1 /*
2 * SMP related functions
3 *
4 * Copyright IBM Corp. 1999,2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/timer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include "entry.h"
48
49 enum {
50 sigp_sense = 1,
51 sigp_external_call = 2,
52 sigp_emergency_signal = 3,
53 sigp_start = 4,
54 sigp_stop = 5,
55 sigp_restart = 6,
56 sigp_stop_and_store_status = 9,
57 sigp_initial_cpu_reset = 11,
58 sigp_cpu_reset = 12,
59 sigp_set_prefix = 13,
60 sigp_store_status_at_address = 14,
61 sigp_store_extended_status_at_address = 15,
62 sigp_set_architecture = 18,
63 sigp_conditional_emergency_signal = 19,
64 sigp_sense_running = 21,
65 };
66
67 enum {
68 sigp_order_code_accepted = 0,
69 sigp_status_stored = 1,
70 sigp_busy = 2,
71 sigp_not_operational = 3,
72 };
73
74 enum {
75 ec_schedule = 0,
76 ec_call_function,
77 ec_call_function_single,
78 ec_stop_cpu,
79 };
80
81 enum {
82 CPU_STATE_STANDBY,
83 CPU_STATE_CONFIGURED,
84 };
85
86 struct pcpu {
87 struct cpu cpu;
88 struct task_struct *idle; /* idle process for the cpu */
89 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
90 unsigned long async_stack; /* async stack for the cpu */
91 unsigned long panic_stack; /* panic stack for the cpu */
92 unsigned long ec_mask; /* bit mask for ec_xxx functions */
93 int state; /* physical cpu state */
94 u32 status; /* last status received via sigp */
95 u16 address; /* physical cpu address */
96 };
97
98 static u8 boot_cpu_type;
99 static u16 boot_cpu_address;
100 static struct pcpu pcpu_devices[NR_CPUS];
101
102 DEFINE_MUTEX(smp_cpu_state_mutex);
103
104 /*
105 * Signal processor helper functions.
106 */
__pcpu_sigp(u16 addr,u8 order,u32 parm,u32 * status)107 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
108 {
109 register unsigned int reg1 asm ("1") = parm;
110 int cc;
111
112 asm volatile(
113 " sigp %1,%2,0(%3)\n"
114 " ipm %0\n"
115 " srl %0,28\n"
116 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
117 if (status && cc == 1)
118 *status = reg1;
119 return cc;
120 }
121
__pcpu_sigp_relax(u16 addr,u8 order,u32 parm,u32 * status)122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
123 {
124 int cc;
125
126 while (1) {
127 cc = __pcpu_sigp(addr, order, parm, status);
128 if (cc != sigp_busy)
129 return cc;
130 cpu_relax();
131 }
132 }
133
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136 int cc, retry;
137
138 for (retry = 0; ; retry++) {
139 cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
140 if (cc != sigp_busy)
141 break;
142 if (retry >= 3)
143 udelay(10);
144 }
145 return cc;
146 }
147
pcpu_stopped(struct pcpu * pcpu)148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150 if (__pcpu_sigp(pcpu->address, sigp_sense,
151 0, &pcpu->status) != sigp_status_stored)
152 return 0;
153 /* Check for stopped and check stop state */
154 return !!(pcpu->status & 0x50);
155 }
156
pcpu_running(struct pcpu * pcpu)157 static inline int pcpu_running(struct pcpu *pcpu)
158 {
159 if (__pcpu_sigp(pcpu->address, sigp_sense_running,
160 0, &pcpu->status) != sigp_status_stored)
161 return 1;
162 /* Check for running status */
163 return !(pcpu->status & 0x400);
164 }
165
166 /*
167 * Find struct pcpu by cpu address.
168 */
pcpu_find_address(const struct cpumask * mask,int address)169 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
170 {
171 int cpu;
172
173 for_each_cpu(cpu, mask)
174 if (pcpu_devices[cpu].address == address)
175 return pcpu_devices + cpu;
176 return NULL;
177 }
178
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)179 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
180 {
181 int order;
182
183 set_bit(ec_bit, &pcpu->ec_mask);
184 order = pcpu_running(pcpu) ?
