1 /* iommu.c: Generic sparc64 IOMMU support.
2  *
3  * Copyright (C) 1999, 2007, 2008 David S. Miller (davem@davemloft.net)
4  * Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com)
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/export.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/errno.h>
14 #include <linux/iommu-helper.h>
15 #include <linux/bitmap.h>
16 
17 #ifdef CONFIG_PCI
18 #include <linux/pci.h>
19 #endif
20 
21 #include <asm/iommu.h>
22 
23 #include "iommu_common.h"
24 
25 #define STC_CTXMATCH_ADDR(STC, CTX)	\
26 	((STC)->strbuf_ctxmatch_base + ((CTX) << 3))
27 #define STC_FLUSHFLAG_INIT(STC) \
28 	(*((STC)->strbuf_flushflag) = 0UL)
29 #define STC_FLUSHFLAG_SET(STC) \
30 	(*((STC)->strbuf_flushflag) != 0UL)
31 
32 #define iommu_read(__reg) \
33 ({	u64 __ret; \
34 	__asm__ __volatile__("ldxa [%1] %2, %0" \
35 			     : "=r" (__ret) \
36 			     : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
37 			     : "memory"); \
38 	__ret; \
39 })
40 #define iommu_write(__reg, __val) \
41 	__asm__ __volatile__("stxa %0, [%1] %2" \
42 			     : /* no outputs */ \
43 			     : "r" (__val), "r" (__reg), \
44 			       "i" (ASI_PHYS_BYPASS_EC_E))
45 
46 /* Must be invoked under the IOMMU lock. */
iommu_flushall(struct iommu * iommu)47 static void iommu_flushall(struct iommu *iommu)
48 {
49 	if (iommu->iommu_flushinv) {
50 		iommu_write(iommu->iommu_flushinv, ~(u64)0);
51 	} else {
52 		unsigned long tag;
53 		int entry;
54 
55 		tag = iommu->iommu_tags;
56 		for (entry = 0; entry < 16; entry++) {
57 			iommu_write(tag, 0);
58 			tag += 8;
59 		}
60 
61 		/* Ensure completion of previous PIO writes. */
62 		(void) iommu_read(iommu->write_complete_reg);
63 	}
64 }
65 
66 #define IOPTE_CONSISTENT(CTX) \
67 	(IOPTE_VALID | IOPTE_CACHE | \
68 	 (((CTX) << 47) & IOPTE_CONTEXT))
69 
70 #define IOPTE_STREAMING(CTX) \
71 	(IOPTE_CONSISTENT(CTX) | IOPTE_STBUF)
72 
73 /* Existing mappings are never marked invalid, instead they
74  * are pointed to a dummy page.
75  */
76 #define IOPTE_IS_DUMMY(iommu, iopte)	\
77 	((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa)
78 
iopte_make_dummy(struct iommu * iommu,iopte_t * iopte)79 static inline void iopte_make_dummy(struct iommu *iommu, iopte_t *iopte)
80 {
81 	unsigned long val = iopte_val(*iopte);
82 
83 	val &= ~IOPTE_PAGE;
84 	val |= iommu->dummy_page_pa;
85 
86 	iopte_val(*iopte) = val;
87 }
88 
89 /* Based almost entirely upon the ppc64 iommu allocator.  If you use the 'handle'
90  * facility it must all be done in one pass while under the iommu lock.
91  *
92  * On sun4u platforms, we only flush the IOMMU once every time we've passed
93  * over the entire page table doing allocations.  Therefore we only ever advance
94  * the hint and cannot backtrack it.
