1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14 
15 #include <asm/fixmap.h>
16 #include <asm/hpet.h>
17 #include <asm/time.h>
18 
19 #define HPET_MASK			CLOCKSOURCE_MASK(32)
20 
21 /* FSEC = 10^-15
22    NSEC = 10^-9 */
23 #define FSEC_PER_NSEC			1000000L
24 
25 #define HPET_DEV_USED_BIT		2
26 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID			0x8
28 #define HPET_DEV_FSB_CAP		0x1000
29 #define HPET_DEV_PERI_CAP		0x2000
30 
31 #define HPET_MIN_CYCLES			128
32 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
33 
34 /*
35  * HPET address is set in acpi/boot.c, when an ACPI entry exists
36  */
37 unsigned long				hpet_address;
38 u8					hpet_blockid; /* OS timer block num */
39 u8					hpet_msi_disable;
40 
41 #ifdef CONFIG_PCI_MSI
42 static unsigned long			hpet_num_timers;
43 #endif
44 static void __iomem			*hpet_virt_address;
45 
46 struct hpet_dev {
47 	struct clock_event_device	evt;
48 	unsigned int			num;
49 	int				cpu;
50 	unsigned int			irq;
51 	unsigned int			flags;
52 	char				name[10];
53 };
54 
EVT_TO_HPET_DEV(struct clock_event_device * evtdev)55 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
56 {
57 	return container_of(evtdev, struct hpet_dev, evt);
58 }
59 
hpet_readl(unsigned int a)60 inline unsigned int hpet_readl(unsigned int a)
61 {
62 	return readl(hpet_virt_address + a);
63 }
64 
hpet_writel(unsigned int d,unsigned int a)65 static inline void hpet_writel(unsigned int d, unsigned int a)
66 {
67 	writel(d, hpet_virt_address + a);
68 }
69 
70 #ifdef CONFIG_X86_64
71 #include <asm/pgtable.h>
72 #endif
73 
hpet_set_mapping(void)74 static inline void hpet_set_mapping(void)
75 {
76 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
77 #ifdef CONFIG_X86_64
78 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
79 #endif
80 }
81 
hpet_clear_mapping(void)82 static inline void hpet_clear_mapping(void)
83 {
84 	iounmap(hpet_virt_address);
85 	hpet_virt_address = NULL;
86 }
87 
88 /*
89  * HPET command line enable / disable
90  */
91 static int boot_hpet_disable;
92 int hpet_force_user;
93 static int hpet_verbose;
94 
hpet_setup(char * str)95 static int __init hpet_setup(char *str)
96 {
97 	if (str) {
98 		if (!strncmp("disable", str, 7))
99 			boot_hpet_disable = 1;
100 		if (!strncmp("force", str, 5))
101 			hpet_force_user = 1;
102 		if (!strncmp("verbose", str, 7))
103 			hpet_verbose = 1;
104 	}
105 	return 1;
106 }
107 __setup("hpet=", hpet_setup);
108 
disable_hpet(char * str)109 static int __init disable_hpet(char *str)
110 {
111 	boot_hpet_disable = 1;
112 	return 1;
113 }
114 __setup("nohpet", disable_hpet);
115 
is_hpet_capable(void)116 static inline int is_hpet_capable(void)
117 {
118 	return !boot_hpet_disable && hpet_address;
119 }
120 
121 /*
122  * HPET timer interrupt enable / disable
123  */
124 static int hpet_legacy_int_enabled;
125 
126 /**
127  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
128  */
is_hpet_enabled(void)129 int is_hpet_enabled(void)
130 {
131 	return is_hpet_capable() && hpet_legacy_int_enabled;
132 }
133 EXPORT_SYMBOL_GPL(is_hpet_enabled);
134 
_hpet_print_config(const char * function,int line)135 static void _hpet_print_config(const char *function, int line)
136 {
137 	u32 i, timers, l, h;
138 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
139 	l = hpet_readl(HPET_ID);
140 	h = hpet_readl(HPET_PERIOD);
141 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
142 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
143 	l = hpet_readl(HPET_CFG);
144 	h = hpet_readl(HPET_STATUS);
145 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
146 	l = hpet_readl(HPET_COUNTER);
147 	h = hpet_readl(HPET_COUNTER+4);
148 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
149 
150 	for (i = 0; i < timers; i++) {
151 		l = hpet_readl(HPET_Tn_CFG(i));
152 		h = hpet_readl(HPET_Tn_CFG(i)+4);
153 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
154 		       i, l, h);
155 		l = hpet_readl(HPET_Tn_CMP(i));
156 		h = hpet_readl(HPET_Tn_CMP(i)+4);
157 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
158 		       i, l, h);
159 		l = hpet_readl(HPET_Tn_ROUTE(i));
160 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
161 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
162 		       i, l, h);
163 	}
164 }
165 
166 #define hpet_print_config()					\
167 do {								\
168 	if (hpet_verbose)					\
169 		_hpet_print_config(__FUNCTION__, __LINE__);	\
170 } while (0)
171 
172 /*
173  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
174  * timer 0 and timer 1 in case of RTC emulation.