185 sigp_external_call : sigp_emergency_signal;
186 pcpu_sigp_retry(pcpu, order, 0);
187 }
188
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)189 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
190 {
191 struct _lowcore *lc;
192
193 if (pcpu != &pcpu_devices[0]) {
194 pcpu->lowcore = (struct _lowcore *)
195 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
196 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
197 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
198 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
199 goto out;
200 }
201 lc = pcpu->lowcore;
202 memcpy(lc, &S390_lowcore, 512);
203 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204 lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
205 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
206 lc->cpu_nr = cpu;
207 #ifndef CONFIG_64BIT
208 if (MACHINE_HAS_IEEE) {
209 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
210 if (!lc->extended_save_area_addr)
211 goto out;
212 }
213 #else
214 if (vdso_alloc_per_cpu(lc))
215 goto out;
216 #endif
217 lowcore_ptr[cpu] = lc;
218 pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc);
219 return 0;
220 out:
221 if (pcpu != &pcpu_devices[0]) {
222 free_page(pcpu->panic_stack);
223 free_pages(pcpu->async_stack, ASYNC_ORDER);
224 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
225 }
226 return -ENOMEM;
227 }
228
pcpu_free_lowcore(struct pcpu * pcpu)229 static void pcpu_free_lowcore(struct pcpu *pcpu)
230 {
231 pcpu_sigp_retry(pcpu, sigp_set_prefix, 0);
232 lowcore_ptr[pcpu - pcpu_devices] = NULL;
233 #ifndef CONFIG_64BIT
234 if (MACHINE_HAS_IEEE) {
235 struct _lowcore *lc = pcpu->lowcore;
236
237 free_page((unsigned long) lc->extended_save_area_addr);
238 lc->extended_save_area_addr = 0;
239 }
240 #else
241 vdso_free_per_cpu(pcpu->lowcore);
242 #endif
243 if (pcpu != &pcpu_devices[0]) {
244 free_page(pcpu->panic_stack);
245 free_pages(pcpu->async_stack, ASYNC_ORDER);
246 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
247 }
248 }
249
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)250 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
251 {
252 struct _lowcore *lc = pcpu->lowcore;
253
254 atomic_inc(&init_mm.context.attach_count);
255 lc->cpu_nr = cpu;
256 lc->percpu_offset = __per_cpu_offset[cpu];
257 lc->kernel_asce = S390_lowcore.kernel_asce;
258 lc->machine_flags = S390_lowcore.machine_flags;
259 lc->ftrace_func = S390_lowcore.ftrace_func;
260 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
261 __ctl_store(lc->cregs_save_area, 0, 15);
262 save_access_regs((unsigned int *) lc->access_regs_save_area);
263 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
264 MAX_FACILITY_BIT/8);
265 }
266
pcpu_attach_task(struct pcpu * pcpu,struct task_struct * tsk)267 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
268 {
269 struct _lowcore *lc = pcpu->lowcore;
270 struct thread_info *ti = task_thread_info(tsk);
271
272 lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
273 lc->thread_info = (unsigned long) task_thread_info(tsk);
274 lc->current_task = (unsigned long) tsk;
275 lc->user_timer = ti->user_timer;
276 lc->system_timer = ti->system_timer;
277 lc->steal_timer = 0;
278 }
279
pcpu_start_fn(struct pcpu * pcpu,void (* func)(void *),void * data)280 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
281 {
282 struct _lowcore *lc = pcpu->lowcore;
283
284 lc->restart_stack = lc->kernel_stack;
285 lc->restart_fn = (unsigned long) func;
286 lc->restart_data = (unsigned long) data;
287 lc->restart_source = -1UL;
288 pcpu_sigp_retry(pcpu, sigp_restart, 0);
289 }
290
291 /*
292 * Call function via PSW restart on pcpu and stop the current cpu.
293 */
pcpu_delegate(struct pcpu * pcpu,void (* func)(void *),void * data,unsigned long stack)294 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
295 void *data, unsigned long stack)
296 {
297 struct _lowcore *lc = pcpu->lowcore;
298 unsigned short this_cpu;
299
300 __load_psw_mask(psw_kernel_bits);
301 this_cpu = stap();
302 if (pcpu->address == this_cpu)
303 func(data); /* should not return */
304 /* Stop target cpu (if func returns this stops the current cpu). */
305 pcpu_sigp_retry(pcpu, sigp_stop, 0);
306 /* Restart func on the target cpu and stop the current cpu. */
307 lc->restart_stack = stack;
308 lc->restart_fn = (unsigned long) func;
309 lc->restart_data = (unsigned long) data;
310 lc->restart_source = (unsigned long) this_cpu;
311 asm volatile(
312 "0: sigp 0,%0,6 # sigp restart to target cpu\n"
313 " brc 2,0b # busy, try again\n"
314 "1: sigp 0,%1,5 # sigp stop to current cpu\n"
315 " brc 2,1b # busy, try again\n"
316 : : "d" (pcpu->address), "d" (this_cpu) : "0", "1", "cc");
317 for (;;) ;
318 }
319
320 /*
321 * Call function on an online CPU.