95  */
iommu_range_alloc(struct device * dev,struct iommu * iommu,unsigned long npages,unsigned long * handle)96 unsigned long iommu_range_alloc(struct device *dev,
97 				struct iommu *iommu,
98 				unsigned long npages,
99 				unsigned long *handle)
100 {
101 	unsigned long n, end, start, limit, boundary_size;
102 	struct iommu_arena *arena = &iommu->arena;
103 	int pass = 0;
104 
105 	/* This allocator was derived from x86_64's bit string search */
106 
107 	/* Sanity check */
108 	if (unlikely(npages == 0)) {
109 		if (printk_ratelimit())
110 			WARN_ON(1);
111 		return DMA_ERROR_CODE;
112 	}
113 
114 	if (handle && *handle)
115 		start = *handle;
116 	else
117 		start = arena->hint;
118 
119 	limit = arena->limit;
120 
121 	/* The case below can happen if we have a small segment appended
122 	 * to a large, or when the previous alloc was at the very end of
123 	 * the available space. If so, go back to the beginning and flush.
124 	 */
125 	if (start >= limit) {
126 		start = 0;
127 		if (iommu->flush_all)
128 			iommu->flush_all(iommu);
129 	}
130 
131  again:
132 
133 	if (dev)
134 		boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
135 				      1 << IO_PAGE_SHIFT);
136 	else
137 		boundary_size = ALIGN(1UL << 32, 1 << IO_PAGE_SHIFT);
138 
139 	n = iommu_area_alloc(arena->map, limit, start, npages,
140 			     iommu->page_table_map_base >> IO_PAGE_SHIFT,
141 			     boundary_size >> IO_PAGE_SHIFT, 0);
142 	if (n == -1) {
143 		if (likely(pass < 1)) {
144 			/* First failure, rescan from the beginning.  */
145 			start = 0;
146 			if (iommu->flush_all)
147 				iommu->flush_all(iommu);
148 			pass++;
149 			goto again;
150 		} else {
151 			/* Second failure, give up */
152 			return DMA_ERROR_CODE;
153 		}
154 	}
155 
156 	end = n + npages;
157 
158 	arena->hint = end;
159 
160 	/* Update handle for SG allocations */
161 	if (handle)
162 		*handle = end;
163 
164 	return n;
165 }
166 
iommu_range_free(struct iommu * iommu,dma_addr_t dma_addr,unsigned long npages)167 void iommu_range_free(struct iommu *iommu, dma_addr_t dma_addr, unsigned long npages)
168 {
169 	struct iommu_arena *arena = &iommu->arena;
170 	unsigned long entry;
171 
172 	entry = (dma_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
173 
174 	bitmap_clear(arena->map, entry, npages);
175 }
176 
iommu_table_init(struct iommu * iommu,int tsbsize,u32 dma_offset,u32 dma_addr_mask,int numa_node)177 int iommu_table_init(struct iommu *iommu, int tsbsize,
178 		     u32 dma_offset, u32 dma_addr_mask,
179 		     int numa_node)
180 {
181 	unsigned long i, order, sz, num_tsb_entries;
182 	struct page *page;
183 
184 	num_tsb_entries = tsbsize / sizeof(iopte_t);
185 
186 	/* Setup initial software IOMMU state. */
187 	spin_lock_init(&iommu->lock);
188 	iommu->ctx_lowest_free = 1;
189 	iommu->page_table_map_base = dma_offset;
190 	iommu->dma_addr_mask = dma_addr_mask;
191 
192 	/* Allocate and initialize the free area map.  */
193 	sz = num_tsb_entries / 8;
194 	sz = (sz + 7UL) & ~7UL;
195 	iommu->arena.map = kmalloc_node(sz, GFP_KERNEL, numa_node);
196 	if (!iommu->arena.map) {
197 		printk(KERN_ERR "IOMMU: Error, kmalloc(arena.map) failed.\n");
198 		return -ENOMEM;
199 	}
200 	memset(iommu->arena.map, 0, sz);
201 	iommu->arena.limit = num_tsb_entries;
202 
203 	if (tlb_type != hypervisor)
204 		iommu->flush_all = iommu_flushall;
205 
206 	/* Allocate and initialize the dummy page which we
207 	 * set inactive IO PTEs to point to.
