1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
35 
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/mmu.h>
40 #include <asm/mmu_context.h>
41 #include <asm/uaccess.h>
42 #include <asm/tlbflush.h>
43 #include <asm/siginfo.h>
44 #include <asm/debug.h>
45 #include <mm/mmu_decl.h>
46 
47 #include "icswx.h"
48 
49 #ifdef CONFIG_KPROBES
notify_page_fault(struct pt_regs * regs)50 static inline int notify_page_fault(struct pt_regs *regs)
51 {
52 	int ret = 0;
53 
54 	/* kprobe_running() needs smp_processor_id() */
55 	if (!user_mode(regs)) {
56 		preempt_disable();
57 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
58 			ret = 1;
59 		preempt_enable();
60 	}
61 
62 	return ret;
63 }
64 #else
notify_page_fault(struct pt_regs * regs)65 static inline int notify_page_fault(struct pt_regs *regs)
66 {
67 	return 0;
68 }
69 #endif
70 
71 /*
72  * Check whether the instruction at regs->nip is a store using
73  * an update addressing form which will update r1.
74  */
store_updates_sp(struct pt_regs * regs)75 static int store_updates_sp(struct pt_regs *regs)
76 {
77 	unsigned int inst;
78 
79 	if (get_user(inst, (unsigned int __user *)regs->nip))
80 		return 0;
81 	/* check for 1 in the rA field */
82 	if (((inst >> 16) & 0x1f) != 1)
83 		return 0;
84 	/* check major opcode */
85 	switch (inst >> 26) {
86 	case 37:	/* stwu */
87 	case 39:	/* stbu */
88 	case 45:	/* sthu */
89 	case 53:	/* stfsu */
90 	case 55:	/* stfdu */
91 		return 1;
92 	case 62:	/* std or stdu */
93 		return (inst & 3) == 1;
94 	case 31:
95 		/* check minor opcode */
96 		switch ((inst >> 1) & 0x3ff) {
97 		case 181:	/* stdux */
98 		case 183:	/* stwux */
99 		case 247:	/* stbux */
100 		case 439:	/* sthux */
101 		case 695:	/* stfsux */
102 		case 759:	/* stfdux */
103 			return 1;
104 		}
105 	}
106 	return 0;
107 }
108 /*
109  * do_page_fault error handling helpers
110  */
111 
112 #define MM_FAULT_RETURN		0
113 #define MM_FAULT_CONTINUE	-1
114 #define MM_FAULT_ERR(sig)	(sig)
115 
out_of_memory(struct pt_regs * regs)116 static int out_of_memory(struct pt_regs *regs)
117 {
118 	/*
119 	 * We ran out of memory, or some other thing happened to us that made
120 	 * us unable to handle the page fault gracefully.
121 	 */
122 	up_read(&current->mm->mmap_sem);
123 	if (!user_mode(regs))
124 		return MM_FAULT_ERR(SIGKILL);
125 	pagefault_out_of_memory();
126 	return MM_FAULT_RETURN;
127 }
128 
do_sigbus(struct pt_regs * regs,unsigned long address)129 static int do_sigbus(struct pt_regs *regs, unsigned long address)
130 {
131 	siginfo_t info;
132 
133 	up_read(&current->mm->mmap_sem);
134 
135 	if (user_mode(regs)) {
136 		info.si_signo = SIGBUS;
137 		info.si_errno = 0;
138 		info.si_code = BUS_ADRERR;
139 		info.si_addr = (void __user *)address;
140 		force_sig_info(SIGBUS, &info, current);
141 		return MM_FAULT_RETURN;
142 	}
143 	return MM_FAULT_ERR(SIGBUS);
144 }
145 
mm_fault_error(struct pt_regs * regs,unsigned long addr,int fault)146 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
147 {
148 	/*
149 	 * Pagefault was interrupted by SIGKILL. We have no reason to
150 	 * continue the pagefault.
151 	 */
152 	if (fatal_signal_pending(current)) {
153 		/*
154 		 * If we have retry set, the mmap semaphore will have
155 		 * alrady been released in __lock_page_or_retry(). Else
156 		 * we release it now.