322 */
smp_call_online_cpu(void (* func)(void *),void * data)323 void smp_call_online_cpu(void (*func)(void *), void *data)
324 {
325 struct pcpu *pcpu;
326
327 /* Use the current cpu if it is online. */
328 pcpu = pcpu_find_address(cpu_online_mask, stap());
329 if (!pcpu)
330 /* Use the first online cpu. */
331 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
332 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
333 }
334
335 /*
336 * Call function on the ipl CPU.
337 */
smp_call_ipl_cpu(void (* func)(void *),void * data)338 void smp_call_ipl_cpu(void (*func)(void *), void *data)
339 {
340 pcpu_delegate(&pcpu_devices[0], func, data,
341 pcpu_devices->panic_stack + PAGE_SIZE);
342 }
343
smp_find_processor_id(u16 address)344 int smp_find_processor_id(u16 address)
345 {
346 int cpu;
347
348 for_each_present_cpu(cpu)
349 if (pcpu_devices[cpu].address == address)
350 return cpu;
351 return -1;
352 }
353
smp_vcpu_scheduled(int cpu)354 int smp_vcpu_scheduled(int cpu)
355 {
356 return pcpu_running(pcpu_devices + cpu);
357 }
358
smp_yield(void)359 void smp_yield(void)
360 {
361 if (MACHINE_HAS_DIAG44)
362 asm volatile("diag 0,0,0x44");
363 }
364
smp_yield_cpu(int cpu)365 void smp_yield_cpu(int cpu)
366 {
367 if (MACHINE_HAS_DIAG9C)
368 asm volatile("diag %0,0,0x9c"
369 : : "d" (pcpu_devices[cpu].address));
370 else if (MACHINE_HAS_DIAG44)
371 asm volatile("diag 0,0,0x44");
372 }
373
374 /*
375 * Send cpus emergency shutdown signal. This gives the cpus the
376 * opportunity to complete outstanding interrupts.
377 */
smp_emergency_stop(cpumask_t * cpumask)378 void smp_emergency_stop(cpumask_t *cpumask)
379 {
380 u64 end;
381 int cpu;
382
383 end = get_clock() + (1000000UL << 12);
384 for_each_cpu(cpu, cpumask) {
385 struct pcpu *pcpu = pcpu_devices + cpu;
386 set_bit(ec_stop_cpu, &pcpu->ec_mask);
387 while (__pcpu_sigp(pcpu->address, sigp_emergency_signal,
388 0, NULL) == sigp_busy &&
389 get_clock() < end)
390 cpu_relax();
391 }
392 while (get_clock() < end) {
393 for_each_cpu(cpu, cpumask)
394 if (pcpu_stopped(pcpu_devices + cpu))
395 cpumask_clear_cpu(cpu, cpumask);
396 if (cpumask_empty(cpumask))
397 break;
398 cpu_relax();
399 }
400 }
401
402 /*
403 * Stop all cpus but the current one.
404 */
smp_send_stop(void)405 void smp_send_stop(void)
406 {
407 cpumask_t cpumask;
408 int cpu;
409
410 /* Disable all interrupts/machine checks */
411 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
412 trace_hardirqs_off();
413
414 debug_set_critical();
415 cpumask_copy(&cpumask, cpu_online_mask);
416 cpumask_clear_cpu(smp_processor_id(), &cpumask);
417
418 if (oops_in_progress)
419 smp_emergency_stop(&cpumask);
420
421 /* stop all processors */
422 for_each_cpu(cpu, &cpumask) {
423 struct pcpu *pcpu = pcpu_devices + cpu;
424 pcpu_sigp_retry(pcpu, sigp_stop, 0);
425 while (!pcpu_stopped(pcpu))
426 cpu_relax();
427 }
428 }
429
430 /*
431 * Stop the current cpu.
432 */
smp_stop_cpu(void)433 void smp_stop_cpu(void)
434 {
435 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
436 for (;;) ;
437 }
438
439 /*
440 * This is the main routine where commands issued by other
441 * cpus are handled.