208 	 */
209 	page = alloc_pages_node(numa_node, GFP_KERNEL, 0);
210 	if (!page) {
211 		printk(KERN_ERR "IOMMU: Error, gfp(dummy_page) failed.\n");
212 		goto out_free_map;
213 	}
214 	iommu->dummy_page = (unsigned long) page_address(page);
215 	memset((void *)iommu->dummy_page, 0, PAGE_SIZE);
216 	iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page);
217 
218 	/* Now allocate and setup the IOMMU page table itself.  */
219 	order = get_order(tsbsize);
220 	page = alloc_pages_node(numa_node, GFP_KERNEL, order);
221 	if (!page) {
222 		printk(KERN_ERR "IOMMU: Error, gfp(tsb) failed.\n");
223 		goto out_free_dummy_page;
224 	}
225 	iommu->page_table = (iopte_t *)page_address(page);
226 
227 	for (i = 0; i < num_tsb_entries; i++)
228 		iopte_make_dummy(iommu, &iommu->page_table[i]);
229 
230 	return 0;
231 
232 out_free_dummy_page:
233 	free_page(iommu->dummy_page);
234 	iommu->dummy_page = 0UL;
235 
236 out_free_map:
237 	kfree(iommu->arena.map);
238 	iommu->arena.map = NULL;
239 
240 	return -ENOMEM;
241 }
242 
alloc_npages(struct device * dev,struct iommu * iommu,unsigned long npages)243 static inline iopte_t *alloc_npages(struct device *dev, struct iommu *iommu,
244 				    unsigned long npages)
245 {
246 	unsigned long entry;
247 
248 	entry = iommu_range_alloc(dev, iommu, npages, NULL);
249 	if (unlikely(entry == DMA_ERROR_CODE))
250 		return NULL;
251 
252 	return iommu->page_table + entry;
253 }
254 
iommu_alloc_ctx(struct iommu * iommu)255 static int iommu_alloc_ctx(struct iommu *iommu)
256 {
257 	int lowest = iommu->ctx_lowest_free;
258 	int n = find_next_zero_bit(iommu->ctx_bitmap, IOMMU_NUM_CTXS, lowest);
259 
260 	if (unlikely(n == IOMMU_NUM_CTXS)) {
261 		n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1);
262 		if (unlikely(n == lowest)) {
263 			printk(KERN_WARNING "IOMMU: Ran out of contexts.\n");
264 			n = 0;
265 		}
266 	}
267 	if (n)
268 		__set_bit(n, iommu->ctx_bitmap);
269 
270 	return n;
271 }
272 
iommu_free_ctx(struct iommu * iommu,int ctx)273 static inline void iommu_free_ctx(struct iommu *iommu, int ctx)
274 {
275 	if (likely(ctx)) {
276 		__clear_bit(ctx, iommu->ctx_bitmap);
277 		if (ctx < iommu->ctx_lowest_free)
278 			iommu->ctx_lowest_free = ctx;
279 	}
280 }
281 
dma_4u_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_addrp,gfp_t gfp,struct dma_attrs * attrs)282 static void *dma_4u_alloc_coherent(struct device *dev, size_t size,
283 				   dma_addr_t *dma_addrp, gfp_t gfp,
284 				   struct dma_attrs *attrs)
285 {
286 	unsigned long flags, order, first_page;
287 	struct iommu *iommu;
288 	struct page *page;
289 	int npages, nid;
290 	iopte_t *iopte;
291 	void *ret;
292 
293 	size = IO_PAGE_ALIGN(size);
294 	order = get_order(size);
295 	if (order >= 10)
296 		return NULL;
297 
298 	nid = dev->archdata.numa_node;
299 	page = alloc_pages_node(nid, gfp, order);
300 	if (unlikely(!page))
301 		return NULL;
302 
303 	first_page = (unsigned long) page_address(page);
304 	memset((char *)first_page, 0, PAGE_SIZE << order);
305 
306 	iommu = dev->archdata.iommu;
307 
308 	spin_lock_irqsave(&iommu->lock, flags);
309 	iopte = alloc_npages(dev, iommu, size >> IO_PAGE_SHIFT);
310 	spin_unlock_irqrestore(&iommu->lock, flags);
311 
312 	if (unlikely(iopte == NULL)) {
313 		free_pages(first_page, order);
314 		return NULL;
315 	}
316 