175  */
176 #ifdef CONFIG_HPET
177 
178 static void hpet_reserve_msi_timers(struct hpet_data *hd);
179 
hpet_reserve_platform_timers(unsigned int id)180 static void hpet_reserve_platform_timers(unsigned int id)
181 {
182 	struct hpet __iomem *hpet = hpet_virt_address;
183 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
184 	unsigned int nrtimers, i;
185 	struct hpet_data hd;
186 
187 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
188 
189 	memset(&hd, 0, sizeof(hd));
190 	hd.hd_phys_address	= hpet_address;
191 	hd.hd_address		= hpet;
192 	hd.hd_nirqs		= nrtimers;
193 	hpet_reserve_timer(&hd, 0);
194 
195 #ifdef CONFIG_HPET_EMULATE_RTC
196 	hpet_reserve_timer(&hd, 1);
197 #endif
198 
199 	/*
200 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
201 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
202 	 * don't bother configuring *any* comparator interrupts.
203 	 */
204 	hd.hd_irq[0] = HPET_LEGACY_8254;
205 	hd.hd_irq[1] = HPET_LEGACY_RTC;
206 
207 	for (i = 2; i < nrtimers; timer++, i++) {
208 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
209 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
210 	}
211 
212 	hpet_reserve_msi_timers(&hd);
213 
214 	hpet_alloc(&hd);
215 
216 }
217 #else
hpet_reserve_platform_timers(unsigned int id)218 static void hpet_reserve_platform_timers(unsigned int id) { }
219 #endif
220 
221 /*
222  * Common hpet info
223  */
224 static unsigned long hpet_freq;
225 
226 static void hpet_legacy_set_mode(enum clock_event_mode mode,
227 			  struct clock_event_device *evt);
228 static int hpet_legacy_next_event(unsigned long delta,
229 			   struct clock_event_device *evt);
230 
231 /*
232  * The hpet clock event device
233  */
234 static struct clock_event_device hpet_clockevent = {
235 	.name		= "hpet",
236 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
237 	.set_mode	= hpet_legacy_set_mode,
238 	.set_next_event = hpet_legacy_next_event,
239 	.irq		= 0,
240 	.rating		= 50,
241 };
242 
hpet_stop_counter(void)243 static void hpet_stop_counter(void)
244 {
245 	unsigned long cfg = hpet_readl(HPET_CFG);
246 	cfg &= ~HPET_CFG_ENABLE;
247 	hpet_writel(cfg, HPET_CFG);
248 }
249 
hpet_reset_counter(void)250 static void hpet_reset_counter(void)
251 {
252 	hpet_writel(0, HPET_COUNTER);
253 	hpet_writel(0, HPET_COUNTER + 4);
254 }
255 
hpet_start_counter(void)256 static void hpet_start_counter(void)
257 {
258 	unsigned int cfg = hpet_readl(HPET_CFG);
259 	cfg |= HPET_CFG_ENABLE;
260 	hpet_writel(cfg, HPET_CFG);
261 }
262 
hpet_restart_counter(void)263 static void hpet_restart_counter(void)
264 {
265 	hpet_stop_counter();
266 	hpet_reset_counter();
267 	hpet_start_counter();
268 }
269 
hpet_resume_device(void)270 static void hpet_resume_device(void)
271 {
272 	force_hpet_resume();
273 }
274 
hpet_resume_counter(struct clocksource * cs)275 static void hpet_resume_counter(struct clocksource *cs)
276 {
277 	hpet_resume_device();
278 	hpet_restart_counter();
279 }
280 
hpet_enable_legacy_int(void)281 static void hpet_enable_legacy_int(void)
282 {
283 	unsigned int cfg = hpet_readl(HPET_CFG);
284 
285 	cfg |= HPET_CFG_LEGACY;
286 	hpet_writel(cfg, HPET_CFG);
287 	hpet_legacy_int_enabled = 1;
288 }
289 
hpet_legacy_clockevent_register(void)290 static void hpet_legacy_clockevent_register(void)
291 {
292 	/* Start HPET legacy interrupts */
293 	hpet_enable_legacy_int();
294 
295 	/*
296 	 * Start hpet with the boot cpu mask and make it
297 	 * global after the IO_APIC has been initialized.