442 */
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)443 static void do_ext_call_interrupt(struct ext_code ext_code,
444 unsigned int param32, unsigned long param64)
445 {
446 unsigned long bits;
447 int cpu;
448
449 cpu = smp_processor_id();
450 if (ext_code.code == 0x1202)
451 kstat_cpu(cpu).irqs[EXTINT_EXC]++;
452 else
453 kstat_cpu(cpu).irqs[EXTINT_EMS]++;
454 /*
455 * handle bit signal external calls
456 */
457 bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
458
459 if (test_bit(ec_stop_cpu, &bits))
460 smp_stop_cpu();
461
462 if (test_bit(ec_schedule, &bits))
463 scheduler_ipi();
464
465 if (test_bit(ec_call_function, &bits))
466 generic_smp_call_function_interrupt();
467
468 if (test_bit(ec_call_function_single, &bits))
469 generic_smp_call_function_single_interrupt();
470
471 }
472
arch_send_call_function_ipi_mask(const struct cpumask * mask)473 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
474 {
475 int cpu;
476
477 for_each_cpu(cpu, mask)
478 pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
479 }
480
arch_send_call_function_single_ipi(int cpu)481 void arch_send_call_function_single_ipi(int cpu)
482 {
483 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
484 }
485
486 #ifndef CONFIG_64BIT
487 /*
488 * this function sends a 'purge tlb' signal to another CPU.
489 */
smp_ptlb_callback(void * info)490 static void smp_ptlb_callback(void *info)
491 {
492 __tlb_flush_local();
493 }
494
smp_ptlb_all(void)495 void smp_ptlb_all(void)
496 {
497 on_each_cpu(smp_ptlb_callback, NULL, 1);
498 }
499 EXPORT_SYMBOL(smp_ptlb_all);
500 #endif /* ! CONFIG_64BIT */
501
502 /*
503 * this function sends a 'reschedule' IPI to another CPU.
504 * it goes straight through and wastes no time serializing
505 * anything. Worst case is that we lose a reschedule ...
506 */
smp_send_reschedule(int cpu)507 void smp_send_reschedule(int cpu)
508 {
509 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
510 }
511
512 /*
513 * parameter area for the set/clear control bit callbacks
514 */
515 struct ec_creg_mask_parms {
516 unsigned long orval;
517 unsigned long andval;
518 int cr;
519 };
520
521 /*
522 * callback for setting/clearing control bits
523 */
smp_ctl_bit_callback(void * info)524 static void smp_ctl_bit_callback(void *info)
525 {
526 struct ec_creg_mask_parms *pp = info;
527 unsigned long cregs[16];
528
529 __ctl_store(cregs, 0, 15);
530 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
531 __ctl_load(cregs, 0, 15);
532 }
533
534 /*
535 * Set a bit in a control register of all cpus
536 */
smp_ctl_set_bit(int cr,int bit)537 void smp_ctl_set_bit(int cr, int bit)
538 {
539 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
540
541 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
542 }
543 EXPORT_SYMBOL(smp_ctl_set_bit);
544
545 /*
546 * Clear a bit in a control register of all cpus
547 */
smp_ctl_clear_bit(int cr,int bit)548 void smp_ctl_clear_bit(int cr, int bit)
549 {
550 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
551
552 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
553 }
554 EXPORT_SYMBOL(smp_ctl_clear_bit);
555
556 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
557
558 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
559 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
560
smp_get_save_area(int cpu,u16 address)561 static void __init smp_get_save_area(int cpu, u16 address)
562 {
563 void *lc = pcpu_devices[0].lowcore;
564 struct save_area *save_area;
565
566 if (is_kdump_kernel())
567 return;
568 if (!OLDMEM_BASE && (address == boot_cpu_address ||
569 ipl_info.type != IPL_TYPE_FCP_DUMP))
570 return;
571 if (cpu >= NR_CPUS) {
572 pr_warning("CPU %i exceeds the maximum %i and is excluded "
573 "from the dump\n", cpu, NR_CPUS - 1);