317 	*dma_addrp = (iommu->page_table_map_base +
318 		      ((iopte - iommu->page_table) << IO_PAGE_SHIFT));
319 	ret = (void *) first_page;
320 	npages = size >> IO_PAGE_SHIFT;
321 	first_page = __pa(first_page);
322 	while (npages--) {
323 		iopte_val(*iopte) = (IOPTE_CONSISTENT(0UL) |
324 				     IOPTE_WRITE |
325 				     (first_page & IOPTE_PAGE));
326 		iopte++;
327 		first_page += IO_PAGE_SIZE;
328 	}
329 
330 	return ret;
331 }
332 
dma_4u_free_coherent(struct device * dev,size_t size,void * cpu,dma_addr_t dvma,struct dma_attrs * attrs)333 static void dma_4u_free_coherent(struct device *dev, size_t size,
334 				 void *cpu, dma_addr_t dvma,
335 				 struct dma_attrs *attrs)
336 {
337 	struct iommu *iommu;
338 	unsigned long flags, order, npages;
339 
340 	npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
341 	iommu = dev->archdata.iommu;
342 
343 	spin_lock_irqsave(&iommu->lock, flags);
344 
345 	iommu_range_free(iommu, dvma, npages);
346 
347 	spin_unlock_irqrestore(&iommu->lock, flags);
348 
349 	order = get_order(size);
350 	if (order < 10)
351 		free_pages((unsigned long)cpu, order);
352 }
353 
dma_4u_map_page(struct device * dev,struct page * page,unsigned long offset,size_t sz,enum dma_data_direction direction,struct dma_attrs * attrs)354 static dma_addr_t dma_4u_map_page(struct device *dev, struct page *page,
355 				  unsigned long offset, size_t sz,
356 				  enum dma_data_direction direction,
357 				  struct dma_attrs *attrs)
358 {
359 	struct iommu *iommu;
360 	struct strbuf *strbuf;
361 	iopte_t *base;
362 	unsigned long flags, npages, oaddr;
363 	unsigned long i, base_paddr, ctx;
364 	u32 bus_addr, ret;
365 	unsigned long iopte_protection;
366 
367 	iommu = dev->archdata.iommu;
368 	strbuf = dev->archdata.stc;
369 
370 	if (unlikely(direction == DMA_NONE))
371 		goto bad_no_ctx;
372 
373 	oaddr = (unsigned long)(page_address(page) + offset);
374 	npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
375 	npages >>= IO_PAGE_SHIFT;
376 
377 	spin_lock_irqsave(&iommu->lock, flags);
378 	base = alloc_npages(dev, iommu, npages);
379 	ctx = 0;
380 	if (iommu->iommu_ctxflush)
381 		ctx = iommu_alloc_ctx(iommu);
382 	spin_unlock_irqrestore(&iommu->lock, flags);
383 
384 	if (unlikely(!base))
385 		goto bad;
386 
387 	bus_addr = (iommu->page_table_map_base +
388 		    ((base - iommu->page_table) << IO_PAGE_SHIFT));
389 	ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
390 	base_paddr = __pa(oaddr & IO_PAGE_MASK);
391 	if (strbuf->strbuf_enabled)
392 		iopte_protection = IOPTE_STREAMING(ctx);
393 	else
394 		iopte_protection = IOPTE_CONSISTENT(ctx);
395 	if (direction != DMA_TO_DEVICE)
396 		iopte_protection |= IOPTE_WRITE;
397 
398 	for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE)
399 		iopte_val(*base) = iopte_protection | base_paddr;
400 
401 	return ret;
402 
403 bad:
404 	iommu_free_ctx(iommu, ctx);
405 bad_no_ctx:
406 	if (printk_ratelimit())
407 		WARN_ON(1);
408 	return DMA_ERROR_CODE;
409 }
410 
strbuf_flush(struct strbuf * strbuf,struct iommu * iommu,u32 vaddr,unsigned long ctx,unsigned long npages,enum dma_data_direction direction)411 static void strbuf_flush(struct strbuf *strbuf, struct iommu *iommu,
412 			 u32 vaddr, unsigned long ctx, unsigned long npages,
413 			 enum dma_data_direction direction)
414 {
415 	int limit;
416 