298 	 */
299 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
300 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
301 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
302 	global_clock_event = &hpet_clockevent;
303 	printk(KERN_DEBUG "hpet clockevent registered\n");
304 }
305 
306 static int hpet_setup_msi_irq(unsigned int irq);
307 
hpet_set_mode(enum clock_event_mode mode,struct clock_event_device * evt,int timer)308 static void hpet_set_mode(enum clock_event_mode mode,
309 			  struct clock_event_device *evt, int timer)
310 {
311 	unsigned int cfg, cmp, now;
312 	uint64_t delta;
313 
314 	switch (mode) {
315 	case CLOCK_EVT_MODE_PERIODIC:
316 		hpet_stop_counter();
317 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
318 		delta >>= evt->shift;
319 		now = hpet_readl(HPET_COUNTER);
320 		cmp = now + (unsigned int) delta;
321 		cfg = hpet_readl(HPET_Tn_CFG(timer));
322 		/* Make sure we use edge triggered interrupts */
323 		cfg &= ~HPET_TN_LEVEL;
324 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
325 		       HPET_TN_SETVAL | HPET_TN_32BIT;
326 		hpet_writel(cfg, HPET_Tn_CFG(timer));
327 		hpet_writel(cmp, HPET_Tn_CMP(timer));
328 		udelay(1);
329 		/*
330 		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
331 		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
332 		 * bit is automatically cleared after the first write.
333 		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
334 		 * Publication # 24674)
335 		 */
336 		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
337 		hpet_start_counter();
338 		hpet_print_config();
339 		break;
340 
341 	case CLOCK_EVT_MODE_ONESHOT:
342 		cfg = hpet_readl(HPET_Tn_CFG(timer));
343 		cfg &= ~HPET_TN_PERIODIC;
344 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
345 		hpet_writel(cfg, HPET_Tn_CFG(timer));
346 		break;
347 
348 	case CLOCK_EVT_MODE_UNUSED:
349 	case CLOCK_EVT_MODE_SHUTDOWN:
350 		cfg = hpet_readl(HPET_Tn_CFG(timer));
351 		cfg &= ~HPET_TN_ENABLE;
352 		hpet_writel(cfg, HPET_Tn_CFG(timer));
353 		break;
354 
355 	case CLOCK_EVT_MODE_RESUME:
356 		if (timer == 0) {
357 			hpet_enable_legacy_int();
358 		} else {
359 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
360 			hpet_setup_msi_irq(hdev->irq);
361 			disable_irq(hdev->irq);
362 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
363 			enable_irq(hdev->irq);
364 		}
365 		hpet_print_config();
366 		break;
367 	}
368 }
369 
hpet_next_event(unsigned long delta,struct clock_event_device * evt,int timer)370 static int hpet_next_event(unsigned long delta,
371 			   struct clock_event_device *evt, int timer)
372 {
373 	u32 cnt;
374 	s32 res;
375 
376 	cnt = hpet_readl(HPET_COUNTER);
377 	cnt += (u32) delta;
378 	hpet_writel(cnt, HPET_Tn_CMP(timer));
379 
380 	/*
381 	 * HPETs are a complete disaster. The compare register is
382 	 * based on a equal comparison and neither provides a less
383 	 * than or equal functionality (which would require to take
384 	 * the wraparound into account) nor a simple count down event
385 	 * mode. Further the write to the comparator register is
386 	 * delayed internally up to two HPET clock cycles in certain
387 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
388 	 * longer delays. We worked around that by reading back the
389 	 * compare register, but that required another workaround for
390 	 * ICH9,10 chips where the first readout after write can
391 	 * return the old stale value. We already had a minimum
392 	 * programming delta of 5us enforced, but a NMI or SMI hitting
393 	 * between the counter readout and the comparator write can
394 	 * move us behind that point easily. Now instead of reading
395 	 * the compare register back several times, we make the ETIME
396 	 * decision based on the following: Return ETIME if the
397 	 * counter value after the write is less than HPET_MIN_CYCLES
398 	 * away from the event or if the counter is already ahead of
399 	 * the event. The minimum programming delta for the generic
400 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
401 	 */
402 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
403 
404 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
405 }
406 
hpet_legacy_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)407 static void hpet_legacy_set_mode(enum clock_event_mode mode,
408 			struct clock_event_device *evt)
409 {
