1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/fixmap.h>
16 #include <asm/hpet.h>
17 #include <asm/time.h>
18
19 #define HPET_MASK CLOCKSOURCE_MASK(32)
20
21 /* FSEC = 10^-15
22 NSEC = 10^-9 */
23 #define FSEC_PER_NSEC 1000000L
24
25 #define HPET_DEV_USED_BIT 2
26 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID 0x8
28 #define HPET_DEV_FSB_CAP 0x1000
29 #define HPET_DEV_PERI_CAP 0x2000
30
31 #define HPET_MIN_CYCLES 128
32 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
33
34 /*
35 * HPET address is set in acpi/boot.c, when an ACPI entry exists
36 */
37 unsigned long hpet_address;
38 u8 hpet_blockid; /* OS timer block num */
39 u8 hpet_msi_disable;
40
41 #ifdef CONFIG_PCI_MSI
42 static unsigned long hpet_num_timers;
43 #endif
44 static void __iomem *hpet_virt_address;
45
46 struct hpet_dev {
47 struct clock_event_device evt;
48 unsigned int num;
49 int cpu;
50 unsigned int irq;
51 unsigned int flags;
52 char name[10];
53 };
54
EVT_TO_HPET_DEV(struct clock_event_device * evtdev)55 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
56 {
57 return container_of(evtdev, struct hpet_dev, evt);
58 }
59
hpet_readl(unsigned int a)60 inline unsigned int hpet_readl(unsigned int a)
61 {
62 return readl(hpet_virt_address + a);
63 }
64
hpet_writel(unsigned int d,unsigned int a)65 static inline void hpet_writel(unsigned int d, unsigned int a)
66 {
67 writel(d, hpet_virt_address + a);
68 }
69
70 #ifdef CONFIG_X86_64
71 #include <asm/pgtable.h>
72 #endif
73
hpet_set_mapping(void)74 static inline void hpet_set_mapping(void)
75 {
76 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
77 #ifdef CONFIG_X86_64
78 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
79 #endif
80 }
81
hpet_clear_mapping(void)82 static inline void hpet_clear_mapping(void)
83 {
84 iounmap(hpet_virt_address);
85 hpet_virt_address = NULL;
86 }
87
88 /*
89 * HPET command line enable / disable
90 */
91 static int boot_hpet_disable;
92 int hpet_force_user;
93 static int hpet_verbose;
94
hpet_setup(char * str)95 static int __init hpet_setup(char *str)
96 {
97 if (str) {
98 if (!strncmp("disable", str, 7))
99 boot_hpet_disable = 1;
100 if (!strncmp("force", str, 5))
101 hpet_force_user = 1;
102 if (!strncmp("verbose", str, 7))
103 hpet_verbose = 1;
104 }
105 return 1;
106 }
107 __setup("hpet=", hpet_setup);
108
disable_hpet(char * str)109 static int __init disable_hpet(char *str)
110 {
111 boot_hpet_disable = 1;
112 return 1;
113 }
114 __setup("nohpet", disable_hpet);
115
is_hpet_capable(void)116 static inline int is_hpet_capable(void)
117 {
118 return !boot_hpet_disable && hpet_address;
119 }
120
121 /*
122 * HPET timer interrupt enable / disable
123 */
124 static int hpet_legacy_int_enabled;
125
126 /**
127 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
128 */
is_hpet_enabled(void)129 int is_hpet_enabled(void)
130 {
131 return is_hpet_capable() && hpet_legacy_int_enabled;
132 }
133 EXPORT_SYMBOL_GPL(is_hpet_enabled);
134
_hpet_print_config(const char * function,int line)135 static void _hpet_print_config(const char *function, int line)
136 {
137 u32 i, timers, l, h;
138 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
139 l = hpet_readl(HPET_ID);
140 h = hpet_readl(HPET_PERIOD);
141 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
142 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
143 l = hpet_readl(HPET_CFG);
144 h = hpet_readl(HPET_STATUS);
145 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
146 l = hpet_readl(HPET_COUNTER);
147 h = hpet_readl(HPET_COUNTER+4);
148 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
149
150 for (i = 0; i < timers; i++) {
151 l = hpet_readl(HPET_Tn_CFG(i));
152 h = hpet_readl(HPET_Tn_CFG(i)+4);
153 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
154 i, l, h);
155 l = hpet_readl(HPET_Tn_CMP(i));
156 h = hpet_readl(HPET_Tn_CMP(i)+4);
157 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
158 i, l, h);
159 l = hpet_readl(HPET_Tn_ROUTE(i));
160 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
161 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
162 i, l, h);
163 }
164 }
165
166 #define hpet_print_config() \
167 do { \
168 if (hpet_verbose) \
169 _hpet_print_config(__FUNCTION__, __LINE__); \
170 } while (0)
171
172 /*
173 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
174 * timer 0 and timer 1 in case of RTC emulation.