417 	if (strbuf->strbuf_ctxflush &&
418 	    iommu->iommu_ctxflush) {
419 		unsigned long matchreg, flushreg;
420 		u64 val;
421 
422 		flushreg = strbuf->strbuf_ctxflush;
423 		matchreg = STC_CTXMATCH_ADDR(strbuf, ctx);
424 
425 		iommu_write(flushreg, ctx);
426 		val = iommu_read(matchreg);
427 		val &= 0xffff;
428 		if (!val)
429 			goto do_flush_sync;
430 
431 		while (val) {
432 			if (val & 0x1)
433 				iommu_write(flushreg, ctx);
434 			val >>= 1;
435 		}
436 		val = iommu_read(matchreg);
437 		if (unlikely(val)) {
438 			printk(KERN_WARNING "strbuf_flush: ctx flush "
439 			       "timeout matchreg[%llx] ctx[%lx]\n",
440 			       val, ctx);
441 			goto do_page_flush;
442 		}
443 	} else {
444 		unsigned long i;
445 
446 	do_page_flush:
447 		for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
448 			iommu_write(strbuf->strbuf_pflush, vaddr);
449 	}
450 
451 do_flush_sync:
452 	/* If the device could not have possibly put dirty data into
453 	 * the streaming cache, no flush-flag synchronization needs
454 	 * to be performed.
455 	 */
456 	if (direction == DMA_TO_DEVICE)
457 		return;
458 
459 	STC_FLUSHFLAG_INIT(strbuf);
460 	iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
461 	(void) iommu_read(iommu->write_complete_reg);
462 
463 	limit = 100000;
464 	while (!STC_FLUSHFLAG_SET(strbuf)) {
465 		limit--;
466 		if (!limit)
467 			break;
468 		udelay(1);
469 		rmb();
470 	}
471 	if (!limit)
472 		printk(KERN_WARNING "strbuf_flush: flushflag timeout "
473 		       "vaddr[%08x] ctx[%lx] npages[%ld]\n",
474 		       vaddr, ctx, npages);
475 }
476 
dma_4u_unmap_page(struct device * dev,dma_addr_t bus_addr,size_t sz,enum dma_data_direction direction,struct dma_attrs * attrs)477 static void dma_4u_unmap_page(struct device *dev, dma_addr_t bus_addr,
478 			      size_t sz, enum dma_data_direction direction,
479 			      struct dma_attrs *attrs)
480 {
481 	struct iommu *iommu;
482 	struct strbuf *strbuf;
483 	iopte_t *base;
484 	unsigned long flags, npages, ctx, i;
485 
486 	if (unlikely(direction == DMA_NONE)) {
487 		if (printk_ratelimit())
488 			WARN_ON(1);
489 		return;
490 	}
491 
492 	iommu = dev->archdata.iommu;
493 	strbuf = dev->archdata.stc;
494 
495 	npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
496 	npages >>= IO_PAGE_SHIFT;
497 	base = iommu->page_table +
498 		((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
499 	bus_addr &= IO_PAGE_MASK;
500 
501 	spin_lock_irqsave(&iommu->lock, flags);
502 
503 	/* Record the context, if any. */
504 	ctx = 0;
505 	if (iommu->iommu_ctxflush)
506 		ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
507 
508 	/* Step 1: Kick data out of streaming buffers if necessary. */
509 	if (strbuf->strbuf_enabled)
510 		strbuf_flush(strbuf, iommu, bus_addr, ctx,
511 			     npages, direction);
512 
513 	/* Step 2: Clear out TSB entries. */
514 	for (i = 0; i < npages; i++)
515 		iopte_make_dummy(iommu, base + i);
516 
517 	iommu_range_free(iommu, bus_addr, npages);
518 
519 	iommu_free_ctx(iommu, ctx);
520 
521 	spin_unlock_irqrestore(&iommu->lock, flags);
522 }
523 
dma_4u_map_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction,struct dma_attrs * attrs)524 static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist,
525 			 int nelems, enum dma_data_direction direction,
526 			 struct dma_attrs *attrs)
