1 /*
2 * Freescale hypervisor call interface
3 *
4 * Copyright 2008-2010 Freescale Semiconductor, Inc.
5 *
6 * Author: Timur Tabi <timur@freescale.com>
7 *
8 * This file is provided under a dual BSD/GPL license. When using or
9 * redistributing this file, you may do so under either license.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * * Neither the name of Freescale Semiconductor nor the
19 * names of its contributors may be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 *
23 * ALTERNATIVELY, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") as published by the Free Software
25 * Foundation, either version 2 of that License or (at your option) any
26 * later version.
27 *
28 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
29 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
30 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
31 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
33 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
37 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #ifndef _FSL_HCALLS_H
41 #define _FSL_HCALLS_H
42
43 #include <linux/types.h>
44 #include <linux/errno.h>
45 #include <asm/byteorder.h>
46 #include <asm/epapr_hcalls.h>
47
48 #define FH_API_VERSION 1
49
50 #define FH_ERR_GET_INFO 1
51 #define FH_PARTITION_GET_DTPROP 2
52 #define FH_PARTITION_SET_DTPROP 3
53 #define FH_PARTITION_RESTART 4
54 #define FH_PARTITION_GET_STATUS 5
55 #define FH_PARTITION_START 6
56 #define FH_PARTITION_STOP 7
57 #define FH_PARTITION_MEMCPY 8
58 #define FH_DMA_ENABLE 9
59 #define FH_DMA_DISABLE 10
60 #define FH_SEND_NMI 11
61 #define FH_VMPIC_GET_MSIR 12
62 #define FH_SYSTEM_RESET 13
63 #define FH_GET_CORE_STATE 14
64 #define FH_ENTER_NAP 15
65 #define FH_EXIT_NAP 16
66 #define FH_CLAIM_DEVICE 17
67 #define FH_PARTITION_STOP_DMA 18
68
69 /* vendor ID: Freescale Semiconductor */
70 #define FH_HCALL_TOKEN(num) _EV_HCALL_TOKEN(EV_FSL_VENDOR_ID, num)
71
72 /*
73 * We use "uintptr_t" to define a register because it's guaranteed to be a
74 * 32-bit integer on a 32-bit platform, and a 64-bit integer on a 64-bit
75 * platform.
76 *
77 * All registers are either input/output or output only. Registers that are
78 * initialized before making the hypercall are input/output. All
79 * input/output registers are represented with "+r". Output-only registers
80 * are represented with "=r". Do not specify any unused registers. The
81 * clobber list will tell the compiler that the hypercall modifies those
82 * registers, which is good enough.
83 */
84
85 /**
86 * fh_send_nmi - send NMI to virtual cpu(s).
87 * @vcpu_mask: send NMI to virtual cpu(s) specified by this mask.
88 *
89 * Returns 0 for success, or EINVAL for invalid vcpu_mask.
90 */
fh_send_nmi(unsigned int vcpu_mask)91 static inline unsigned int fh_send_nmi(unsigned int vcpu_mask)
92 {
93 register uintptr_t r11 __asm__("r11");
94 register uintptr_t r3 __asm__("r3");
95
96 r11 = FH_HCALL_TOKEN(FH_SEND_NMI);
97 r3 = vcpu_mask;
98
99 __asm__ __volatile__ ("sc 1"
100 : "+r" (r11), "+r" (r3)
101 : : EV_HCALL_CLOBBERS1
102 );
103
104 return r3;
105 }
106
107 /* Arbitrary limits to avoid excessive memory allocation in hypervisor */
108 #define FH_DTPROP_MAX_PATHLEN 4096
109 #define FH_DTPROP_MAX_PROPLEN 32768
110
111 /**
112 * fh_partiton_get_dtprop - get a property from a guest device tree.
113 * @handle: handle of partition whose device tree is to be accessed
114 * @dtpath_addr: physical address of device tree path to access
115 * @propname_addr: physical address of name of property
116 * @propvalue_addr: physical address of property value buffer
117 * @propvalue_len: length of buffer on entry, length of property on return
118 *
119 * Returns zero on success, non-zero on error.