175 */
176 #ifdef CONFIG_HPET
177
178 static void hpet_reserve_msi_timers(struct hpet_data *hd);
179
hpet_reserve_platform_timers(unsigned int id)180 static void hpet_reserve_platform_timers(unsigned int id)
181 {
182 struct hpet __iomem *hpet = hpet_virt_address;
183 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
184 unsigned int nrtimers, i;
185 struct hpet_data hd;
186
187 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
188
189 memset(&hd, 0, sizeof(hd));
190 hd.hd_phys_address = hpet_address;
191 hd.hd_address = hpet;
192 hd.hd_nirqs = nrtimers;
193 hpet_reserve_timer(&hd, 0);
194
195 #ifdef CONFIG_HPET_EMULATE_RTC
196 hpet_reserve_timer(&hd, 1);
197 #endif
198
199 /*
200 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
201 * is wrong for i8259!) not the output IRQ. Many BIOS writers
202 * don't bother configuring *any* comparator interrupts.
203 */
204 hd.hd_irq[0] = HPET_LEGACY_8254;
205 hd.hd_irq[1] = HPET_LEGACY_RTC;
206
207 for (i = 2; i < nrtimers; timer++, i++) {
208 hd.hd_irq[i] = (readl(&timer->hpet_config) &
209 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
210 }
211
212 hpet_reserve_msi_timers(&hd);
213
214 hpet_alloc(&hd);
215
216 }
217 #else
hpet_reserve_platform_timers(unsigned int id)218 static void hpet_reserve_platform_timers(unsigned int id) { }
219 #endif
220
221 /*
222 * Common hpet info
223 */
224 static unsigned long hpet_freq;
225
226 static void hpet_legacy_set_mode(enum clock_event_mode mode,
227 struct clock_event_device *evt);
228 static int hpet_legacy_next_event(unsigned long delta,
229 struct clock_event_device *evt);
230
231 /*
232 * The hpet clock event device
233 */
234 static struct clock_event_device hpet_clockevent = {
235 .name = "hpet",
236 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
237 .set_mode = hpet_legacy_set_mode,
238 .set_next_event = hpet_legacy_next_event,
239 .irq = 0,
240 .rating = 50,
241 };
242
hpet_stop_counter(void)243 static void hpet_stop_counter(void)
244 {
245 unsigned long cfg = hpet_readl(HPET_CFG);
246 cfg &= ~HPET_CFG_ENABLE;
247 hpet_writel(cfg, HPET_CFG);
248 }
249
hpet_reset_counter(void)250 static void hpet_reset_counter(void)
251 {
252 hpet_writel(0, HPET_COUNTER);
253 hpet_writel(0, HPET_COUNTER + 4);
254 }
255
hpet_start_counter(void)256 static void hpet_start_counter(void)
257 {
258 unsigned int cfg = hpet_readl(HPET_CFG);
259 cfg |= HPET_CFG_ENABLE;
260 hpet_writel(cfg, HPET_CFG);
261 }
262
hpet_restart_counter(void)263 static void hpet_restart_counter(void)
264 {
265 hpet_stop_counter();
266 hpet_reset_counter();
267 hpet_start_counter();
268 }
269
hpet_resume_device(void)270 static void hpet_resume_device(void)
271 {
272 force_hpet_resume();
273 }
274
hpet_resume_counter(struct clocksource * cs)275 static void hpet_resume_counter(struct clocksource *cs)
276 {
277 hpet_resume_device();
278 hpet_restart_counter();
279 }
280
hpet_enable_legacy_int(void)281 static void hpet_enable_legacy_int(void)
282 {
283 unsigned int cfg = hpet_readl(HPET_CFG);
284
285 cfg |= HPET_CFG_LEGACY;
286 hpet_writel(cfg, HPET_CFG);
287 hpet_legacy_int_enabled = 1;
288 }
289
hpet_legacy_clockevent_register(void)290 static void hpet_legacy_clockevent_register(void)
291 {
292 /* Start HPET legacy interrupts */
293 hpet_enable_legacy_int();
294
295 /*
296 * Start hpet with the boot cpu mask and make it
297 * global after the IO_APIC has been initialized.