527 {
528 	struct scatterlist *s, *outs, *segstart;
529 	unsigned long flags, handle, prot, ctx;
530 	dma_addr_t dma_next = 0, dma_addr;
531 	unsigned int max_seg_size;
532 	unsigned long seg_boundary_size;
533 	int outcount, incount, i;
534 	struct strbuf *strbuf;
535 	struct iommu *iommu;
536 	unsigned long base_shift;
537 
538 	BUG_ON(direction == DMA_NONE);
539 
540 	iommu = dev->archdata.iommu;
541 	strbuf = dev->archdata.stc;
542 	if (nelems == 0 || !iommu)
543 		return 0;
544 
545 	spin_lock_irqsave(&iommu->lock, flags);
546 
547 	ctx = 0;
548 	if (iommu->iommu_ctxflush)
549 		ctx = iommu_alloc_ctx(iommu);
550 
551 	if (strbuf->strbuf_enabled)
552 		prot = IOPTE_STREAMING(ctx);
553 	else
554 		prot = IOPTE_CONSISTENT(ctx);
555 	if (direction != DMA_TO_DEVICE)
556 		prot |= IOPTE_WRITE;
557 
558 	outs = s = segstart = &sglist[0];
559 	outcount = 1;
560 	incount = nelems;
561 	handle = 0;
562 
563 	/* Init first segment length for backout at failure */
564 	outs->dma_length = 0;
565 
566 	max_seg_size = dma_get_max_seg_size(dev);
567 	seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
568 				  IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
569 	base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
570 	for_each_sg(sglist, s, nelems, i) {
571 		unsigned long paddr, npages, entry, out_entry = 0, slen;
572 		iopte_t *base;
573 
574 		slen = s->length;
575 		/* Sanity check */
576 		if (slen == 0) {
577 			dma_next = 0;
578 			continue;
579 		}
580 		/* Allocate iommu entries for that segment */
581 		paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
582 		npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE);
583 		entry = iommu_range_alloc(dev, iommu, npages, &handle);
584 
585 		/* Handle failure */
586 		if (unlikely(entry == DMA_ERROR_CODE)) {
587 			if (printk_ratelimit())
588 				printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
589 				       " npages %lx\n", iommu, paddr, npages);
590 			goto iommu_map_failed;
591 		}
592 
593 		base = iommu->page_table + entry;
594 
595 		/* Convert entry to a dma_addr_t */
596 		dma_addr = iommu->page_table_map_base +
597 			(entry << IO_PAGE_SHIFT);
598 		dma_addr |= (s->offset & ~IO_PAGE_MASK);
599 
600 		/* Insert into HW table */
601 		paddr &= IO_PAGE_MASK;
602 		while (npages--) {
603 			iopte_val(*base) = prot | paddr;
604 			base++;
605 			paddr += IO_PAGE_SIZE;
606 		}
607 
608 		/* If we are in an open segment, try merging */
609 		if (segstart != s) {
610 			/* We cannot merge if:
611 			 * - allocated dma_addr isn't contiguous to previous allocation
612 			 */
613 			if ((dma_addr != dma_next) ||
614 			    (outs->dma_length + s->length > max_seg_size) ||
615 			    (is_span_boundary(out_entry, base_shift,
616 					      seg_boundary_size, outs, s))) {
617 				/* Can't merge: create a new segment */
618 				segstart = s;
619 				outcount++;
620 				outs = sg_next(outs);
621 			} else {
622 				outs->dma_length += s->length;
623 			}
624 		}
625 
626 		if (segstart == s) {
627 			/* This is a new segment, fill entries */
628 			outs->dma_address = dma_addr;
629 			outs->dma_length = slen;
630 			out_entry = entry;
631 		}
632 
633 		/* Calculate next page pointer for contiguous check */
634 		dma_next = dma_addr + slen;
635 	}
636 
637 	spin_unlock_irqrestore(&iommu->lock, flags);
638 