410 	hpet_set_mode(mode, evt, 0);
411 }
412 
hpet_legacy_next_event(unsigned long delta,struct clock_event_device * evt)413 static int hpet_legacy_next_event(unsigned long delta,
414 			struct clock_event_device *evt)
415 {
416 	return hpet_next_event(delta, evt, 0);
417 }
418 
419 /*
420  * HPET MSI Support
421  */
422 #ifdef CONFIG_PCI_MSI
423 
424 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
425 static struct hpet_dev	*hpet_devs;
426 
hpet_msi_unmask(struct irq_data * data)427 void hpet_msi_unmask(struct irq_data *data)
428 {
429 	struct hpet_dev *hdev = data->handler_data;
430 	unsigned int cfg;
431 
432 	/* unmask it */
433 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
434 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
435 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
436 }
437 
hpet_msi_mask(struct irq_data * data)438 void hpet_msi_mask(struct irq_data *data)
439 {
440 	struct hpet_dev *hdev = data->handler_data;
441 	unsigned int cfg;
442 
443 	/* mask it */
444 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
445 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
446 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
447 }
448 
hpet_msi_write(struct hpet_dev * hdev,struct msi_msg * msg)449 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
450 {
451 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
452 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
453 }
454 
hpet_msi_read(struct hpet_dev * hdev,struct msi_msg * msg)455 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
456 {
457 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
458 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
459 	msg->address_hi = 0;
460 }
461 
hpet_msi_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)462 static void hpet_msi_set_mode(enum clock_event_mode mode,
463 				struct clock_event_device *evt)
464 {
465 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
466 	hpet_set_mode(mode, evt, hdev->num);
467 }
468 
hpet_msi_next_event(unsigned long delta,struct clock_event_device * evt)469 static int hpet_msi_next_event(unsigned long delta,
470 				struct clock_event_device *evt)
471 {
472 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
473 	return hpet_next_event(delta, evt, hdev->num);
474 }
475 
hpet_setup_msi_irq(unsigned int irq)476 static int hpet_setup_msi_irq(unsigned int irq)
477 {
478 	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
479 		destroy_irq(irq);
480 		return -EINVAL;
481 	}
482 	return 0;
483 }
484 
hpet_assign_irq(struct hpet_dev * dev)485 static int hpet_assign_irq(struct hpet_dev *dev)
486 {
487 	unsigned int irq;
488 
489 	irq = create_irq_nr(0, -1);
490 	if (!irq)
491 		return -EINVAL;
492 
493 	irq_set_handler_data(irq, dev);
494 
495 	if (hpet_setup_msi_irq(irq))
496 		return -EINVAL;
497 
498 	dev->irq = irq;
499 	return 0;
500 }
501 
hpet_interrupt_handler(int irq,void * data)502 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
503 {
504 	struct hpet_dev *dev = (struct hpet_dev *)data;
505 	struct clock_event_device *hevt = &dev->evt;
506 
507 	if (!hevt->event_handler) {
508 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
509 				dev->num);
510 		return IRQ_HANDLED;
511 	}
512 
513 	hevt->event_handler(hevt);
514 	return IRQ_HANDLED;
515 }
516 
hpet_setup_irq(struct hpet_dev * dev)517 static int hpet_setup_irq(struct hpet_dev *dev)
518 {
519 
520 	if (request_irq(dev->irq, hpet_interrupt_handler,
521 			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
522 			dev->name, dev))
523 		return -1;
524 
525 	disable_irq(dev->irq);
526 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
527 	enable_irq(dev->irq);
528 
529 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
530 			 dev->name, dev->irq);
531 
532 	return 0;
533 }
534 
535 /* This should be called in specific @cpu */
init_one_hpet_msi_clockevent(struct hpet_dev * hdev,int cpu)536 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
537 {
538 	struct clock_event_device *evt = &hdev->evt;
539 
540 	WARN_ON(cpu != smp_processor_id());
541 	if (!(hdev->flags & HPET_DEV_VALID))
542 		return;
543 
544 	if (hpet_setup_msi_irq(hdev->irq))
545 		return;
546 
547 	hdev->cpu = cpu;
548 	per_cpu(cpu_hpet_dev, cpu) = hdev;
549 	evt->name = hdev->name;
550 	hpet_setup_irq(hdev);
551 	evt->irq = hdev->irq;
552 
553 	evt->rating = 110;