120 */
fh_partition_get_dtprop(int handle,uint64_t dtpath_addr,uint64_t propname_addr,uint64_t propvalue_addr,uint32_t * propvalue_len)121 static inline unsigned int fh_partition_get_dtprop(int handle,
122 uint64_t dtpath_addr,
123 uint64_t propname_addr,
124 uint64_t propvalue_addr,
125 uint32_t *propvalue_len)
126 {
127 register uintptr_t r11 __asm__("r11");
128 register uintptr_t r3 __asm__("r3");
129 register uintptr_t r4 __asm__("r4");
130 register uintptr_t r5 __asm__("r5");
131 register uintptr_t r6 __asm__("r6");
132 register uintptr_t r7 __asm__("r7");
133 register uintptr_t r8 __asm__("r8");
134 register uintptr_t r9 __asm__("r9");
135 register uintptr_t r10 __asm__("r10");
136
137 r11 = FH_HCALL_TOKEN(FH_PARTITION_GET_DTPROP);
138 r3 = handle;
139
140 #ifdef CONFIG_PHYS_64BIT
141 r4 = dtpath_addr >> 32;
142 r6 = propname_addr >> 32;
143 r8 = propvalue_addr >> 32;
144 #else
145 r4 = 0;
146 r6 = 0;
147 r8 = 0;
148 #endif
149 r5 = (uint32_t)dtpath_addr;
150 r7 = (uint32_t)propname_addr;
151 r9 = (uint32_t)propvalue_addr;
152 r10 = *propvalue_len;
153
154 __asm__ __volatile__ ("sc 1"
155 : "+r" (r11),
156 "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7),
157 "+r" (r8), "+r" (r9), "+r" (r10)
158 : : EV_HCALL_CLOBBERS8
159 );
160
161 *propvalue_len = r4;
162 return r3;
163 }
164
165 /**
166 * Set a property in a guest device tree.
167 * @handle: handle of partition whose device tree is to be accessed
168 * @dtpath_addr: physical address of device tree path to access
169 * @propname_addr: physical address of name of property
170 * @propvalue_addr: physical address of property value
171 * @propvalue_len: length of property
172 *
173 * Returns zero on success, non-zero on error.
174 */
fh_partition_set_dtprop(int handle,uint64_t dtpath_addr,uint64_t propname_addr,uint64_t propvalue_addr,uint32_t propvalue_len)175 static inline unsigned int fh_partition_set_dtprop(int handle,
176 uint64_t dtpath_addr,
177 uint64_t propname_addr,
178 uint64_t propvalue_addr,
179 uint32_t propvalue_len)
180 {
181 register uintptr_t r11 __asm__("r11");
182 register uintptr_t r3 __asm__("r3");
183 register uintptr_t r4 __asm__("r4");
184 register uintptr_t r6 __asm__("r6");
185 register uintptr_t r8 __asm__("r8");
186 register uintptr_t r5 __asm__("r5");
187 register uintptr_t r7 __asm__("r7");
188 register uintptr_t r9 __asm__("r9");
189 register uintptr_t r10 __asm__("r10");
190
191 r11 = FH_HCALL_TOKEN(FH_PARTITION_SET_DTPROP);
192 r3 = handle;
193
194 #ifdef CONFIG_PHYS_64BIT
195 r4 = dtpath_addr >> 32;
196 r6 = propname_addr >> 32;
197 r8 = propvalue_addr >> 32;
198 #else
199 r4 = 0;
200 r6 = 0;
201 r8 = 0;
202 #endif
203 r5 = (uint32_t)dtpath_addr;
204 r7 = (uint32_t)propname_addr;
205 r9 = (uint32_t)propvalue_addr;
206 r10 = propvalue_len;
207
208 __asm__ __volatile__ ("sc 1"
209 : "+r" (r11),
210 "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7),
211 "+r" (r8), "+r" (r9), "+r" (r10)
212 : : EV_HCALL_CLOBBERS8
213 );
214
215 return r3;
216 }
217
218 /**
219 * fh_partition_restart - reboot the current partition
220 * @partition: partition ID
221 *
222 * Returns an error code if reboot failed. Does not return if it succeeds.