574 return;
575 }
576 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
577 if (!save_area)
578 panic("could not allocate memory for save area\n");
579 zfcpdump_save_areas[cpu] = save_area;
580 #ifdef CONFIG_CRASH_DUMP
581 if (address == boot_cpu_address) {
582 /* Copy the registers of the boot cpu. */
583 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
584 SAVE_AREA_BASE - PAGE_SIZE, 0);
585 return;
586 }
587 #endif
588 /* Get the registers of a non-boot cpu. */
589 __pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL);
590 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
591 }
592
smp_store_status(int cpu)593 int smp_store_status(int cpu)
594 {
595 struct pcpu *pcpu;
596
597 pcpu = pcpu_devices + cpu;
598 if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status,
599 0, NULL) != sigp_order_code_accepted)
600 return -EIO;
601 return 0;
602 }
603
604 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
605
smp_get_save_area(int cpu,u16 address)606 static inline void smp_get_save_area(int cpu, u16 address) { }
607
608 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
609
smp_get_cpu_info(void)610 static struct sclp_cpu_info *smp_get_cpu_info(void)
611 {
612 static int use_sigp_detection;
613 struct sclp_cpu_info *info;
614 int address;
615
616 info = kzalloc(sizeof(*info), GFP_KERNEL);
617 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
618 use_sigp_detection = 1;
619 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
620 if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) ==
621 sigp_not_operational)
622 continue;
623 info->cpu[info->configured].address = address;
624 info->configured++;
625 }
626 info->combined = info->configured;
627 }
628 return info;
629 }
630
631 static int __devinit smp_add_present_cpu(int cpu);
632
__smp_rescan_cpus(struct sclp_cpu_info * info,int sysfs_add)633 static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
634 int sysfs_add)
635 {
636 struct pcpu *pcpu;
637 cpumask_t avail;
638 int cpu, nr, i;
639
640 nr = 0;
641 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
642 cpu = cpumask_first(&avail);
643 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
644 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
645 continue;
646 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
647 continue;
648 pcpu = pcpu_devices + cpu;
649 pcpu->address = info->cpu[i].address;
650 pcpu->state = (cpu >= info->configured) ?
651 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
652 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
653 set_cpu_present(cpu, true);
654 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
655 set_cpu_present(cpu, false);
656 else
657 nr++;
658 cpu = cpumask_next(cpu, &avail);
659 }
660 return nr;
661 }
662
smp_detect_cpus(void)663 static void __init smp_detect_cpus(void)
664 {
665 unsigned int cpu, c_cpus, s_cpus;
666 struct sclp_cpu_info *info;
667
668 info = smp_get_cpu_info();
669 if (!info)
670 panic("smp_detect_cpus failed to allocate memory\n");
671 if (info->has_cpu_type) {
672 for (cpu = 0; cpu < info->combined; cpu++) {
673 if (info->cpu[cpu].address != boot_cpu_address)
674 continue;
675 /* The boot cpu dictates the cpu type. */
676 boot_cpu_type = info->cpu[cpu].type;
677 break;
678 }
679 }
680 c_cpus = s_cpus = 0;
681 for (cpu = 0; cpu < info->combined; cpu++) {
682 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
683 continue;
684 if (cpu < info->configured) {
685 smp_get_save_area(c_cpus, info->cpu[cpu].address);
686 c_cpus++;
687 } else
688 s_cpus++;
689 }
690 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
691 get_online_cpus();
692 __smp_rescan_cpus(info, 0);
693 put_online_cpus();
694 kfree(info);
695 }
696
697 /*
698 * Activate a secondary processor.