157 		 */
158 		if (!(fault & VM_FAULT_RETRY))
159 			up_read(&current->mm->mmap_sem);
160 		/* Coming from kernel, we need to deal with uaccess fixups */
161 		if (user_mode(regs))
162 			return MM_FAULT_RETURN;
163 		return MM_FAULT_ERR(SIGKILL);
164 	}
165 
166 	/* No fault: be happy */
167 	if (!(fault & VM_FAULT_ERROR))
168 		return MM_FAULT_CONTINUE;
169 
170 	/* Out of memory */
171 	if (fault & VM_FAULT_OOM)
172 		return out_of_memory(regs);
173 
174 	/* Bus error. x86 handles HWPOISON here, we'll add this if/when
175 	 * we support the feature in HW
176 	 */
177 	if (fault & VM_FAULT_SIGBUS)
178 		return do_sigbus(regs, addr);
179 
180 	/* We don't understand the fault code, this is fatal */
181 	BUG();
182 	return MM_FAULT_CONTINUE;
183 }
184 
185 /*
186  * For 600- and 800-family processors, the error_code parameter is DSISR
187  * for a data fault, SRR1 for an instruction fault. For 400-family processors
188  * the error_code parameter is ESR for a data fault, 0 for an instruction
189  * fault.
190  * For 64-bit processors, the error_code parameter is
191  *  - DSISR for a non-SLB data access fault,
192  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
193  *  - 0 any SLB fault.
194  *
195  * The return value is 0 if the fault was handled, or the signal
196  * number if this is a kernel fault that can't be handled here.
197  */
do_page_fault(struct pt_regs * regs,unsigned long address,unsigned long error_code)198 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
199 			    unsigned long error_code)
200 {
201 	struct vm_area_struct * vma;
202 	struct mm_struct *mm = current->mm;
203 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
204 	int code = SEGV_MAPERR;
205 	int is_write = 0;
206 	int trap = TRAP(regs);
207  	int is_exec = trap == 0x400;
208 	int fault;
209 
210 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
211 	/*
212 	 * Fortunately the bit assignments in SRR1 for an instruction
213 	 * fault and DSISR for a data fault are mostly the same for the
214 	 * bits we are interested in.  But there are some bits which
215 	 * indicate errors in DSISR but can validly be set in SRR1.
216 	 */
217 	if (trap == 0x400)
218 		error_code &= 0x48200000;
219 	else
220 		is_write = error_code & DSISR_ISSTORE;
221 #else
222 	is_write = error_code & ESR_DST;
223 #endif /* CONFIG_4xx || CONFIG_BOOKE */
224 
225 	if (is_write)
226 		flags |= FAULT_FLAG_WRITE;
227 
228 #ifdef CONFIG_PPC_ICSWX
229 	/*
230 	 * we need to do this early because this "data storage
231 	 * interrupt" does not update the DAR/DEAR so we don't want to
232 	 * look at it
233 	 */
234 	if (error_code & ICSWX_DSI_UCT) {
235 		int rc = acop_handle_fault(regs, address, error_code);
236 		if (rc)
237 			return rc;
238 	}
239 #endif /* CONFIG_PPC_ICSWX */
240 
241 	if (notify_page_fault(regs))
242 		return 0;
243 
244 	if (unlikely(debugger_fault_handler(regs)))
245 		return 0;
246 
247 	/* On a kernel SLB miss we can only check for a valid exception entry */
248 	if (!user_mode(regs) && (address >= TASK_SIZE))
249 		return SIGSEGV;
250 
251 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
252 			     defined(CONFIG_PPC_BOOK3S_64))
253   	if (error_code & DSISR_DABRMATCH) {
254 		/* DABR match */
255 		do_dabr(regs, address, error_code);
256 		return 0;
257 	}
258 #endif
259 
260 	/* We restore the interrupt state now */
261 	if (!arch_irq_disabled_regs(regs))
262 		local_irq_enable();
263 
264 	if (in_atomic() || mm == NULL) {
265 		if (!user_mode(regs))
266 			return SIGSEGV;
267 		/* in_atomic() in user mode is really bad,
268 		   as is current->mm == NULL. */
269 		printk(KERN_EMERG "Page fault in user mode with "
270 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
271 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
272 		       regs->nip, regs->msr);
273 		die("Weird page fault", regs, SIGSEGV);
274 	}
275 
276 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
277 
278 	/* When running in the kernel we expect faults to occur only to
279 	 * addresses in user space.  All other faults represent errors in the
280 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
281 	 * erroneous fault occurring in a code path which already holds mmap_sem
282 	 * we will deadlock attempting to validate the fault against the
283 	 * address space.  Luckily the kernel only validly references user
284 	 * space from well defined areas of code, which are listed in the
285 	 * exceptions table.
