1 /*
2  * OpenRISC fault.c
3  *
4  * Linux architectural port borrowing liberally from similar works of
5  * others.  All original copyrights apply as per the original source
6  * declaration.
7  *
8  * Modifications for the OpenRISC architecture:
9  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 
23 #include <asm/uaccess.h>
24 #include <asm/siginfo.h>
25 #include <asm/signal.h>
26 
27 #define NUM_TLB_ENTRIES 64
28 #define TLB_OFFSET(add) (((add) >> PAGE_SHIFT) & (NUM_TLB_ENTRIES-1))
29 
30 unsigned long pte_misses;	/* updated by do_page_fault() */
31 unsigned long pte_errors;	/* updated by do_page_fault() */
32 
33 /* __PHX__ :: - check the vmalloc_fault in do_page_fault()
34  *            - also look into include/asm-or32/mmu_context.h
35  */
36 volatile pgd_t *current_pgd;
37 
38 extern void die(char *, struct pt_regs *, long);
39 
40 /*
41  * This routine handles page faults.  It determines the address,
42  * and the problem, and then passes it off to one of the appropriate
43  * routines.
44  *
45  * If this routine detects a bad access, it returns 1, otherwise it
46  * returns 0.
47  */
48 
do_page_fault(struct pt_regs * regs,unsigned long address,unsigned long vector,int write_acc)49 asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
50 			      unsigned long vector, int write_acc)
51 {
52 	struct task_struct *tsk;
53 	struct mm_struct *mm;
54 	struct vm_area_struct *vma;
55 	siginfo_t info;
56 	int fault;
57 
58 	tsk = current;
59 
60 	/*
61 	 * We fault-in kernel-space virtual memory on-demand. The
62 	 * 'reference' page table is init_mm.pgd.
63 	 *
64 	 * NOTE! We MUST NOT take any locks for this case. We may
65 	 * be in an interrupt or a critical region, and should
66 	 * only copy the information from the master page table,
67 	 * nothing more.
68 	 *
69 	 * NOTE2: This is done so that, when updating the vmalloc
70 	 * mappings we don't have to walk all processes pgdirs and
71 	 * add the high mappings all at once. Instead we do it as they
72 	 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
73 	 * bit set so sometimes the TLB can use a lingering entry.
74 	 *
75 	 * This verifies that the fault happens in kernel space
76 	 * and that the fault was not a protection error.
77 	 */
78 
79 	if (address >= VMALLOC_START &&
80 	    (vector != 0x300 && vector != 0x400) &&
81 	    !user_mode(regs))
82 		goto vmalloc_fault;
83 
84 	/* If exceptions were enabled, we can reenable them here */
85 	if (user_mode(regs)) {
86 		/* Exception was in userspace: reenable interrupts */
87 		local_irq_enable();
88 	} else {
89 		/* If exception was in a syscall, then IRQ's may have
90 		 * been enabled or disabled.  If they were enabled,
91 		 * reenable them.
92 		 */
93 		if (regs->sr && (SPR_SR_IEE | SPR_SR_TEE))
94 			local_irq_enable();
95 	}
96 
97 	mm = tsk->mm;
98 	info.si_code = SEGV_MAPERR;
99 
100 	/*
101 	 * If we're in an interrupt or have no user
102 	 * context, we must not take the fault..
103 	 */
104 
105 	if (in_interrupt() || !mm)
106 		goto no_context;
107 
108 	down_read(&mm->mmap_sem);
109 	vma = find_vma(mm, address);
110 
111 	if (!vma)
112 		goto bad_area;
113 
114 	if (vma->vm_start <= address)
115 		goto good_area;
116 
117 	if (!(vma->vm_flags & VM_GROWSDOWN))
118 		goto bad_area;
119 
120 	if (user_mode(regs)) {
121 		/*
122 		 * accessing the stack below usp is always a bug.
123 		 * we get page-aligned addresses so we can only check
124 		 * if we're within a page from usp, but that might be
125 		 * enough to catch brutal errors at least.
126 		 */
127 		if (address + PAGE_SIZE < regs->sp)
128 			goto bad_area;
129 	}
130 	if (expand_stack(vma, address))
131 		goto bad_area;
132 
133 	/*
134 	 * Ok, we have a good vm_area for this memory access, so
135 	 * we can handle it..
136 	 */
137 
138 good_area:
139 	info.si_code = SEGV_ACCERR;
140 
141 	/* first do some preliminary protection checks */
142 
143 	if (write_acc) {
144 		if (!(vma->vm_flags & VM_WRITE))
145 			goto bad_area;
146 	} else {
147 		/* not present */
148 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
149 			goto bad_area;
150 	}
151 
152 	/* are we trying to execute nonexecutable area */
153 	if ((vector == 0x400) && !(vma->vm_page_prot.pgprot & _PAGE_EXEC))
154 		goto bad_area;
155 
156 	/*
157 	 * If for any reason at all we couldn't handle the fault,
158 	 * make sure we exit gracefully rather than endlessly redo
159 	 * the fault.