298 */
299 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
300 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
301 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
302 global_clock_event = &hpet_clockevent;
303 printk(KERN_DEBUG "hpet clockevent registered\n");
304 }
305
306 static int hpet_setup_msi_irq(unsigned int irq);
307
hpet_set_mode(enum clock_event_mode mode,struct clock_event_device * evt,int timer)308 static void hpet_set_mode(enum clock_event_mode mode,
309 struct clock_event_device *evt, int timer)
310 {
311 unsigned int cfg, cmp, now;
312 uint64_t delta;
313
314 switch (mode) {
315 case CLOCK_EVT_MODE_PERIODIC:
316 hpet_stop_counter();
317 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
318 delta >>= evt->shift;
319 now = hpet_readl(HPET_COUNTER);
320 cmp = now + (unsigned int) delta;
321 cfg = hpet_readl(HPET_Tn_CFG(timer));
322 /* Make sure we use edge triggered interrupts */
323 cfg &= ~HPET_TN_LEVEL;
324 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
325 HPET_TN_SETVAL | HPET_TN_32BIT;
326 hpet_writel(cfg, HPET_Tn_CFG(timer));
327 hpet_writel(cmp, HPET_Tn_CMP(timer));
328 udelay(1);
329 /*
330 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
331 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
332 * bit is automatically cleared after the first write.
333 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
334 * Publication # 24674)
335 */
336 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
337 hpet_start_counter();
338 hpet_print_config();
339 break;
340
341 case CLOCK_EVT_MODE_ONESHOT:
342 cfg = hpet_readl(HPET_Tn_CFG(timer));
343 cfg &= ~HPET_TN_PERIODIC;
344 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
345 hpet_writel(cfg, HPET_Tn_CFG(timer));
346 break;
347
348 case CLOCK_EVT_MODE_UNUSED:
349 case CLOCK_EVT_MODE_SHUTDOWN:
350 cfg = hpet_readl(HPET_Tn_CFG(timer));
351 cfg &= ~HPET_TN_ENABLE;
352 hpet_writel(cfg, HPET_Tn_CFG(timer));
353 break;
354
355 case CLOCK_EVT_MODE_RESUME:
356 if (timer == 0) {
357 hpet_enable_legacy_int();
358 } else {
359 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
360 hpet_setup_msi_irq(hdev->irq);
361 disable_irq(hdev->irq);
362 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
363 enable_irq(hdev->irq);
364 }
365 hpet_print_config();
366 break;
367 }
368 }
369
hpet_next_event(unsigned long delta,struct clock_event_device * evt,int timer)370 static int hpet_next_event(unsigned long delta,
371 struct clock_event_device *evt, int timer)
372 {
373 u32 cnt;
374 s32 res;
375
376 cnt = hpet_readl(HPET_COUNTER);
377 cnt += (u32) delta;
378 hpet_writel(cnt, HPET_Tn_CMP(timer));
379
380 /*
381 * HPETs are a complete disaster. The compare register is
382 * based on a equal comparison and neither provides a less
383 * than or equal functionality (which would require to take
384 * the wraparound into account) nor a simple count down event
385 * mode. Further the write to the comparator register is
386 * delayed internally up to two HPET clock cycles in certain
387 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
388 * longer delays. We worked around that by reading back the
389 * compare register, but that required another workaround for
390 * ICH9,10 chips where the first readout after write can
391 * return the old stale value. We already had a minimum
392 * programming delta of 5us enforced, but a NMI or SMI hitting
393 * between the counter readout and the comparator write can
394 * move us behind that point easily. Now instead of reading
395 * the compare register back several times, we make the ETIME
396 * decision based on the following: Return ETIME if the
397 * counter value after the write is less than HPET_MIN_CYCLES
398 * away from the event or if the counter is already ahead of
399 * the event. The minimum programming delta for the generic
400 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
401 */
402 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
403
404 return res < HPET_MIN_CYCLES ? -ETIME : 0;
405 }
406
hpet_legacy_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)407 static void hpet_legacy_set_mode(enum clock_event_mode mode,
408 struct clock_event_device *evt)
409 {
410 hpet_set_mode(mode, evt, 0);