223 */
fh_partition_restart(unsigned int partition)224 static inline unsigned int fh_partition_restart(unsigned int partition)
225 {
226 register uintptr_t r11 __asm__("r11");
227 register uintptr_t r3 __asm__("r3");
228
229 r11 = FH_HCALL_TOKEN(FH_PARTITION_RESTART);
230 r3 = partition;
231
232 __asm__ __volatile__ ("sc 1"
233 : "+r" (r11), "+r" (r3)
234 : : EV_HCALL_CLOBBERS1
235 );
236
237 return r3;
238 }
239
240 #define FH_PARTITION_STOPPED 0
241 #define FH_PARTITION_RUNNING 1
242 #define FH_PARTITION_STARTING 2
243 #define FH_PARTITION_STOPPING 3
244 #define FH_PARTITION_PAUSING 4
245 #define FH_PARTITION_PAUSED 5
246 #define FH_PARTITION_RESUMING 6
247
248 /**
249 * fh_partition_get_status - gets the status of a partition
250 * @partition: partition ID
251 * @status: returned status code
252 *
253 * Returns 0 for success, or an error code.
254 */
fh_partition_get_status(unsigned int partition,unsigned int * status)255 static inline unsigned int fh_partition_get_status(unsigned int partition,
256 unsigned int *status)
257 {
258 register uintptr_t r11 __asm__("r11");
259 register uintptr_t r3 __asm__("r3");
260 register uintptr_t r4 __asm__("r4");
261
262 r11 = FH_HCALL_TOKEN(FH_PARTITION_GET_STATUS);
263 r3 = partition;
264
265 __asm__ __volatile__ ("sc 1"
266 : "+r" (r11), "+r" (r3), "=r" (r4)
267 : : EV_HCALL_CLOBBERS2
268 );
269
270 *status = r4;
271
272 return r3;
273 }
274
275 /**
276 * fh_partition_start - boots and starts execution of the specified partition
277 * @partition: partition ID
278 * @entry_point: guest physical address to start execution
279 *
280 * The hypervisor creates a 1-to-1 virtual/physical IMA mapping, so at boot
281 * time, guest physical address are the same as guest virtual addresses.
282 *
283 * Returns 0 for success, or an error code.
284 */
fh_partition_start(unsigned int partition,uint32_t entry_point,int load)285 static inline unsigned int fh_partition_start(unsigned int partition,
286 uint32_t entry_point, int load)
287 {
288 register uintptr_t r11 __asm__("r11");
289 register uintptr_t r3 __asm__("r3");
290 register uintptr_t r4 __asm__("r4");
291 register uintptr_t r5 __asm__("r5");
292
293 r11 = FH_HCALL_TOKEN(FH_PARTITION_START);
294 r3 = partition;
295 r4 = entry_point;
296 r5 = load;
297
298 __asm__ __volatile__ ("sc 1"
299 : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5)
300 : : EV_HCALL_CLOBBERS3
301 );
302
303 return r3;
304 }
305
306 /**
307 * fh_partition_stop - stops another partition
308 * @partition: partition ID
309 *
310 * Returns 0 for success, or an error code.
311 */
fh_partition_stop(unsigned int partition)312 static inline unsigned int fh_partition_stop(unsigned int partition)
313 {
314 register uintptr_t r11 __asm__("r11");
315 register uintptr_t r3 __asm__("r3");
316
317 r11 = FH_HCALL_TOKEN(FH_PARTITION_STOP);
318 r3 = partition;
319
320 __asm__ __volatile__ ("sc 1"
321 : "+r" (r11), "+r" (r3)
322 : : EV_HCALL_CLOBBERS1
323 );
324
325 return r3;
326 }
327
328 /**
329 * struct fh_sg_list: definition of the fh_partition_memcpy S/G list
330 * @source: guest physical address to copy from
331 * @target: guest physical address to copy to
332 * @size: number of bytes to copy
333 * @reserved: reserved, must be zero
334 *
335 * The scatter/gather list for fh_partition_memcpy() is an array of these
336 * structures. The array must be guest physically contiguous.