639 	if (outcount < incount) {
640 		outs = sg_next(outs);
641 		outs->dma_address = DMA_ERROR_CODE;
642 		outs->dma_length = 0;
643 	}
644 
645 	return outcount;
646 
647 iommu_map_failed:
648 	for_each_sg(sglist, s, nelems, i) {
649 		if (s->dma_length != 0) {
650 			unsigned long vaddr, npages, entry, j;
651 			iopte_t *base;
652 
653 			vaddr = s->dma_address & IO_PAGE_MASK;
654 			npages = iommu_num_pages(s->dma_address, s->dma_length,
655 						 IO_PAGE_SIZE);
656 			iommu_range_free(iommu, vaddr, npages);
657 
658 			entry = (vaddr - iommu->page_table_map_base)
659 				>> IO_PAGE_SHIFT;
660 			base = iommu->page_table + entry;
661 
662 			for (j = 0; j < npages; j++)
663 				iopte_make_dummy(iommu, base + j);
664 
665 			s->dma_address = DMA_ERROR_CODE;
666 			s->dma_length = 0;
667 		}
668 		if (s == outs)
669 			break;
670 	}
671 	spin_unlock_irqrestore(&iommu->lock, flags);
672 
673 	return 0;
674 }
675 
676 /* If contexts are being used, they are the same in all of the mappings
677  * we make for a particular SG.
678  */
fetch_sg_ctx(struct iommu * iommu,struct scatterlist * sg)679 static unsigned long fetch_sg_ctx(struct iommu *iommu, struct scatterlist *sg)
680 {
681 	unsigned long ctx = 0;
682 
683 	if (iommu->iommu_ctxflush) {
684 		iopte_t *base;
685 		u32 bus_addr;
686 
687 		bus_addr = sg->dma_address & IO_PAGE_MASK;
688 		base = iommu->page_table +
689 			((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
690 
691 		ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
692 	}
693 	return ctx;
694 }
695 
dma_4u_unmap_sg(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction,struct dma_attrs * attrs)696 static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist,
697 			    int nelems, enum dma_data_direction direction,
698 			    struct dma_attrs *attrs)
699 {
700 	unsigned long flags, ctx;
701 	struct scatterlist *sg;
702 	struct strbuf *strbuf;
703 	struct iommu *iommu;
704 
705 	BUG_ON(direction == DMA_NONE);
706 
707 	iommu = dev->archdata.iommu;
708 	strbuf = dev->archdata.stc;
709 
710 	ctx = fetch_sg_ctx(iommu, sglist);
711 
712 	spin_lock_irqsave(&iommu->lock, flags);
713 
714 	sg = sglist;
715 	while (nelems--) {
716 		dma_addr_t dma_handle = sg->dma_address;
717 		unsigned int len = sg->dma_length;
718 		unsigned long npages, entry;
719 		iopte_t *base;
720 		int i;
721 
722 		if (!len)
723 			break;
724 		npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE);
725 		iommu_range_free(iommu, dma_handle, npages);
726 
727 		entry = ((dma_handle - iommu->page_table_map_base)
728 			 >> IO_PAGE_SHIFT);
729 		base = iommu->page_table + entry;
730 
731 		dma_handle &= IO_PAGE_MASK;
732 		if (strbuf->strbuf_enabled)
733 			strbuf_flush(strbuf, iommu, dma_handle, ctx,
734 				     npages, direction);
735 
736 		for (i = 0; i < npages; i++)
737 			iopte_make_dummy(iommu, base + i);
738 
739 		sg = sg_next(sg);
740 	}
741 
742 	iommu_free_ctx(iommu, ctx);
743 
744 	spin_unlock_irqrestore(&iommu->lock, flags);
745 }
746 
dma_4u_sync_single_for_cpu(struct device * dev,dma_addr_t bus_addr,size_t sz,enum dma_data_direction direction)747 static void dma_4u_sync_single_for_cpu(struct device *dev,
748 				       dma_addr_t bus_addr, size_t sz,
749 				       enum dma_data_direction direction)
750 {
751 	struct iommu *iommu;
752 	struct strbuf *strbuf;