411 }
412
hpet_legacy_next_event(unsigned long delta,struct clock_event_device * evt)413 static int hpet_legacy_next_event(unsigned long delta,
414 struct clock_event_device *evt)
415 {
416 return hpet_next_event(delta, evt, 0);
417 }
418
419 /*
420 * HPET MSI Support
421 */
422 #ifdef CONFIG_PCI_MSI
423
424 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
425 static struct hpet_dev *hpet_devs;
426
hpet_msi_unmask(struct irq_data * data)427 void hpet_msi_unmask(struct irq_data *data)
428 {
429 struct hpet_dev *hdev = data->handler_data;
430 unsigned int cfg;
431
432 /* unmask it */
433 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
434 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
435 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
436 }
437
hpet_msi_mask(struct irq_data * data)438 void hpet_msi_mask(struct irq_data *data)
439 {
440 struct hpet_dev *hdev = data->handler_data;
441 unsigned int cfg;
442
443 /* mask it */
444 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
445 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
446 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
447 }
448
hpet_msi_write(struct hpet_dev * hdev,struct msi_msg * msg)449 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
450 {
451 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
452 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
453 }
454
hpet_msi_read(struct hpet_dev * hdev,struct msi_msg * msg)455 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
456 {
457 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
458 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
459 msg->address_hi = 0;
460 }
461
hpet_msi_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)462 static void hpet_msi_set_mode(enum clock_event_mode mode,
463 struct clock_event_device *evt)
464 {
465 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
466 hpet_set_mode(mode, evt, hdev->num);
467 }
468
hpet_msi_next_event(unsigned long delta,struct clock_event_device * evt)469 static int hpet_msi_next_event(unsigned long delta,
470 struct clock_event_device *evt)
471 {
472 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
473 return hpet_next_event(delta, evt, hdev->num);
474 }
475
hpet_setup_msi_irq(unsigned int irq)476 static int hpet_setup_msi_irq(unsigned int irq)
477 {
478 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
479 destroy_irq(irq);
480 return -EINVAL;
481 }
482 return 0;
483 }
484
hpet_assign_irq(struct hpet_dev * dev)485 static int hpet_assign_irq(struct hpet_dev *dev)
486 {
487 unsigned int irq;
488
489 irq = create_irq_nr(0, -1);
490 if (!irq)
491 return -EINVAL;
492
493 irq_set_handler_data(irq, dev);
494
495 if (hpet_setup_msi_irq(irq))
496 return -EINVAL;
497
498 dev->irq = irq;
499 return 0;
500 }
501
hpet_interrupt_handler(int irq,void * data)502 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
503 {
504 struct hpet_dev *dev = (struct hpet_dev *)data;
505 struct clock_event_device *hevt = &dev->evt;
506
507 if (!hevt->event_handler) {
508 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
509 dev->num);
510 return IRQ_HANDLED;
511 }
512
513 hevt->event_handler(hevt);
514 return IRQ_HANDLED;
515 }
516
hpet_setup_irq(struct hpet_dev * dev)517 static int hpet_setup_irq(struct hpet_dev *dev)
518 {
519
520 if (request_irq(dev->irq, hpet_interrupt_handler,
521 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
522 dev->name, dev))
523 return -1;
524
525 disable_irq(dev->irq);
526 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
527 enable_irq(dev->irq);
528
529 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
530 dev->name, dev->irq);
531
532 return 0;
533 }
534
535 /* This should be called in specific @cpu */
init_one_hpet_msi_clockevent(struct hpet_dev * hdev,int cpu)536 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
537 {
538 struct clock_event_device *evt = &hdev->evt;
539
540 WARN_ON(cpu != smp_processor_id());
541 if (!(hdev->flags & HPET_DEV_VALID))
542 return;
543
544 if (hpet_setup_msi_irq(hdev->irq))
545 return;
546
547 hdev->cpu = cpu;
548 per_cpu(cpu_hpet_dev, cpu) = hdev;
549 evt->name = hdev->name;
550 hpet_setup_irq(hdev);
551 evt->irq = hdev->irq;