554 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
555 	if (hdev->flags & HPET_DEV_PERI_CAP)
556 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
557 
558 	evt->set_mode = hpet_msi_set_mode;
559 	evt->set_next_event = hpet_msi_next_event;
560 	evt->cpumask = cpumask_of(hdev->cpu);
561 
562 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
563 					0x7FFFFFFF);
564 }
565 
566 #ifdef CONFIG_HPET
567 /* Reserve at least one timer for userspace (/dev/hpet) */
568 #define RESERVE_TIMERS 1
569 #else
570 #define RESERVE_TIMERS 0
571 #endif
572 
hpet_msi_capability_lookup(unsigned int start_timer)573 static void hpet_msi_capability_lookup(unsigned int start_timer)
574 {
575 	unsigned int id;
576 	unsigned int num_timers;
577 	unsigned int num_timers_used = 0;
578 	int i;
579 
580 	if (hpet_msi_disable)
581 		return;
582 
583 	if (boot_cpu_has(X86_FEATURE_ARAT))
584 		return;
585 	id = hpet_readl(HPET_ID);
586 
587 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
588 	num_timers++; /* Value read out starts from 0 */
589 	hpet_print_config();
590 
591 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
592 	if (!hpet_devs)
593 		return;
594 
595 	hpet_num_timers = num_timers;
596 
597 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
598 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
599 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
600 
601 		/* Only consider HPET timer with MSI support */
602 		if (!(cfg & HPET_TN_FSB_CAP))
603 			continue;
604 
605 		hdev->flags = 0;
606 		if (cfg & HPET_TN_PERIODIC_CAP)
607 			hdev->flags |= HPET_DEV_PERI_CAP;
608 		hdev->num = i;
609 
610 		sprintf(hdev->name, "hpet%d", i);
611 		if (hpet_assign_irq(hdev))
612 			continue;
613 
614 		hdev->flags |= HPET_DEV_FSB_CAP;
615 		hdev->flags |= HPET_DEV_VALID;
616 		num_timers_used++;
617 		if (num_timers_used == num_possible_cpus())
618 			break;
619 	}
620 
621 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
622 		num_timers, num_timers_used);
623 }
624 
625 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)626 static void hpet_reserve_msi_timers(struct hpet_data *hd)
627 {
628 	int i;
629 
630 	if (!hpet_devs)
631 		return;
632 
633 	for (i = 0; i < hpet_num_timers; i++) {
634 		struct hpet_dev *hdev = &hpet_devs[i];
635 
636 		if (!(hdev->flags & HPET_DEV_VALID))
637 			continue;
638 
639 		hd->hd_irq[hdev->num] = hdev->irq;
640 		hpet_reserve_timer(hd, hdev->num);
641 	}
642 }
643 #endif
644 
hpet_get_unused_timer(void)645 static struct hpet_dev *hpet_get_unused_timer(void)
646 {
647 	int i;
648 
649 	if (!hpet_devs)
650 		return NULL;
651 
652 	for (i = 0; i < hpet_num_timers; i++) {
653 		struct hpet_dev *hdev = &hpet_devs[i];
654 
655 		if (!(hdev->flags & HPET_DEV_VALID))
656 			continue;
657 		if (test_and_set_bit(HPET_DEV_USED_BIT,
658 			(unsigned long *)&hdev->flags))
659 			continue;
660 		return hdev;
661 	}
662 	return NULL;
663 }
664 
665 struct hpet_work_struct {
666 	struct delayed_work work;
667 	struct completion complete;
668 };
669 
hpet_work(struct work_struct * w)670 static void hpet_work(struct work_struct *w)
671 {
672 	struct hpet_dev *hdev;
673 	int cpu = smp_processor_id();
674 	struct hpet_work_struct *hpet_work;
675 
676 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
677 
678 	hdev = hpet_get_unused_timer();
679 	if (hdev)
680 		init_one_hpet_msi_clockevent(hdev, cpu);
681 
682 	complete(&hpet_work->complete);
683 }
684 
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)685 static int hpet_cpuhp_notify(struct notifier_block *n,
686 		unsigned long action, void *hcpu)
687 {
688 	unsigned long cpu = (unsigned long)hcpu;
689 	struct hpet_work_struct work;
690 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
691 
692 	switch (action & 0xf) {
693 	case CPU_ONLINE:
694 		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
695 		init_completion(&work.complete);
696 		/* FIXME: add schedule_work_on() */
697 		schedule_delayed_work_on(cpu, &work.work, 0);
698 		wait_for_completion(&work.complete);
699 		destroy_timer_on_stack(&work.work.timer);
700 		break;
701 	case CPU_DEAD:
702 		if (hdev) {
703 			free_irq(hdev->irq, hdev);
704 			hdev->flags &= ~HPET_DEV_USED;
705 			per_cpu(cpu_hpet_dev, cpu) = NULL;
706 		}
707 		break;
708 	}
709 	return NOTIFY_OK;
710 }
711 #else
712 
hpet_setup_msi_irq(unsigned int irq)713 static int hpet_setup_msi_irq(unsigned int irq)