753 	unsigned long flags, ctx, npages;
754 
755 	iommu = dev->archdata.iommu;
756 	strbuf = dev->archdata.stc;
757 
758 	if (!strbuf->strbuf_enabled)
759 		return;
760 
761 	spin_lock_irqsave(&iommu->lock, flags);
762 
763 	npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
764 	npages >>= IO_PAGE_SHIFT;
765 	bus_addr &= IO_PAGE_MASK;
766 
767 	/* Step 1: Record the context, if any. */
768 	ctx = 0;
769 	if (iommu->iommu_ctxflush &&
770 	    strbuf->strbuf_ctxflush) {
771 		iopte_t *iopte;
772 
773 		iopte = iommu->page_table +
774 			((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT);
775 		ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
776 	}
777 
778 	/* Step 2: Kick data out of streaming buffers. */
779 	strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
780 
781 	spin_unlock_irqrestore(&iommu->lock, flags);
782 }
783 
dma_4u_sync_sg_for_cpu(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction)784 static void dma_4u_sync_sg_for_cpu(struct device *dev,
785 				   struct scatterlist *sglist, int nelems,
786 				   enum dma_data_direction direction)
787 {
788 	struct iommu *iommu;
789 	struct strbuf *strbuf;
790 	unsigned long flags, ctx, npages, i;
791 	struct scatterlist *sg, *sgprv;
792 	u32 bus_addr;
793 
794 	iommu = dev->archdata.iommu;
795 	strbuf = dev->archdata.stc;
796 
797 	if (!strbuf->strbuf_enabled)
798 		return;
799 
800 	spin_lock_irqsave(&iommu->lock, flags);
801 
802 	/* Step 1: Record the context, if any. */
803 	ctx = 0;
804 	if (iommu->iommu_ctxflush &&
805 	    strbuf->strbuf_ctxflush) {
806 		iopte_t *iopte;
807 
808 		iopte = iommu->page_table +
809 			((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
810 		ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
811 	}
812 
813 	/* Step 2: Kick data out of streaming buffers. */
814 	bus_addr = sglist[0].dma_address & IO_PAGE_MASK;
815 	sgprv = NULL;
816 	for_each_sg(sglist, sg, nelems, i) {
817 		if (sg->dma_length == 0)
818 			break;
819 		sgprv = sg;
820 	}
821 
822 	npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length)
823 		  - bus_addr) >> IO_PAGE_SHIFT;
824 	strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
825 
826 	spin_unlock_irqrestore(&iommu->lock, flags);
827 }
828 
829 static struct dma_map_ops sun4u_dma_ops = {
830 	.alloc			= dma_4u_alloc_coherent,
831 	.free			= dma_4u_free_coherent,
832 	.map_page		= dma_4u_map_page,
833 	.unmap_page		= dma_4u_unmap_page,
834 	.map_sg			= dma_4u_map_sg,
835 	.unmap_sg		= dma_4u_unmap_sg,
836 	.sync_single_for_cpu	= dma_4u_sync_single_for_cpu,
837 	.sync_sg_for_cpu	= dma_4u_sync_sg_for_cpu,
838 };
839 
840 struct dma_map_ops *dma_ops = &sun4u_dma_ops;
841 EXPORT_SYMBOL(dma_ops);
842 
843 extern int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask);
844 
dma_supported(struct device * dev,u64 device_mask)845 int dma_supported(struct device *dev, u64 device_mask)
846 {
847 	struct iommu *iommu = dev->archdata.iommu;
848 	u64 dma_addr_mask = iommu->dma_addr_mask;
849 
850 	if (device_mask >= (1UL << 32UL))
851 		return 0;
852 
853 	if ((device_mask & dma_addr_mask) == dma_addr_mask)
854 		return 1;
855 
856 #ifdef CONFIG_PCI
857 	if (dev->bus == &pci_bus_type)
858 		return pci64_dma_supported(to_pci_dev(dev), device_mask);
859 #endif
860 
861 	return 0;
862 }
863 EXPORT_SYMBOL(dma_supported);
864