552
553 evt->rating = 110;
554 evt->features = CLOCK_EVT_FEAT_ONESHOT;
555 if (hdev->flags & HPET_DEV_PERI_CAP)
556 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
557
558 evt->set_mode = hpet_msi_set_mode;
559 evt->set_next_event = hpet_msi_next_event;
560 evt->cpumask = cpumask_of(hdev->cpu);
561
562 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
563 0x7FFFFFFF);
564 }
565
566 #ifdef CONFIG_HPET
567 /* Reserve at least one timer for userspace (/dev/hpet) */
568 #define RESERVE_TIMERS 1
569 #else
570 #define RESERVE_TIMERS 0
571 #endif
572
hpet_msi_capability_lookup(unsigned int start_timer)573 static void hpet_msi_capability_lookup(unsigned int start_timer)
574 {
575 unsigned int id;
576 unsigned int num_timers;
577 unsigned int num_timers_used = 0;
578 int i;
579
580 if (hpet_msi_disable)
581 return;
582
583 if (boot_cpu_has(X86_FEATURE_ARAT))
584 return;
585 id = hpet_readl(HPET_ID);
586
587 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
588 num_timers++; /* Value read out starts from 0 */
589 hpet_print_config();
590
591 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
592 if (!hpet_devs)
593 return;
594
595 hpet_num_timers = num_timers;
596
597 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
598 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
599 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
600
601 /* Only consider HPET timer with MSI support */
602 if (!(cfg & HPET_TN_FSB_CAP))
603 continue;
604
605 hdev->flags = 0;
606 if (cfg & HPET_TN_PERIODIC_CAP)
607 hdev->flags |= HPET_DEV_PERI_CAP;
608 hdev->num = i;
609
610 sprintf(hdev->name, "hpet%d", i);
611 if (hpet_assign_irq(hdev))
612 continue;
613
614 hdev->flags |= HPET_DEV_FSB_CAP;
615 hdev->flags |= HPET_DEV_VALID;
616 num_timers_used++;
617 if (num_timers_used == num_possible_cpus())
618 break;
619 }
620
621 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
622 num_timers, num_timers_used);
623 }
624
625 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)626 static void hpet_reserve_msi_timers(struct hpet_data *hd)
627 {
628 int i;
629
630 if (!hpet_devs)
631 return;
632
633 for (i = 0; i < hpet_num_timers; i++) {
634 struct hpet_dev *hdev = &hpet_devs[i];
635
636 if (!(hdev->flags & HPET_DEV_VALID))
637 continue;
638
639 hd->hd_irq[hdev->num] = hdev->irq;
640 hpet_reserve_timer(hd, hdev->num);
641 }
642 }
643 #endif
644
hpet_get_unused_timer(void)645 static struct hpet_dev *hpet_get_unused_timer(void)
646 {
647 int i;
648
649 if (!hpet_devs)
650 return NULL;
651
652 for (i = 0; i < hpet_num_timers; i++) {
653 struct hpet_dev *hdev = &hpet_devs[i];
654
655 if (!(hdev->flags & HPET_DEV_VALID))
656 continue;
657 if (test_and_set_bit(HPET_DEV_USED_BIT,
658 (unsigned long *)&hdev->flags))
659 continue;
660 return hdev;
661 }
662 return NULL;
663 }
664
665 struct hpet_work_struct {
666 struct delayed_work work;
667 struct completion complete;
668 };
669
hpet_work(struct work_struct * w)670 static void hpet_work(struct work_struct *w)
671 {
672 struct hpet_dev *hdev;
673 int cpu = smp_processor_id();
674 struct hpet_work_struct *hpet_work;
675
676 hpet_work = container_of(w, struct hpet_work_struct, work.work);
677
678 hdev = hpet_get_unused_timer();
679 if (hdev)
680 init_one_hpet_msi_clockevent(hdev, cpu);
681
682 complete(&hpet_work->complete);
683 }
684
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)685 static int hpet_cpuhp_notify(struct notifier_block *n,
686 unsigned long action, void *hcpu)
687 {
688 unsigned long cpu = (unsigned long)hcpu;
689 struct hpet_work_struct work;
690 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
691
692 switch (action & 0xf) {
693 case CPU_ONLINE:
694 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
695 init_completion(&work.complete);
696 /* FIXME: add schedule_work_on() */
697 schedule_delayed_work_on(cpu, &work.work, 0);
698 wait_for_completion(&work.complete);
699 destroy_timer_on_stack(&work.work.timer);
700 break;
701 case CPU_DEAD:
702 if (hdev) {
703 free_irq(hdev->irq, hdev);
704 hdev->flags &= ~HPET_DEV_USED;
705 per_cpu(cpu_hpet_dev, cpu) = NULL;
706 }
707 break;
708 }
709 return NOTIFY_OK;
710 }
711 #else
712
hpet_setup_msi_irq(unsigned int irq)713 static int hpet_setup_msi_irq(unsigned int irq)