286 	 *
287 	 * As the vast majority of faults will be valid we will only perform
288 	 * the source reference check when there is a possibility of a deadlock.
289 	 * Attempt to lock the address space, if we cannot we then validate the
290 	 * source.  If this is invalid we can skip the address space check,
291 	 * thus avoiding the deadlock.
292 	 */
293 	if (!down_read_trylock(&mm->mmap_sem)) {
294 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
295 			goto bad_area_nosemaphore;
296 
297 retry:
298 		down_read(&mm->mmap_sem);
299 	} else {
300 		/*
301 		 * The above down_read_trylock() might have succeeded in
302 		 * which case we'll have missed the might_sleep() from
303 		 * down_read():
304 		 */
305 		might_sleep();
306 	}
307 
308 	vma = find_vma(mm, address);
309 	if (!vma)
310 		goto bad_area;
311 	if (vma->vm_start <= address)
312 		goto good_area;
313 	if (!(vma->vm_flags & VM_GROWSDOWN))
314 		goto bad_area;
315 
316 	/*
317 	 * N.B. The POWER/Open ABI allows programs to access up to
318 	 * 288 bytes below the stack pointer.
319 	 * The kernel signal delivery code writes up to about 1.5kB
320 	 * below the stack pointer (r1) before decrementing it.
321 	 * The exec code can write slightly over 640kB to the stack
322 	 * before setting the user r1.  Thus we allow the stack to
323 	 * expand to 1MB without further checks.
324 	 */
325 	if (address + 0x100000 < vma->vm_end) {
326 		/* get user regs even if this fault is in kernel mode */
327 		struct pt_regs *uregs = current->thread.regs;
328 		if (uregs == NULL)
329 			goto bad_area;
330 
331 		/*
332 		 * A user-mode access to an address a long way below
333 		 * the stack pointer is only valid if the instruction
334 		 * is one which would update the stack pointer to the
335 		 * address accessed if the instruction completed,
336 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
337 		 * (or the byte, halfword, float or double forms).
338 		 *
339 		 * If we don't check this then any write to the area
340 		 * between the last mapped region and the stack will
341 		 * expand the stack rather than segfaulting.
342 		 */
343 		if (address + 2048 < uregs->gpr[1]
344 		    && (!user_mode(regs) || !store_updates_sp(regs)))
345 			goto bad_area;
346 	}
347 	if (expand_stack(vma, address))
348 		goto bad_area;
349 
350 good_area:
351 	code = SEGV_ACCERR;
352 #if defined(CONFIG_6xx)
353 	if (error_code & 0x95700000)
354 		/* an error such as lwarx to I/O controller space,
355 		   address matching DABR, eciwx, etc. */
356 		goto bad_area;
357 #endif /* CONFIG_6xx */
358 #if defined(CONFIG_8xx)
359 	/* 8xx sometimes need to load a invalid/non-present TLBs.
360 	 * These must be invalidated separately as linux mm don't.
361 	 */
362 	if (error_code & 0x40000000) /* no translation? */
363 		_tlbil_va(address, 0, 0, 0);
364 
365         /* The MPC8xx seems to always set 0x80000000, which is
366          * "undefined".  Of those that can be set, this is the only
367          * one which seems bad.
368          */
369 	if (error_code & 0x10000000)
370                 /* Guarded storage error. */
371 		goto bad_area;
372 #endif /* CONFIG_8xx */
373 
374 	if (is_exec) {
375 #ifdef CONFIG_PPC_STD_MMU
376 		/* Protection fault on exec go straight to failure on
377 		 * Hash based MMUs as they either don't support per-page
378 		 * execute permission, or if they do, it's handled already
379 		 * at the hash level. This test would probably have to
380 		 * be removed if we change the way this works to make hash
381 		 * processors use the same I/D cache coherency mechanism
382 		 * as embedded.
383 		 */
384 		if (error_code & DSISR_PROTFAULT)
385 			goto bad_area;
386 #endif /* CONFIG_PPC_STD_MMU */
387 
388 		/*
389 		 * Allow execution from readable areas if the MMU does not
390 		 * provide separate controls over reading and executing.