714 {
715 	return 0;
716 }
hpet_msi_capability_lookup(unsigned int start_timer)717 static void hpet_msi_capability_lookup(unsigned int start_timer)
718 {
719 	return;
720 }
721 
722 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)723 static void hpet_reserve_msi_timers(struct hpet_data *hd)
724 {
725 	return;
726 }
727 #endif
728 
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)729 static int hpet_cpuhp_notify(struct notifier_block *n,
730 		unsigned long action, void *hcpu)
731 {
732 	return NOTIFY_OK;
733 }
734 
735 #endif
736 
737 /*
738  * Clock source related code
739  */
read_hpet(struct clocksource * cs)740 static cycle_t read_hpet(struct clocksource *cs)
741 {
742 	return (cycle_t)hpet_readl(HPET_COUNTER);
743 }
744 
745 static struct clocksource clocksource_hpet = {
746 	.name		= "hpet",
747 	.rating		= 250,
748 	.read		= read_hpet,
749 	.mask		= HPET_MASK,
750 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
751 	.resume		= hpet_resume_counter,
752 #ifdef CONFIG_X86_64
753 	.archdata	= { .vclock_mode = VCLOCK_HPET },
754 #endif
755 };
756 
hpet_clocksource_register(void)757 static int hpet_clocksource_register(void)
758 {
759 	u64 start, now;
760 	cycle_t t1;
761 
762 	/* Start the counter */
763 	hpet_restart_counter();
764 
765 	/* Verify whether hpet counter works */
766 	t1 = hpet_readl(HPET_COUNTER);
767 	rdtscll(start);
768 
769 	/*
770 	 * We don't know the TSC frequency yet, but waiting for
771 	 * 200000 TSC cycles is safe:
772 	 * 4 GHz == 50us
773 	 * 1 GHz == 200us
774 	 */
775 	do {
776 		rep_nop();
777 		rdtscll(now);
778 	} while ((now - start) < 200000UL);
779 
780 	if (t1 == hpet_readl(HPET_COUNTER)) {
781 		printk(KERN_WARNING
782 		       "HPET counter not counting. HPET disabled\n");
783 		return -ENODEV;
784 	}
785 
786 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
787 	return 0;
788 }
789 
790 /**
791  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
792  */
hpet_enable(void)793 int __init hpet_enable(void)
794 {
795 	unsigned long hpet_period;
796 	unsigned int id;
797 	u64 freq;
798 	int i;
799 
800 	if (!is_hpet_capable())
801 		return 0;
802 
803 	hpet_set_mapping();
804 
805 	/*
806 	 * Read the period and check for a sane value:
807 	 */
808 	hpet_period = hpet_readl(HPET_PERIOD);
809 
810 	/*
811 	 * AMD SB700 based systems with spread spectrum enabled use a
812 	 * SMM based HPET emulation to provide proper frequency
813 	 * setting. The SMM code is initialized with the first HPET
814 	 * register access and takes some time to complete. During
815 	 * this time the config register reads 0xffffffff. We check
816 	 * for max. 1000 loops whether the config register reads a non
817 	 * 0xffffffff value to make sure that HPET is up and running
818 	 * before we go further. A counting loop is safe, as the HPET
819 	 * access takes thousands of CPU cycles. On non SB700 based
820 	 * machines this check is only done once and has no side
821 	 * effects.
822 	 */
823 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
824 		if (i == 1000) {
825 			printk(KERN_WARNING
826 			       "HPET config register value = 0xFFFFFFFF. "
827 			       "Disabling HPET\n");
828 			goto out_nohpet;
829 		}
830 	}
831 
832 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
833 		goto out_nohpet;
834 
835 	/*
836 	 * The period is a femto seconds value. Convert it to a
837 	 * frequency.
838 	 */
839 	freq = FSEC_PER_SEC;
840 	do_div(freq, hpet_period);
841 	hpet_freq = freq;
842 
843 	/*
844 	 * Read the HPET ID register to retrieve the IRQ routing
845 	 * information and the number of channels
846 	 */
847 	id = hpet_readl(HPET_ID);
848 	hpet_print_config();
849 
850 #ifdef CONFIG_HPET_EMULATE_RTC
851 	/*
852 	 * The legacy routing mode needs at least two channels, tick timer
853 	 * and the rtc emulation channel.
854 	 */
855 	if (!(id & HPET_ID_NUMBER))
856 		goto out_nohpet;
857 #endif
858 
859 	if (hpet_clocksource_register())
860 		goto out_nohpet;
861 
862 	if (id & HPET_ID_LEGSUP) {
863 		hpet_legacy_clockevent_register();
864 		return 1;
865 	}
866 	return 0;
867 
868 out_nohpet:
869 	hpet_clear_mapping();
870 	hpet_address = 0;
871 	return 0;
872 }
873 
874 /*
875  * Needs to be late, as the reserve_timer code calls kalloc !
876  *
877  * Not a problem on i386 as hpet_enable is called from late_time_init,
878  * but on x86_64 it is necessary !