714 {
715 return 0;
716 }
hpet_msi_capability_lookup(unsigned int start_timer)717 static void hpet_msi_capability_lookup(unsigned int start_timer)
718 {
719 return;
720 }
721
722 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)723 static void hpet_reserve_msi_timers(struct hpet_data *hd)
724 {
725 return;
726 }
727 #endif
728
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)729 static int hpet_cpuhp_notify(struct notifier_block *n,
730 unsigned long action, void *hcpu)
731 {
732 return NOTIFY_OK;
733 }
734
735 #endif
736
737 /*
738 * Clock source related code
739 */
read_hpet(struct clocksource * cs)740 static cycle_t read_hpet(struct clocksource *cs)
741 {
742 return (cycle_t)hpet_readl(HPET_COUNTER);
743 }
744
745 static struct clocksource clocksource_hpet = {
746 .name = "hpet",
747 .rating = 250,
748 .read = read_hpet,
749 .mask = HPET_MASK,
750 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
751 .resume = hpet_resume_counter,
752 #ifdef CONFIG_X86_64
753 .archdata = { .vclock_mode = VCLOCK_HPET },
754 #endif
755 };
756
hpet_clocksource_register(void)757 static int hpet_clocksource_register(void)
758 {
759 u64 start, now;
760 cycle_t t1;
761
762 /* Start the counter */
763 hpet_restart_counter();
764
765 /* Verify whether hpet counter works */
766 t1 = hpet_readl(HPET_COUNTER);
767 rdtscll(start);
768
769 /*
770 * We don't know the TSC frequency yet, but waiting for
771 * 200000 TSC cycles is safe:
772 * 4 GHz == 50us
773 * 1 GHz == 200us
774 */
775 do {
776 rep_nop();
777 rdtscll(now);
778 } while ((now - start) < 200000UL);
779
780 if (t1 == hpet_readl(HPET_COUNTER)) {
781 printk(KERN_WARNING
782 "HPET counter not counting. HPET disabled\n");
783 return -ENODEV;
784 }
785
786 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
787 return 0;
788 }
789
790 /**
791 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
792 */
hpet_enable(void)793 int __init hpet_enable(void)
794 {
795 unsigned long hpet_period;
796 unsigned int id;
797 u64 freq;
798 int i;
799
800 if (!is_hpet_capable())
801 return 0;
802
803 hpet_set_mapping();
804
805 /*
806 * Read the period and check for a sane value:
807 */
808 hpet_period = hpet_readl(HPET_PERIOD);
809
810 /*
811 * AMD SB700 based systems with spread spectrum enabled use a
812 * SMM based HPET emulation to provide proper frequency
813 * setting. The SMM code is initialized with the first HPET
814 * register access and takes some time to complete. During
815 * this time the config register reads 0xffffffff. We check
816 * for max. 1000 loops whether the config register reads a non
817 * 0xffffffff value to make sure that HPET is up and running
818 * before we go further. A counting loop is safe, as the HPET
819 * access takes thousands of CPU cycles. On non SB700 based
820 * machines this check is only done once and has no side
821 * effects.
822 */
823 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
824 if (i == 1000) {
825 printk(KERN_WARNING
826 "HPET config register value = 0xFFFFFFFF. "
827 "Disabling HPET\n");
828 goto out_nohpet;
829 }
830 }
831
832 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
833 goto out_nohpet;
834
835 /*
836 * The period is a femto seconds value. Convert it to a
837 * frequency.
838 */
839 freq = FSEC_PER_SEC;
840 do_div(freq, hpet_period);
841 hpet_freq = freq;
842
843 /*
844 * Read the HPET ID register to retrieve the IRQ routing
845 * information and the number of channels
846 */
847 id = hpet_readl(HPET_ID);
848 hpet_print_config();
849
850 #ifdef CONFIG_HPET_EMULATE_RTC
851 /*
852 * The legacy routing mode needs at least two channels, tick timer
853 * and the rtc emulation channel.
854 */
855 if (!(id & HPET_ID_NUMBER))
856 goto out_nohpet;
857 #endif
858
859 if (hpet_clocksource_register())
860 goto out_nohpet;
861
862 if (id & HPET_ID_LEGSUP) {
863 hpet_legacy_clockevent_register();
864 return 1;
865 }
866 return 0;
867
868 out_nohpet:
869 hpet_clear_mapping();
870 hpet_address = 0;
871 return 0;
872 }
873
874 /*
875 * Needs to be late, as the reserve_timer code calls kalloc !
876 *
877 * Not a problem on i386 as hpet_enable is called from late_time_init,
878 * but on x86_64 it is necessary !