699 */
smp_start_secondary(void * cpuvoid)700 static void __cpuinit smp_start_secondary(void *cpuvoid)
701 {
702 S390_lowcore.last_update_clock = get_clock();
703 S390_lowcore.restart_stack = (unsigned long) restart_stack;
704 S390_lowcore.restart_fn = (unsigned long) do_restart;
705 S390_lowcore.restart_data = 0;
706 S390_lowcore.restart_source = -1UL;
707 restore_access_regs(S390_lowcore.access_regs_save_area);
708 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
709 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
710 cpu_init();
711 preempt_disable();
712 init_cpu_timer();
713 init_cpu_vtimer();
714 pfault_init();
715 notify_cpu_starting(smp_processor_id());
716 ipi_call_lock();
717 set_cpu_online(smp_processor_id(), true);
718 ipi_call_unlock();
719 local_irq_enable();
720 /* cpu_idle will call schedule for us */
721 cpu_idle();
722 }
723
724 struct create_idle {
725 struct work_struct work;
726 struct task_struct *idle;
727 struct completion done;
728 int cpu;
729 };
730
smp_fork_idle(struct work_struct * work)731 static void __cpuinit smp_fork_idle(struct work_struct *work)
732 {
733 struct create_idle *c_idle;
734
735 c_idle = container_of(work, struct create_idle, work);
736 c_idle->idle = fork_idle(c_idle->cpu);
737 complete(&c_idle->done);
738 }
739
740 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu)741 int __cpuinit __cpu_up(unsigned int cpu)
742 {
743 struct create_idle c_idle;
744 struct pcpu *pcpu;
745 int rc;
746
747 pcpu = pcpu_devices + cpu;
748 if (pcpu->state != CPU_STATE_CONFIGURED)
749 return -EIO;
750 if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) !=
751 sigp_order_code_accepted)
752 return -EIO;
753 if (!pcpu->idle) {
754 c_idle.done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done);
755 INIT_WORK_ONSTACK(&c_idle.work, smp_fork_idle);
756 c_idle.cpu = cpu;
757 schedule_work(&c_idle.work);
758 wait_for_completion(&c_idle.done);
759 if (IS_ERR(c_idle.idle))
760 return PTR_ERR(c_idle.idle);
761 pcpu->idle = c_idle.idle;
762 }
763 init_idle(pcpu->idle, cpu);
764 rc = pcpu_alloc_lowcore(pcpu, cpu);
765 if (rc)
766 return rc;
767 pcpu_prepare_secondary(pcpu, cpu);
768 pcpu_attach_task(pcpu, pcpu->idle);
769 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
770 while (!cpu_online(cpu))
771 cpu_relax();
772 return 0;
773 }
774
setup_possible_cpus(char * s)775 static int __init setup_possible_cpus(char *s)
776 {
777 int max, cpu;
778
779 if (kstrtoint(s, 0, &max) < 0)
780 return 0;
781 init_cpu_possible(cpumask_of(0));
782 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
783 set_cpu_possible(cpu, true);
784 return 0;
785 }
786 early_param("possible_cpus", setup_possible_cpus);
787
788 #ifdef CONFIG_HOTPLUG_CPU
789
__cpu_disable(void)790 int __cpu_disable(void)
791 {
792 unsigned long cregs[16];
793
794 set_cpu_online(smp_processor_id(), false);
795 /* Disable pseudo page faults on this cpu. */
796 pfault_fini();
797 /* Disable interrupt sources via control register. */
798 __ctl_store(cregs, 0, 15);
799 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
800 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
801 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
802 __ctl_load(cregs, 0, 15);
803 return 0;
804 }
805
__cpu_die(unsigned int cpu)806 void __cpu_die(unsigned int cpu)
807 {
808 struct pcpu *pcpu;
809
810 /* Wait until target cpu is down */
811 pcpu = pcpu_devices + cpu;
812 while (!pcpu_stopped(pcpu))
813 cpu_relax();
814 pcpu_free_lowcore(pcpu);
815 atomic_dec(&init_mm.context.attach_count);
816 }
817
cpu_die(void)818 void __noreturn cpu_die(void)
819 {
820 idle_task_exit();
821 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
822 for (;;) ;
823 }
824
825 #endif /* CONFIG_HOTPLUG_CPU */
826
smp_call_os_info_init_fn(void)827 static void smp_call_os_info_init_fn(void)
828 {
829 int (*init_fn)(void);
830 unsigned long size;
831
832 init_fn = os_info_old_entry(OS_INFO_INIT_FN, &size);
833 if (!init_fn)
834 return;
835 init_fn();
836 }
837
smp_prepare_cpus(unsigned int max_cpus)838 void __init smp_prepare_cpus(unsigned int max_cpus)
839 {
840 /* request the 0x1201 emergency signal external interrupt */
841 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
842 panic("Couldn't request external interrupt 0x1201");
843 /* request the 0x1202 external call external interrupt */
844 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
845 panic("Couldn't request external interrupt 0x1202");
846 smp_call_os_info_init_fn();
847 smp_detect_cpus();
848 }
849
smp_prepare_boot_cpu(void)850 void __init smp_prepare_boot_cpu(void)
851 {
852 struct pcpu *pcpu = pcpu_devices;
853
854 boot_cpu_address = stap();
855 pcpu->idle = current;
856 pcpu->state = CPU_STATE_CONFIGURED;
857 pcpu->address = boot_cpu_address;
858 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
859 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
860 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
861 S390_lowcore.percpu_offset = __per_cpu_offset[0];
862 cpu_set_polarization(0, POLARIZATION_UNKNOWN);
863 set_cpu_present(0, true);
864 set_cpu_online(0, true);
865 }
866
smp_cpus_done(unsigned int max_cpus)867 void __init smp_cpus_done(unsigned int max_cpus)
868 {
869 }
870
smp_setup_processor_id(void)871 void __init smp_setup_processor_id(void)
872 {
873 S390_lowcore.cpu_nr = 0;
874 }
875
876 /*
877 * the frequency of the profiling timer can be changed
878 * by writing a multiplier value into /proc/profile.
