cfqq);
3583 	}
3584 expire:
3585 	cfq_slice_expired(cfqd, timed_out);
3586 out_kick:
3587 	cfq_schedule_dispatch(cfqd);
3588 out_cont:
3589 	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3590 }
3591 
cfq_shutdown_timer_wq(struct cfq_data * cfqd)3592 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3593 {
3594 	del_timer_sync(&cfqd->idle_slice_timer);
3595 	cancel_work_sync(&cfqd->unplug_work);
3596 }
3597 
cfq_put_async_queues(struct cfq_data * cfqd)3598 static void cfq_put_async_queues(struct cfq_data *cfqd)
3599 {
3600 	int i;
3601 
3602 	for (i = 0; i < IOPRIO_BE_NR; i++) {
3603 		if (cfqd->async_cfqq[0][i])
3604 			cfq_put_queue(cfqd->async_cfqq[0][i]);
3605 		if (cfqd->async_cfqq[1][i])
3606 			cfq_put_queue(cfqd->async_cfqq[1][i]);
3607 	}
3608 
3609 	if (cfqd->async_idle_cfqq)
3610 		cfq_put_queue(cfqd->async_idle_cfqq);
3611 }
3612 
cfq_exit_queue(struct elevator_queue * e)3613 static void cfq_exit_queue(struct elevator_queue *e)
3614 {
3615 	struct cfq_data *cfqd = e->elevator_data;
3616 	struct request_queue *q = cfqd->queue;
3617 	bool wait = false;
3618 
3619 	cfq_shutdown_timer_wq(cfqd);
3620 
3621 	spin_lock_irq(q->queue_lock);
3622 
3623 	if (cfqd->active_queue)
3624 		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3625 
3626 	cfq_put_async_queues(cfqd);
3627 	cfq_release_cfq_groups(cfqd);
3628 
3629 	/*
3630 	 * If there are groups which we could not unlink from blkcg list,
3631 	 * wait for a rcu period for them to be freed.
3632 	 */
3633 	if (cfqd->nr_blkcg_linked_grps)
3634 		wait = true;
3635 
3636 	spin_unlock_irq(q->queue_lock);
3637 
3638 	cfq_shutdown_timer_wq(cfqd);
3639 
3640 	/*
3641 	 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3642 	 * Do this wait only if there are other unlinked groups out
3643 	 * there. This can happen if cgroup deletion path claimed the
3644 	 * responsibility of cleaning up a group before queue cleanup code
3645 	 * get to the group.
3646 	 *
3647 	 * Do not call synchronize_rcu() unconditionally as there are drivers
3648 	 * which create/delete request queue hundreds of times during scan/boot
3649 	 * and synchronize_rcu() can take significant time and slow down boot.
3650 	 */
3651 	if (wait)
3652 		synchronize_rcu();
3653 
3654 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3655 	/* Free up per cpu stats for root group */
3656 	free_percpu(cfqd->root_group.blkg.stats_cpu);
3657 #endif
3658 	kfree(cfqd);
3659 }
3660 
cfq_init_queue(struct request_queue * q)3661 static void *cfq_init_queue(struct request_queue *q)
3662 {
3663 	struct cfq_data *cfqd;
3664 	int i, j;
3665 	struct cfq_group *cfqg;
3666 	struct cfq_rb_root *st;
3667 
3668 	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3669 	if (!cfqd)
3670 		return NULL;
3671 
3672 	/* Init root service tree */
3673 	cfqd->grp_service_tree = CFQ_RB_ROOT;
3674 
3675 	/* Init root group */
3676 	cfqg = &cfqd->root_group;
3677 	for_each_cfqg_st(cfqg, i, j, st)
3678 		*st = CFQ_RB_ROOT;
3679 	RB_CLEAR_NODE(&cfqg->rb_node);
3680 
3681 	/* Give preference to root group over other groups */
3682 	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3683 
3684 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3685 	/*
3686 	 * Set root group reference to 2. One reference will be dropped when
3687 	 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3688 	 * Other reference will remain there as we don't want to delete this
3689 	 * group as it is statically allocated and gets destroyed when
3690 	 * throtl_data goes away.