879 */
hpet_late_init(void)880 static __init int hpet_late_init(void)
881 {
882 int cpu;
883
884 if (boot_hpet_disable)
885 return -ENODEV;
886
887 if (!hpet_address) {
888 if (!force_hpet_address)
889 return -ENODEV;
890
891 hpet_address = force_hpet_address;
892 hpet_enable();
893 }
894
895 if (!hpet_virt_address)
896 return -ENODEV;
897
898 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
899 hpet_msi_capability_lookup(2);
900 else
901 hpet_msi_capability_lookup(0);
902
903 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
904 hpet_print_config();
905
906 if (hpet_msi_disable)
907 return 0;
908
909 if (boot_cpu_has(X86_FEATURE_ARAT))
910 return 0;
911
912 for_each_online_cpu(cpu) {
913 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
914 }
915
916 /* This notifier should be called after workqueue is ready */
917 hotcpu_notifier(hpet_cpuhp_notify, -20);
918
919 return 0;
920 }
921 fs_initcall(hpet_late_init);
922
hpet_disable(void)923 void hpet_disable(void)
924 {
925 if (is_hpet_capable() && hpet_virt_address) {
926 unsigned int cfg = hpet_readl(HPET_CFG);
927
928 if (hpet_legacy_int_enabled) {
929 cfg &= ~HPET_CFG_LEGACY;
930 hpet_legacy_int_enabled = 0;
931 }
932 cfg &= ~HPET_CFG_ENABLE;
933 hpet_writel(cfg, HPET_CFG);
934 }
935 }
936
937 #ifdef CONFIG_HPET_EMULATE_RTC
938
939 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
940 * is enabled, we support RTC interrupt functionality in software.
941 * RTC has 3 kinds of interrupts:
942 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
943 * is updated
944 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
945 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
946 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
947 * (1) and (2) above are implemented using polling at a frequency of
948 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
949 * overhead. (DEFAULT_RTC_INT_FREQ)
950 * For (3), we use interrupts at 64Hz or user specified periodic
951 * frequency, whichever is higher.
952 */
953 #include <linux/mc146818rtc.h>
954 #include <linux/rtc.h>
955 #include <asm/rtc.h>
956
957 #define DEFAULT_RTC_INT_FREQ 64
958 #define DEFAULT_RTC_SHIFT 6
959 #define RTC_NUM_INTS 1
960
961 static unsigned long hpet_rtc_flags;
962 static int hpet_prev_update_sec;
963 static struct rtc_time hpet_alarm_time;
964 static unsigned long hpet_pie_count;
965 static u32 hpet_t1_cmp;
966 static u32 hpet_default_delta;
967 static u32 hpet_pie_delta;
968 static unsigned long hpet_pie_limit;
969
970 static rtc_irq_handler irq_handler;
971
972 /*
973 * Check that the hpet counter c1 is ahead of the c2
974 */
hpet_cnt_ahead(u32 c1,u32 c2)975 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
976 {
977 return (s32)(c2 - c1) < 0;
978 }
979
980 /*
981 * Registers a IRQ handler.
982 */
hpet_register_irq_handler(rtc_irq_handler handler)983 int hpet_register_irq_handler(rtc_irq_handler handler)
984 {
985 if (!is_hpet_enabled())
986 return -ENODEV;
987 if (irq_handler)
988 return -EBUSY;
989
990 irq_handler = handler;
991
992 return 0;
993 }
994 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
995
996 /*
997 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
998 * and does cleanup.
999 */
hpet_unregister_irq_handler(rtc_irq_handler handler)1000 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1001 {
1002 if (!is_hpet_enabled())
1003 return;
1004
1005 irq_handler = NULL;
1006 hpet_rtc_flags = 0;
1007 }
1008 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1009
1010 /*
1011 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1012 * is not supported by all HPET implementations for timer 1.
1013 *
1014 * hpet_rtc_timer_init() is called when the rtc is initialized.
1015 */
hpet_rtc_timer_init(void)1016 int hpet_rtc_timer_init(void)
1017 {
1018 unsigned int cfg, cnt, delta;
1019 unsigned long flags;
1020
1021 if (!is_hpet_enabled())
1022 return 0;
1023
1024 if (!hpet_default_delta) {
1025 uint64_t clc;
1026
1027 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1028 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1029 hpet_default_delta = clc;
1030 }
1031
1032 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1033 delta = hpet_default_delta;
1034 else
1035 delta = hpet_pie_delta;
1036
1037 local_irq_save(flags);
1038
1039 cnt = delta + hpet_readl(HPET_COUNTER);
1040 hpet_writel(cnt, HPET_T1_CMP);
1041 hpet_t1_cmp = cnt;
1042
1043 cfg = hpet_readl(HPET_T1_CFG);
1044 cfg &= ~HPET_TN_PERIODIC;
1045 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1046 hpet_writel(cfg, HPET_T1_CFG);
1047
1048 local_irq_restore(flags);
1049
1050 return 1;
1051 }
1052 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1053
hpet_disable_rtc_channel(void)1054 static void hpet_disable_rtc_channel(void)
1055 {
1056 unsigned long cfg;
1057 cfg = hpet_readl(HPET_T1_CFG);
1058 cfg &= ~HPET_TN_ENABLE;
1059 hpet_writel(cfg, HPET_T1_CFG);
1060 }
1061
1062 /*
1063 * The functions below are called from rtc driver.