879 *
880 * usually you want to run this on all CPUs ;)
881 */
setup_profiling_timer(unsigned int multiplier)882 int setup_profiling_timer(unsigned int multiplier)
883 {
884 return 0;
885 }
886
887 #ifdef CONFIG_HOTPLUG_CPU
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)888 static ssize_t cpu_configure_show(struct device *dev,
889 struct device_attribute *attr, char *buf)
890 {
891 ssize_t count;
892
893 mutex_lock(&smp_cpu_state_mutex);
894 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
895 mutex_unlock(&smp_cpu_state_mutex);
896 return count;
897 }
898
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)899 static ssize_t cpu_configure_store(struct device *dev,
900 struct device_attribute *attr,
901 const char *buf, size_t count)
902 {
903 struct pcpu *pcpu;
904 int cpu, val, rc;
905 char delim;
906
907 if (sscanf(buf, "%d %c", &val, &delim) != 1)
908 return -EINVAL;
909 if (val != 0 && val != 1)
910 return -EINVAL;
911 get_online_cpus();
912 mutex_lock(&smp_cpu_state_mutex);
913 rc = -EBUSY;
914 /* disallow configuration changes of online cpus and cpu 0 */
915 cpu = dev->id;
916 if (cpu_online(cpu) || cpu == 0)
917 goto out;
918 pcpu = pcpu_devices + cpu;
919 rc = 0;
920 switch (val) {
921 case 0:
922 if (pcpu->state != CPU_STATE_CONFIGURED)
923 break;
924 rc = sclp_cpu_deconfigure(pcpu->address);
925 if (rc)
926 break;
927 pcpu->state = CPU_STATE_STANDBY;
928 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
929 topology_expect_change();
930 break;
931 case 1:
932 if (pcpu->state != CPU_STATE_STANDBY)
933 break;
934 rc = sclp_cpu_configure(pcpu->address);
935 if (rc)
936 break;
937 pcpu->state = CPU_STATE_CONFIGURED;
938 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
939 topology_expect_change();
940 break;
941 default:
942 break;
943 }
944 out:
945 mutex_unlock(&smp_cpu_state_mutex);
946 put_online_cpus();
947 return rc ? rc : count;
948 }
949 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
950 #endif /* CONFIG_HOTPLUG_CPU */
951
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)952 static ssize_t show_cpu_address(struct device *dev,
953 struct device_attribute *attr, char *buf)
954 {
955 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
956 }
957 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
958
959 static struct attribute *cpu_common_attrs[] = {
960 #ifdef CONFIG_HOTPLUG_CPU
961 &dev_attr_configure.attr,
962 #endif
963 &dev_attr_address.attr,
964 NULL,
965 };
966
967 static struct attribute_group cpu_common_attr_group = {
968 .attrs = cpu_common_attrs,
969 };
970
show_capability(struct device * dev,struct device_attribute * attr,char * buf)971 static ssize_t show_capability(struct device *dev,
972 struct device_attribute *attr, char *buf)
973 {
974 unsigned int capability;
975 int rc;
976
977 rc = get_cpu_capability(&capability);
978 if (rc)
979 return rc;
980 return sprintf(buf, "%u\n", capability);
981 }
982 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
983
show_idle_count(struct device * dev,struct device_attribute * attr,char * buf)984 static ssize_t show_idle_count(struct device *dev,
985 struct device_attribute *attr, char *buf)
986 {
987 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
988 unsigned long long idle_count;
989 unsigned int sequence;
990
991 do {
992 sequence = ACCESS_ONCE(idle->sequence);
993 idle_count = ACCESS_ONCE(idle->idle_count);
994 if (ACCESS_ONCE(idle->idle_enter))
995 idle_count++;
996 } while ((sequence & 1) || (idle->sequence != sequence));
997 return sprintf(buf, "%llu\n", idle_count);
998 }
999 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
1000
show_idle_time(struct device * dev,struct device_attribute * attr,char * buf)1001 static ssize_t show_idle_time(struct device *dev,
1002 struct device_attribute *attr, char *buf)
1003 {