879  */
hpet_late_init(void)880 static __init int hpet_late_init(void)
881 {
882 	int cpu;
883 
884 	if (boot_hpet_disable)
885 		return -ENODEV;
886 
887 	if (!hpet_address) {
888 		if (!force_hpet_address)
889 			return -ENODEV;
890 
891 		hpet_address = force_hpet_address;
892 		hpet_enable();
893 	}
894 
895 	if (!hpet_virt_address)
896 		return -ENODEV;
897 
898 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
899 		hpet_msi_capability_lookup(2);
900 	else
901 		hpet_msi_capability_lookup(0);
902 
903 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
904 	hpet_print_config();
905 
906 	if (hpet_msi_disable)
907 		return 0;
908 
909 	if (boot_cpu_has(X86_FEATURE_ARAT))
910 		return 0;
911 
912 	for_each_online_cpu(cpu) {
913 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
914 	}
915 
916 	/* This notifier should be called after workqueue is ready */
917 	hotcpu_notifier(hpet_cpuhp_notify, -20);
918 
919 	return 0;
920 }
921 fs_initcall(hpet_late_init);
922 
hpet_disable(void)923 void hpet_disable(void)
924 {
925 	if (is_hpet_capable() && hpet_virt_address) {
926 		unsigned int cfg = hpet_readl(HPET_CFG);
927 
928 		if (hpet_legacy_int_enabled) {
929 			cfg &= ~HPET_CFG_LEGACY;
930 			hpet_legacy_int_enabled = 0;
931 		}
932 		cfg &= ~HPET_CFG_ENABLE;
933 		hpet_writel(cfg, HPET_CFG);
934 	}
935 }
936 
937 #ifdef CONFIG_HPET_EMULATE_RTC
938 
939 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
940  * is enabled, we support RTC interrupt functionality in software.
941  * RTC has 3 kinds of interrupts:
942  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
943  *    is updated
944  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
945  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
946  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
947  * (1) and (2) above are implemented using polling at a frequency of
948  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
949  * overhead. (DEFAULT_RTC_INT_FREQ)
950  * For (3), we use interrupts at 64Hz or user specified periodic
951  * frequency, whichever is higher.
952  */
953 #include <linux/mc146818rtc.h>
954 #include <linux/rtc.h>
955 #include <asm/rtc.h>
956 
957 #define DEFAULT_RTC_INT_FREQ	64
958 #define DEFAULT_RTC_SHIFT	6
959 #define RTC_NUM_INTS		1
960 
961 static unsigned long hpet_rtc_flags;
962 static int hpet_prev_update_sec;
963 static struct rtc_time hpet_alarm_time;
964 static unsigned long hpet_pie_count;
965 static u32 hpet_t1_cmp;
966 static u32 hpet_default_delta;
967 static u32 hpet_pie_delta;
968 static unsigned long hpet_pie_limit;
969 
970 static rtc_irq_handler irq_handler;
971 
972 /*
973  * Check that the hpet counter c1 is ahead of the c2
974  */
hpet_cnt_ahead(u32 c1,u32 c2)975 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
976 {
977 	return (s32)(c2 - c1) < 0;
978 }
979 
980 /*
981  * Registers a IRQ handler.
982  */
hpet_register_irq_handler(rtc_irq_handler handler)983 int hpet_register_irq_handler(rtc_irq_handler handler)
984 {
985 	if (!is_hpet_enabled())
986 		return -ENODEV;
987 	if (irq_handler)
988 		return -EBUSY;
989 
990 	irq_handler = handler;
991 
992 	return 0;
993 }
994 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
995 
996 /*
997  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
998  * and does cleanup.
999  */
hpet_unregister_irq_handler(rtc_irq_handler handler)1000 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1001 {
1002 	if (!is_hpet_enabled())
1003 		return;
1004 
1005 	irq_handler = NULL;
1006 	hpet_rtc_flags = 0;
1007 }
1008 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1009 
1010 /*
1011  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1012  * is not supported by all HPET implementations for timer 1.
1013  *
1014  * hpet_rtc_timer_init() is called when the rtc is initialized.
1015  */
hpet_rtc_timer_init(void)1016 int hpet_rtc_timer_init(void)
1017 {
1018 	unsigned int cfg, cnt, delta;
1019 	unsigned long flags;
1020 
1021 	if (!is_hpet_enabled())
1022 		return 0;
1023 
1024 	if (!hpet_default_delta) {
1025 		uint64_t clc;
1026 
1027 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1028 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1029 		hpet_default_delta = clc;
1030 	}
1031 
1032 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1033 		delta = hpet_default_delta;
1034 	else
1035 		delta = hpet_pie_delta;
1036 
1037 	local_irq_save(flags);
1038 
1039 	cnt = delta + hpet_readl(HPET_COUNTER);
1040 	hpet_writel(cnt, HPET_T1_CMP);
1041 	hpet_t1_cmp = cnt;
1042 
1043 	cfg = hpet_readl(HPET_T1_CFG);
1044 	cfg &= ~HPET_TN_PERIODIC;
1045 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1046 	hpet_writel(cfg, HPET_T1_CFG);
1047 
1048 	local_irq_restore(flags);
1049 
1050 	return 1;
1051 }
1052 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1053 
hpet_disable_rtc_channel(void)1054 static void hpet_disable_rtc_channel(void)
1055 {
1056 	unsigned long cfg;
1057 	cfg = hpet_readl(HPET_T1_CFG);
1058 	cfg &= ~HPET_TN_ENABLE;
1059 	hpet_writel(cfg, HPET_T1_CFG);
1060 }
1061 
1062 /*
1063  * The functions below are called from rtc driver.