337 *
338 * This structure must be aligned on 32-byte boundary, so that no single
339 * strucuture can span two pages.
340 */
341 struct fh_sg_list {
342 uint64_t source; /**< guest physical address to copy from */
343 uint64_t target; /**< guest physical address to copy to */
344 uint64_t size; /**< number of bytes to copy */
345 uint64_t reserved; /**< reserved, must be zero */
346 } __attribute__ ((aligned(32)));
347
348 /**
349 * fh_partition_memcpy - copies data from one guest to another
350 * @source: the ID of the partition to copy from
351 * @target: the ID of the partition to copy to
352 * @sg_list: guest physical address of an array of &fh_sg_list structures
353 * @count: the number of entries in @sg_list
354 *
355 * Returns 0 for success, or an error code.
356 */
fh_partition_memcpy(unsigned int source,unsigned int target,phys_addr_t sg_list,unsigned int count)357 static inline unsigned int fh_partition_memcpy(unsigned int source,
358 unsigned int target, phys_addr_t sg_list, unsigned int count)
359 {
360 register uintptr_t r11 __asm__("r11");
361 register uintptr_t r3 __asm__("r3");
362 register uintptr_t r4 __asm__("r4");
363 register uintptr_t r5 __asm__("r5");
364 register uintptr_t r6 __asm__("r6");
365 register uintptr_t r7 __asm__("r7");
366
367 r11 = FH_HCALL_TOKEN(FH_PARTITION_MEMCPY);
368 r3 = source;
369 r4 = target;
370 r5 = (uint32_t) sg_list;
371
372 #ifdef CONFIG_PHYS_64BIT
373 r6 = sg_list >> 32;
374 #else
375 r6 = 0;
376 #endif
377 r7 = count;
378
379 __asm__ __volatile__ ("sc 1"
380 : "+r" (r11),
381 "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7)
382 : : EV_HCALL_CLOBBERS5
383 );
384
385 return r3;
386 }
387
388 /**
389 * fh_dma_enable - enable DMA for the specified device
390 * @liodn: the LIODN of the I/O device for which to enable DMA
391 *
392 * Returns 0 for success, or an error code.
393 */
fh_dma_enable(unsigned int liodn)394 static inline unsigned int fh_dma_enable(unsigned int liodn)
395 {
396 register uintptr_t r11 __asm__("r11");
397 register uintptr_t r3 __asm__("r3");
398
399 r11 = FH_HCALL_TOKEN(FH_DMA_ENABLE);
400 r3 = liodn;
401
402 __asm__ __volatile__ ("sc 1"
403 : "+r" (r11), "+r" (r3)
404 : : EV_HCALL_CLOBBERS1
405 );
406
407 return r3;
408 }
409
410 /**
411 * fh_dma_disable - disable DMA for the specified device
412 * @liodn: the LIODN of the I/O device for which to disable DMA
413 *
414 * Returns 0 for success, or an error code.
415 */
fh_dma_disable(unsigned int liodn)416 static inline unsigned int fh_dma_disable(unsigned int liodn)
417 {
418 register uintptr_t r11 __asm__("r11");
419 register uintptr_t r3 __asm__("r3");
420
421 r11 = FH_HCALL_TOKEN(FH_DMA_DISABLE);
422 r3 = liodn;
423
424 __asm__ __volatile__ ("sc 1"
425 : "+r" (r11), "+r" (r3)
426 : : EV_HCALL_CLOBBERS1
427 );
428
429 return r3;
430 }
431
432
433 /**
434 * fh_vmpic_get_msir - returns the MPIC-MSI register value
435 * @interrupt: the interrupt number
436 * @msir_val: returned MPIC-MSI register value
437 *
438 * Returns 0 for success, or an error code.