3691 	 */
3692 	cfqg->ref = 2;
3693 
3694 	if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3695 		kfree(cfqg);
3696 		kfree(cfqd);
3697 		return NULL;
3698 	}
3699 
3700 	rcu_read_lock();
3701 
3702 	cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3703 					(void *)cfqd, 0);
3704 	rcu_read_unlock();
3705 	cfqd->nr_blkcg_linked_grps++;
3706 
3707 	/* Add group on cfqd->cfqg_list */
3708 	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3709 #endif
3710 	/*
3711 	 * Not strictly needed (since RB_ROOT just clears the node and we
3712 	 * zeroed cfqd on alloc), but better be safe in case someone decides
3713 	 * to add magic to the rb code
3714 	 */
3715 	for (i = 0; i < CFQ_PRIO_LISTS; i++)
3716 		cfqd->prio_trees[i] = RB_ROOT;
3717 
3718 	/*
3719 	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3720 	 * Grab a permanent reference to it, so that the normal code flow
3721 	 * will not attempt to free it.
3722 	 */
3723 	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3724 	cfqd->oom_cfqq.ref++;
3725 	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3726 
3727 	cfqd->queue = q;
3728 
3729 	init_timer(&cfqd->idle_slice_timer);
3730 	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3731 	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3732 
3733 	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3734 
3735 	cfqd->cfq_quantum = cfq_quantum;
3736 	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3737 	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3738 	cfqd->cfq_back_max = cfq_back_max;
3739 	cfqd->cfq_back_penalty = cfq_back_penalty;
3740 	cfqd->cfq_slice[0] = cfq_slice_async;
3741 	cfqd->cfq_slice[1] = cfq_slice_sync;
3742 	cfqd->cfq_target_latency = cfq_target_latency;
3743 	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3744 	cfqd->cfq_slice_idle = cfq_slice_idle;
3745 	cfqd->cfq_group_idle = cfq_group_idle;
3746 	cfqd->cfq_latency = 1;
3747 	cfqd->hw_tag = -1;
3748 	/*
3749 	 * we optimistically start assuming sync ops weren't delayed in last
3750 	 * second, in order to have larger depth for async operations.
3751 	 */
3752 	cfqd->last_delayed_sync = jiffies - HZ;
3753 	return cfqd;
3754 }
3755 
3756 /*
3757  * sysfs parts below -->
3758  */
3759 static ssize_t
cfq_var_show(unsigned int var,char * page)3760 cfq_var_show(unsigned int var, char *page)
3761 {
3762 	return sprintf(page, "%d\n", var);
3763 }
3764 
3765 static ssize_t
cfq_var_store(unsigned int * var,const char * page,size_t count)3766 cfq_var_store(unsigned int *var, const char *page, size_t count)
3767 {
3768 	char *p = (char *) page;
3769 
3770 	*var = simple_strtoul(p, &p, 10);
3771 	return count;
3772 }
3773 
3774 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
3775 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
3776 {									\
3777 	struct cfq_data *cfqd = e->elevator_data;			\
3778 	unsigned int __data = __VAR;					\
3779 	if (__CONV)							\
3780 		__data = jiffies_to_msecs(__data);			\
3781 	return cfq_var_show(__data, (page));				\
3782 }
3783 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3784 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3785 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3786 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3787 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3788 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3789 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3790 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3791 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3792 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3793 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3794 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
3795 #undef SHOW_FUNCTION
3796 
3797 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
3798 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
3799 {									\
3800 	struct cfq_data *cfqd = e->elevator_data;			\
3801 	unsigned int __data;						\
3802 	int ret = cfq_var_store(&__data, (page), count);		\
3803 	if (__data < (MIN))						\
3804 		__data = (MIN);						\
3805 	else if (__data > (MAX))					\
3806 		__data = (MAX);						\
3807 	if (__CONV)							\