391 		 *
392 		 * Note: That code used to not be enabled for 4xx/BookE.
393 		 * It is now as I/D cache coherency for these is done at
394 		 * set_pte_at() time and I see no reason why the test
395 		 * below wouldn't be valid on those processors. This -may-
396 		 * break programs compiled with a really old ABI though.
397 		 */
398 		if (!(vma->vm_flags & VM_EXEC) &&
399 		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
400 		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
401 			goto bad_area;
402 	/* a write */
403 	} else if (is_write) {
404 		if (!(vma->vm_flags & VM_WRITE))
405 			goto bad_area;
406 	/* a read */
407 	} else {
408 		/* protection fault */
409 		if (error_code & 0x08000000)
410 			goto bad_area;
411 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
412 			goto bad_area;
413 	}
414 
415 	/*
416 	 * If for any reason at all we couldn't handle the fault,
417 	 * make sure we exit gracefully rather than endlessly redo
418 	 * the fault.
419 	 */
420 	fault = handle_mm_fault(mm, vma, address, flags);
421 	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
422 		int rc = mm_fault_error(regs, address, fault);
423 		if (rc >= MM_FAULT_RETURN)
424 			return rc;
425 	}
426 
427 	/*
428 	 * Major/minor page fault accounting is only done on the
429 	 * initial attempt. If we go through a retry, it is extremely
430 	 * likely that the page will be found in page cache at that point.
431 	 */
432 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
433 		if (fault & VM_FAULT_MAJOR) {
434 			current->maj_flt++;
435 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
436 				      regs, address);
437 #ifdef CONFIG_PPC_SMLPAR
438 			if (firmware_has_feature(FW_FEATURE_CMO)) {
439 				preempt_disable();
440 				get_lppaca()->page_ins += (1 << PAGE_FACTOR);
441 				preempt_enable();
442 			}
443 #endif /* CONFIG_PPC_SMLPAR */
444 		} else {
445 			current->min_flt++;
446 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
447 				      regs, address);
448 		}
449 		if (fault & VM_FAULT_RETRY) {
450 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
451 			 * of starvation. */
452 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
453 			goto retry;
454 		}
455 	}
456 
457 	up_read(&mm->mmap_sem);
458 	return 0;
459 
460 bad_area:
461 	up_read(&mm->mmap_sem);
462 
463 bad_area_nosemaphore:
464 	/* User mode accesses cause a SIGSEGV */
465 	if (user_mode(regs)) {
466 		_exception(SIGSEGV, regs, code, address);
467 		return 0;
468 	}
469 
470 	if (is_exec && (error_code & DSISR_PROTFAULT))
471 		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
472 				   " page (%lx) - exploit attempt? (uid: %d)\n",
473 				   address, current_uid());
474 
475 	return SIGSEGV;
476 
477 }
478 
479 /*
480  * bad_page_fault is called when we have a bad access from the kernel.
481  * It is called from the DSI and ISI handlers in head.S and from some
482  * of the procedures in traps.c.
483  */
bad_page_fault(struct pt_regs * regs,unsigned long address,int sig)484 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
485 {
486 	const struct exception_table_entry *entry;
487 	unsigned long *stackend;
488 
489 	/* Are we prepared to handle this fault?  */
490 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
491 		regs->nip = entry->fixup;
492 		return;
493 	}
494 
495 	/* kernel has accessed a bad area */
496 
497 	switch (regs->trap) {
498 	case 0x300:
499 	case 0x380:
500 		printk(KERN_ALERT "Unable to handle kernel paging request for "
501 			"data at address 0x%08lx\n", regs->dar);
502 		break;
503 	case 0x400:
504 	case 0x480:
505 		printk(KERN_ALERT "Unable to handle kernel paging request for "
506 			"instruction fetch\n");
507 		break;
508 	default:
509 		printk(KERN_ALERT "Unable to handle kernel paging request for "
510 			"unknown fault\n");
511 		break;
512 	}
513 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
514 		regs->nip);
515 
516 	stackend = end_of_stack(current);
517 	if (current != &init_task && *stackend != STACK_END_MAGIC)
518 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
519 
520 	die("Kernel access of bad area", regs, sig);
521 }
522