439 */
fh_vmpic_get_msir(unsigned int interrupt,unsigned int * msir_val)440 static inline unsigned int fh_vmpic_get_msir(unsigned int interrupt,
441 unsigned int *msir_val)
442 {
443 register uintptr_t r11 __asm__("r11");
444 register uintptr_t r3 __asm__("r3");
445 register uintptr_t r4 __asm__("r4");
446
447 r11 = FH_HCALL_TOKEN(FH_VMPIC_GET_MSIR);
448 r3 = interrupt;
449
450 __asm__ __volatile__ ("sc 1"
451 : "+r" (r11), "+r" (r3), "=r" (r4)
452 : : EV_HCALL_CLOBBERS2
453 );
454
455 *msir_val = r4;
456
457 return r3;
458 }
459
460 /**
461 * fh_system_reset - reset the system
462 *
463 * Returns 0 for success, or an error code.
464 */
fh_system_reset(void)465 static inline unsigned int fh_system_reset(void)
466 {
467 register uintptr_t r11 __asm__("r11");
468 register uintptr_t r3 __asm__("r3");
469
470 r11 = FH_HCALL_TOKEN(FH_SYSTEM_RESET);
471
472 __asm__ __volatile__ ("sc 1"
473 : "+r" (r11), "=r" (r3)
474 : : EV_HCALL_CLOBBERS1
475 );
476
477 return r3;
478 }
479
480
481 /**
482 * fh_err_get_info - get platform error information
483 * @queue id:
484 * 0 for guest error event queue
485 * 1 for global error event queue
486 *
487 * @pointer to store the platform error data:
488 * platform error data is returned in registers r4 - r11
489 *
490 * Returns 0 for success, or an error code.
491 */
fh_err_get_info(int queue,uint32_t * bufsize,uint32_t addr_hi,uint32_t addr_lo,int peek)492 static inline unsigned int fh_err_get_info(int queue, uint32_t *bufsize,
493 uint32_t addr_hi, uint32_t addr_lo, int peek)
494 {
495 register uintptr_t r11 __asm__("r11");
496 register uintptr_t r3 __asm__("r3");
497 register uintptr_t r4 __asm__("r4");
498 register uintptr_t r5 __asm__("r5");
499 register uintptr_t r6 __asm__("r6");
500 register uintptr_t r7 __asm__("r7");
501
502 r11 = FH_HCALL_TOKEN(FH_ERR_GET_INFO);
503 r3 = queue;
504 r4 = *bufsize;
505 r5 = addr_hi;
506 r6 = addr_lo;
507 r7 = peek;
508
509 __asm__ __volatile__ ("sc 1"
510 : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6),
511 "+r" (r7)
512 : : EV_HCALL_CLOBBERS5
513 );
514
515 *bufsize = r4;
516
517 return r3;
518 }
519
520
521 #define FH_VCPU_RUN 0
522 #define FH_VCPU_IDLE 1
523 #define FH_VCPU_NAP 2
524
525 /**
526 * fh_get_core_state - get the state of a vcpu
527 *
528 * @handle: handle of partition containing the vcpu
529 * @vcpu: vcpu number within the partition
530 * @state:the current state of the vcpu, see FH_VCPU_*
531 *
532 * Returns 0 for success, or an error code.
533 */
fh_get_core_state(unsigned int handle,unsigned int vcpu,unsigned int * state)534 static inline unsigned int fh_get_core_state(unsigned int handle,
535 unsigned int vcpu, unsigned int *state)
536 {
537 register uintptr_t r11 __asm__("r11");
538 register uintptr_t r3 __asm__("r3");
539 register uintptr_t r4 __asm__("r4");
540
541 r11 = FH_HCALL_TOKEN(FH_GET_CORE_STATE);
542 r3 = handle;
543 r4 = vcpu;
544
545 __asm__ __volatile__ ("sc 1"
546 : "+r" (r11), "+r" (r3), "+r" (r4)
547 : : EV_HCALL_CLOBBERS2
548 );
549
550 *state = r4;
551 return r3;
552 }
553
554 /**
555 * fh_enter_nap - enter nap on a vcpu
556 *
557 * Note that though the API supports entering nap on a vcpu other
558 * than the caller, this may not be implmented and may return EINVAL.