3808 		*(__PTR) = msecs_to_jiffies(__data);			\
3809 	else								\
3810 		*(__PTR) = __data;					\
3811 	return ret;							\
3812 }
3813 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3814 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3815 		UINT_MAX, 1);
3816 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3817 		UINT_MAX, 1);
3818 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3819 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3820 		UINT_MAX, 0);
3821 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3822 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3823 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3824 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3825 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3826 		UINT_MAX, 0);
3827 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3828 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
3829 #undef STORE_FUNCTION
3830 
3831 #define CFQ_ATTR(name) \
3832 	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3833 
3834 static struct elv_fs_entry cfq_attrs[] = {
3835 	CFQ_ATTR(quantum),
3836 	CFQ_ATTR(fifo_expire_sync),
3837 	CFQ_ATTR(fifo_expire_async),
3838 	CFQ_ATTR(back_seek_max),
3839 	CFQ_ATTR(back_seek_penalty),
3840 	CFQ_ATTR(slice_sync),
3841 	CFQ_ATTR(slice_async),
3842 	CFQ_ATTR(slice_async_rq),
3843 	CFQ_ATTR(slice_idle),
3844 	CFQ_ATTR(group_idle),
3845 	CFQ_ATTR(low_latency),
3846 	CFQ_ATTR(target_latency),
3847 	__ATTR_NULL
3848 };
3849 
3850 static struct elevator_type iosched_cfq = {
3851 	.ops = {
3852 		.elevator_merge_fn = 		cfq_merge,
3853 		.elevator_merged_fn =		cfq_merged_request,
3854 		.elevator_merge_req_fn =	cfq_merged_requests,
3855 		.elevator_allow_merge_fn =	cfq_allow_merge,
3856 		.elevator_bio_merged_fn =	cfq_bio_merged,
3857 		.elevator_dispatch_fn =		cfq_dispatch_requests,
3858 		.elevator_add_req_fn =		cfq_insert_request,
3859 		.elevator_activate_req_fn =	cfq_activate_request,
3860 		.elevator_deactivate_req_fn =	cfq_deactivate_request,
3861 		.elevator_completed_req_fn =	cfq_completed_request,
3862 		.elevator_former_req_fn =	elv_rb_former_request,
3863 		.elevator_latter_req_fn =	elv_rb_latter_request,
3864 		.elevator_init_icq_fn =		cfq_init_icq,
3865 		.elevator_exit_icq_fn =		cfq_exit_icq,
3866 		.elevator_set_req_fn =		cfq_set_request,
3867 		.elevator_put_req_fn =		cfq_put_request,
3868 		.elevator_may_queue_fn =	cfq_may_queue,
3869 		.elevator_init_fn =		cfq_init_queue,
3870 		.elevator_exit_fn =		cfq_exit_queue,
3871 	},
3872 	.icq_size	=	sizeof(struct cfq_io_cq),
3873 	.icq_align	=	__alignof__(struct cfq_io_cq),
3874 	.elevator_attrs =	cfq_attrs,
3875 	.elevator_name	=	"cfq",
3876 	.elevator_owner =	THIS_MODULE,
3877 };
3878 
3879 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3880 static struct blkio_policy_type blkio_policy_cfq = {
3881 	.ops = {
3882 		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
3883 		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
3884 	},
3885 	.plid = BLKIO_POLICY_PROP,
3886 };
3887 #else
3888 static struct blkio_policy_type blkio_policy_cfq;
3889 #endif
3890 
cfq_init(void)3891 static int __init cfq_init(void)
3892 {
3893 	int ret;
3894 
3895 	/*
3896 	 * could be 0 on HZ < 1000 setups
3897 	 */
3898 	if (!cfq_slice_async)
3899 		cfq_slice_async = 1;
3900 	if (!cfq_slice_idle)
3901 		cfq_slice_idle = 1;
3902 
3903 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3904 	if (!cfq_group_idle)
3905 		cfq_group_idle = 1;
3906 #else
3907 		cfq_group_idle = 0;
3908 #endif
3909 	cfq_pool = KMEM_CACHE(cfq_queue, 0);
3910 	if (!cfq_pool)
3911 		return -ENOMEM;
3912 
3913 	ret = elv_register(&iosched_cfq);
3914 	if (ret) {
3915 		kmem_cache_destroy(cfq_pool);
3916 		return ret;
3917 	}
3918 
3919 	blkio_policy_register(&blkio_policy_cfq);
3920 
3921 	return 0;
3922 }
3923 
cfq_exit(void)3924 static void __exit cfq_exit(void)
3925 {
3926 	blkio_policy_unregister(&blkio_policy_cfq);
3927 	elv_unregister(&iosched_cfq);
3928 	kmem_cache_destroy(cfq_pool);
3929 }
3930 
3931 module_init(cfq_init);
3932 module_exit(cfq_exit);
3933 
3934 MODULE_AUTHOR("Jens Axboe");
3935 MODULE_LICENSE("GPL");
3936 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3937