1064 * Return 0 if HPET is not being used.
1065 * Otherwise do the necessary changes and return 1.
1066 */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1067 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1068 {
1069 if (!is_hpet_enabled())
1070 return 0;
1071
1072 hpet_rtc_flags &= ~bit_mask;
1073 if (unlikely(!hpet_rtc_flags))
1074 hpet_disable_rtc_channel();
1075
1076 return 1;
1077 }
1078 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1079
hpet_set_rtc_irq_bit(unsigned long bit_mask)1080 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1081 {
1082 unsigned long oldbits = hpet_rtc_flags;
1083
1084 if (!is_hpet_enabled())
1085 return 0;
1086
1087 hpet_rtc_flags |= bit_mask;
1088
1089 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1090 hpet_prev_update_sec = -1;
1091
1092 if (!oldbits)
1093 hpet_rtc_timer_init();
1094
1095 return 1;
1096 }
1097 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1098
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1099 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1100 unsigned char sec)
1101 {
1102 if (!is_hpet_enabled())
1103 return 0;
1104
1105 hpet_alarm_time.tm_hour = hrs;
1106 hpet_alarm_time.tm_min = min;
1107 hpet_alarm_time.tm_sec = sec;
1108
1109 return 1;
1110 }
1111 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1112
hpet_set_periodic_freq(unsigned long freq)1113 int hpet_set_periodic_freq(unsigned long freq)
1114 {
1115 uint64_t clc;
1116
1117 if (!is_hpet_enabled())
1118 return 0;
1119
1120 if (freq <= DEFAULT_RTC_INT_FREQ)
1121 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1122 else {
1123 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1124 do_div(clc, freq);
1125 clc >>= hpet_clockevent.shift;
1126 hpet_pie_delta = clc;
1127 hpet_pie_limit = 0;
1128 }
1129 return 1;
1130 }
1131 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1132
hpet_rtc_dropped_irq(void)1133 int hpet_rtc_dropped_irq(void)
1134 {
1135 return is_hpet_enabled();
1136 }
1137 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1138
hpet_rtc_timer_reinit(void)1139 static void hpet_rtc_timer_reinit(void)
1140 {
1141 unsigned int delta;
1142 int lost_ints = -1;
1143
1144 if (unlikely(!hpet_rtc_flags))
1145 hpet_disable_rtc_channel();
1146
1147 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1148 delta = hpet_default_delta;
1149 else
1150 delta = hpet_pie_delta;
1151
1152 /*
1153 * Increment the comparator value until we are ahead of the
1154 * current count.
1155 */
1156 do {
1157 hpet_t1_cmp += delta;
1158 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1159 lost_ints++;
1160 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1161
1162 if (lost_ints) {
1163 if (hpet_rtc_flags & RTC_PIE)
1164 hpet_pie_count += lost_ints;
1165 if (printk_ratelimit())
1166 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1167 lost_ints);
1168 }
1169 }
1170
hpet_rtc_interrupt(int irq,void * dev_id)1171 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1172 {
1173 struct rtc_time curr_time;
1174 unsigned long rtc_int_flag = 0;
1175
1176 hpet_rtc_timer_reinit();
1177 memset(&curr_time, 0, sizeof(struct rtc_time));
1178
1179 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1180 get_rtc_time(&curr_time);
1181
1182 if (hpet_rtc_flags & RTC_UIE &&
1183 curr_time.tm_sec != hpet_prev_update_sec) {
1184 if (hpet_prev_update_sec >= 0)
1185 rtc_int_flag = RTC_UF;
1186 hpet_prev_update_sec = curr_time.tm_sec;
1187 }
1188
1189 if (hpet_rtc_flags & RTC_PIE &&
1190 ++hpet_pie_count >= hpet_pie_limit) {
1191 rtc_int_flag |= RTC_PF;
1192 hpet_pie_count = 0;
1193 }
1194
1195 if (hpet_rtc_flags & RTC_AIE &&
1196 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1197 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1198 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1199 rtc_int_flag |= RTC_AF;
1200
1201 if (rtc_int_flag) {
1202 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1203 if (irq_handler)
1204 irq_handler(rtc_int_flag, dev_id);
1205 }
1206 return IRQ_HANDLED;
1207 }
1208 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1209 #endif
1210