559 *
560 * @handle: handle of partition containing the vcpu
561 * @vcpu: vcpu number within the partition
562 *
563 * Returns 0 for success, or an error code.
564 */
fh_enter_nap(unsigned int handle,unsigned int vcpu)565 static inline unsigned int fh_enter_nap(unsigned int handle, unsigned int vcpu)
566 {
567 register uintptr_t r11 __asm__("r11");
568 register uintptr_t r3 __asm__("r3");
569 register uintptr_t r4 __asm__("r4");
570
571 r11 = FH_HCALL_TOKEN(FH_ENTER_NAP);
572 r3 = handle;
573 r4 = vcpu;
574
575 __asm__ __volatile__ ("sc 1"
576 : "+r" (r11), "+r" (r3), "+r" (r4)
577 : : EV_HCALL_CLOBBERS2
578 );
579
580 return r3;
581 }
582
583 /**
584 * fh_exit_nap - exit nap on a vcpu
585 * @handle: handle of partition containing the vcpu
586 * @vcpu: vcpu number within the partition
587 *
588 * Returns 0 for success, or an error code.
589 */
fh_exit_nap(unsigned int handle,unsigned int vcpu)590 static inline unsigned int fh_exit_nap(unsigned int handle, unsigned int vcpu)
591 {
592 register uintptr_t r11 __asm__("r11");
593 register uintptr_t r3 __asm__("r3");
594 register uintptr_t r4 __asm__("r4");
595
596 r11 = FH_HCALL_TOKEN(FH_EXIT_NAP);
597 r3 = handle;
598 r4 = vcpu;
599
600 __asm__ __volatile__ ("sc 1"
601 : "+r" (r11), "+r" (r3), "+r" (r4)
602 : : EV_HCALL_CLOBBERS2
603 );
604
605 return r3;
606 }
607 /**
608 * fh_claim_device - claim a "claimable" shared device
609 * @handle: fsl,hv-device-handle of node to claim
610 *
611 * Returns 0 for success, or an error code.
612 */
fh_claim_device(unsigned int handle)613 static inline unsigned int fh_claim_device(unsigned int handle)
614 {
615 register uintptr_t r11 __asm__("r11");
616 register uintptr_t r3 __asm__("r3");
617
618 r11 = FH_HCALL_TOKEN(FH_CLAIM_DEVICE);
619 r3 = handle;
620
621 __asm__ __volatile__ ("sc 1"
622 : "+r" (r11), "+r" (r3)
623 : : EV_HCALL_CLOBBERS1
624 );
625
626 return r3;
627 }
628
629 /**
630 * Run deferred DMA disabling on a partition's private devices
631 *
632 * This applies to devices which a partition owns either privately,
633 * or which are claimable and still actively owned by that partition,
634 * and which do not have the no-dma-disable property.
635 *
636 * @handle: partition (must be stopped) whose DMA is to be disabled
637 *
638 * Returns 0 for success, or an error code.
639 */
fh_partition_stop_dma(unsigned int handle)640 static inline unsigned int fh_partition_stop_dma(unsigned int handle)
641 {
642 register uintptr_t r11 __asm__("r11");
643 register uintptr_t r3 __asm__("r3");
644
645 r11 = FH_HCALL_TOKEN(FH_PARTITION_STOP_DMA);
646 r3 = handle;
647
648 __asm__ __volatile__ ("sc 1"
649 : "+r" (r11), "+r" (r3)
650 : : EV_HCALL_CLOBBERS1
651 );
652
653 return r3;
654 }
655 #endif
656