1004 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
1005 unsigned long long now, idle_time, idle_enter, idle_exit;
1006 unsigned int sequence;
1007
1008 do {
1009 now = get_clock();
1010 sequence = ACCESS_ONCE(idle->sequence);
1011 idle_time = ACCESS_ONCE(idle->idle_time);
1012 idle_enter = ACCESS_ONCE(idle->idle_enter);
1013 idle_exit = ACCESS_ONCE(idle->idle_exit);
1014 } while ((sequence & 1) || (idle->sequence != sequence));
1015 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
1016 return sprintf(buf, "%llu\n", idle_time >> 12);
1017 }
1018 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
1019
1020 static struct attribute *cpu_online_attrs[] = {
1021 &dev_attr_capability.attr,
1022 &dev_attr_idle_count.attr,
1023 &dev_attr_idle_time_us.attr,
1024 NULL,
1025 };
1026
1027 static struct attribute_group cpu_online_attr_group = {
1028 .attrs = cpu_online_attrs,
1029 };
1030
smp_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1031 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1032 unsigned long action, void *hcpu)
1033 {
1034 unsigned int cpu = (unsigned int)(long)hcpu;
1035 struct cpu *c = &pcpu_devices[cpu].cpu;
1036 struct device *s = &c->dev;
1037 int err = 0;
1038
1039 switch (action) {
1040 case CPU_ONLINE:
1041 case CPU_ONLINE_FROZEN:
1042 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1043 break;
1044 case CPU_DEAD:
1045 case CPU_DEAD_FROZEN:
1046 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1047 break;
1048 }
1049 return notifier_from_errno(err);
1050 }
1051
1052 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1053 .notifier_call = smp_cpu_notify,
1054 };
1055
smp_add_present_cpu(int cpu)1056 static int __devinit smp_add_present_cpu(int cpu)
1057 {
1058 struct cpu *c = &pcpu_devices[cpu].cpu;
1059 struct device *s = &c->dev;
1060 int rc;
1061
1062 c->hotpluggable = 1;
1063 rc = register_cpu(c, cpu);
1064 if (rc)
1065 goto out;
1066 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1067 if (rc)
1068 goto out_cpu;
1069 if (cpu_online(cpu)) {
1070 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1071 if (rc)
1072 goto out_online;
1073 }
1074 rc = topology_cpu_init(c);
1075 if (rc)
1076 goto out_topology;
1077 return 0;
1078
1079 out_topology:
1080 if (cpu_online(cpu))
1081 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1082 out_online:
1083 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1084 out_cpu:
1085 #ifdef CONFIG_HOTPLUG_CPU
1086 unregister_cpu(c);
1087 #endif
1088 out:
1089 return rc;
1090 }
1091
1092 #ifdef CONFIG_HOTPLUG_CPU
1093
smp_rescan_cpus(void)1094 int __ref smp_rescan_cpus(void)
1095 {
1096 struct sclp_cpu_info *info;
1097 int nr;
1098
1099 info = smp_get_cpu_info();
1100 if (!info)
1101 return -ENOMEM;
1102 get_online_cpus();
1103 mutex_lock(&smp_cpu_state_mutex);
1104 nr = __smp_rescan_cpus(info, 1);
1105 mutex_unlock(&smp_cpu_state_mutex);
1106 put_online_cpus();
1107 kfree(info);
1108 if (nr)
1109 topology_schedule_update();
1110 return 0;
1111 }
1112
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1113 static ssize_t __ref rescan_store(struct device *dev,
1114 struct device_attribute *attr,
1115 const char *buf,
1116 size_t count)
1117 {
1118 int rc;
1119
1120 rc = smp_rescan_cpus();
1121 return rc ? rc : count;
1122 }
1123 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1124 #endif /* CONFIG_HOTPLUG_CPU */
1125
s390_smp_init(void)1126 static int __init s390_smp_init(void)
1127 {
1128 int cpu, rc;
1129
1130 register_cpu_notifier(&smp_cpu_nb);
1131 #ifdef CONFIG_HOTPLUG_CPU
1132 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1133 if (rc)
1134 return rc;
1135 #endif
1136 for_each_present_cpu(cpu) {
1137 rc = smp_add_present_cpu(cpu);
1138 if (rc)
1139 return rc;
1140 }
1141 return 0;
1142 }
1143 subsys_initcall(s390_smp_init);
1144