1064  * Return 0 if HPET is not being used.
1065  * Otherwise do the necessary changes and return 1.
1066  */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1067 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1068 {
1069 	if (!is_hpet_enabled())
1070 		return 0;
1071 
1072 	hpet_rtc_flags &= ~bit_mask;
1073 	if (unlikely(!hpet_rtc_flags))
1074 		hpet_disable_rtc_channel();
1075 
1076 	return 1;
1077 }
1078 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1079 
hpet_set_rtc_irq_bit(unsigned long bit_mask)1080 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1081 {
1082 	unsigned long oldbits = hpet_rtc_flags;
1083 
1084 	if (!is_hpet_enabled())
1085 		return 0;
1086 
1087 	hpet_rtc_flags |= bit_mask;
1088 
1089 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1090 		hpet_prev_update_sec = -1;
1091 
1092 	if (!oldbits)
1093 		hpet_rtc_timer_init();
1094 
1095 	return 1;
1096 }
1097 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1098 
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1099 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1100 			unsigned char sec)
1101 {
1102 	if (!is_hpet_enabled())
1103 		return 0;
1104 
1105 	hpet_alarm_time.tm_hour = hrs;
1106 	hpet_alarm_time.tm_min = min;
1107 	hpet_alarm_time.tm_sec = sec;
1108 
1109 	return 1;
1110 }
1111 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1112 
hpet_set_periodic_freq(unsigned long freq)1113 int hpet_set_periodic_freq(unsigned long freq)
1114 {
1115 	uint64_t clc;
1116 
1117 	if (!is_hpet_enabled())
1118 		return 0;
1119 
1120 	if (freq <= DEFAULT_RTC_INT_FREQ)
1121 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1122 	else {
1123 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1124 		do_div(clc, freq);
1125 		clc >>= hpet_clockevent.shift;
1126 		hpet_pie_delta = clc;
1127 		hpet_pie_limit = 0;
1128 	}
1129 	return 1;
1130 }
1131 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1132 
hpet_rtc_dropped_irq(void)1133 int hpet_rtc_dropped_irq(void)
1134 {
1135 	return is_hpet_enabled();
1136 }
1137 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1138 
hpet_rtc_timer_reinit(void)1139 static void hpet_rtc_timer_reinit(void)
1140 {
1141 	unsigned int delta;
1142 	int lost_ints = -1;
1143 
1144 	if (unlikely(!hpet_rtc_flags))
1145 		hpet_disable_rtc_channel();
1146 
1147 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1148 		delta = hpet_default_delta;
1149 	else
1150 		delta = hpet_pie_delta;
1151 
1152 	/*
1153 	 * Increment the comparator value until we are ahead of the
1154 	 * current count.
1155 	 */
1156 	do {
1157 		hpet_t1_cmp += delta;
1158 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1159 		lost_ints++;
1160 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1161 
1162 	if (lost_ints) {
1163 		if (hpet_rtc_flags & RTC_PIE)
1164 			hpet_pie_count += lost_ints;
1165 		if (printk_ratelimit())
1166 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1167 				lost_ints);
1168 	}
1169 }
1170 
hpet_rtc_interrupt(int irq,void * dev_id)1171 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1172 {
1173 	struct rtc_time curr_time;
1174 	unsigned long rtc_int_flag = 0;
1175 
1176 	hpet_rtc_timer_reinit();
1177 	memset(&curr_time, 0, sizeof(struct rtc_time));
1178 
1179 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1180 		get_rtc_time(&curr_time);
1181 
1182 	if (hpet_rtc_flags & RTC_UIE &&
1183 	    curr_time.tm_sec != hpet_prev_update_sec) {
1184 		if (hpet_prev_update_sec >= 0)
1185 			rtc_int_flag = RTC_UF;
1186 		hpet_prev_update_sec = curr_time.tm_sec;
1187 	}
1188 
1189 	if (hpet_rtc_flags & RTC_PIE &&
1190 	    ++hpet_pie_count >= hpet_pie_limit) {
1191 		rtc_int_flag |= RTC_PF;
1192 		hpet_pie_count = 0;
1193 	}
1194 
1195 	if (hpet_rtc_flags & RTC_AIE &&
1196 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1197 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1198 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1199 			rtc_int_flag |= RTC_AF;
1200 
1201 	if (rtc_int_flag) {
1202 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1203 		if (irq_handler)
1204 			irq_handler(rtc_int_flag, dev_id);
1205 	}
1206 	return IRQ_HANDLED;
1207 }
1208 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1209 #endif
1210