160 	 */
161 
162 	fault = handle_mm_fault(mm, vma, address, write_acc);
163 	if (unlikely(fault & VM_FAULT_ERROR)) {
164 		if (fault & VM_FAULT_OOM)
165 			goto out_of_memory;
166 		else if (fault & VM_FAULT_SIGBUS)
167 			goto do_sigbus;
168 		BUG();
169 	}
170 	/*RGD modeled on Cris */
171 	if (fault & VM_FAULT_MAJOR)
172 		tsk->maj_flt++;
173 	else
174 		tsk->min_flt++;
175 
176 	up_read(&mm->mmap_sem);
177 	return;
178 
179 	/*
180 	 * Something tried to access memory that isn't in our memory map..
181 	 * Fix it, but check if it's kernel or user first..
182 	 */
183 
184 bad_area:
185 	up_read(&mm->mmap_sem);
186 
187 bad_area_nosemaphore:
188 
189 	/* User mode accesses just cause a SIGSEGV */
190 
191 	if (user_mode(regs)) {
192 		info.si_signo = SIGSEGV;
193 		info.si_errno = 0;
194 		/* info.si_code has been set above */
195 		info.si_addr = (void *)address;
196 		force_sig_info(SIGSEGV, &info, tsk);
197 		return;
198 	}
199 
200 no_context:
201 
202 	/* Are we prepared to handle this kernel fault?
203 	 *
204 	 * (The kernel has valid exception-points in the source
205 	 *  when it acesses user-memory. When it fails in one
206 	 *  of those points, we find it in a table and do a jump
207 	 *  to some fixup code that loads an appropriate error
208 	 *  code)
209 	 */
210 
211 	{
212 		const struct exception_table_entry *entry;
213 
214 		__asm__ __volatile__("l.nop 42");
215 
216 		if ((entry = search_exception_tables(regs->pc)) != NULL) {
217 			/* Adjust the instruction pointer in the stackframe */
218 			regs->pc = entry->fixup;
219 			return;
220 		}
221 	}
222 
223 	/*
224 	 * Oops. The kernel tried to access some bad page. We'll have to
225 	 * terminate things with extreme prejudice.
226 	 */
227 
228 	if ((unsigned long)(address) < PAGE_SIZE)
229 		printk(KERN_ALERT
230 		       "Unable to handle kernel NULL pointer dereference");
231 	else
232 		printk(KERN_ALERT "Unable to handle kernel access");
233 	printk(" at virtual address 0x%08lx\n", address);
234 
235 	die("Oops", regs, write_acc);
236 
237 	do_exit(SIGKILL);
238 
239 	/*
240 	 * We ran out of memory, or some other thing happened to us that made
241 	 * us unable to handle the page fault gracefully.
242 	 */
243 
244 out_of_memory:
245 	__asm__ __volatile__("l.nop 42");
246 	__asm__ __volatile__("l.nop 1");
247 
248 	up_read(&mm->mmap_sem);
249 	printk("VM: killing process %s\n", tsk->comm);
250 	if (user_mode(regs))
251 		do_exit(SIGKILL);
252 	goto no_context;
253 
254 do_sigbus:
255 	up_read(&mm->mmap_sem);
256 
257 	/*
258 	 * Send a sigbus, regardless of whether we were in kernel
259 	 * or user mode.
260 	 */
261 	info.si_signo = SIGBUS;
262 	info.si_errno = 0;
263 	info.si_code = BUS_ADRERR;
264 	info.si_addr = (void *)address;
265 	force_sig_info(SIGBUS, &info, tsk);
266 
267 	/* Kernel mode? Handle exceptions or die */
268 	if (!user_mode(regs))
269 		goto no_context;
270 	return;
271 
272 vmalloc_fault:
273 	{
274 		/*
275 		 * Synchronize this task's top level page-table
276 		 * with the 'reference' page table.
277 		 *
278 		 * Use current_pgd instead of tsk->active_mm->pgd
279 		 * since the latter might be unavailable if this
280 		 * code is executed in a misfortunately run irq
281 		 * (like inside schedule() between switch_mm and
282 		 *  switch_to...).
283 		 */
284 
285 		int offset = pgd_index(address);
286 		pgd_t *pgd, *pgd_k;
287 		pud_t *pud, *pud_k;
288 		pmd_t *pmd, *pmd_k;
289 		pte_t *pte_k;
290 
291 /*
292 		phx_warn("do_page_fault(): vmalloc_fault will not work, "
293 			 "since current_pgd assign a proper value somewhere\n"
294 			 "anyhow we don't need this at the moment\n");
295 
296 		phx_mmu("vmalloc_fault");
297 */
298 		pgd = (pgd_t *)current_pgd + offset;
299 		pgd_k = init_mm.pgd + offset;
300 
301 		/* Since we're two-level, we don't need to do both
302 		 * set_pgd and set_pmd (they do the same thing). If
303 		 * we go three-level at some point, do the right thing
304 		 * with pgd_present and set_pgd here.
305 		 *
306 		 * Also, since the vmalloc area is global, we don't
307 		 * need to copy individual PTE's, it is enough to
308 		 * copy the pgd pointer into the pte page of the
309 		 * root task. If that is there, we'll find our pte if
310 		 * it exists.
311 		 */
312 
313 		pud = pud_offset(pgd, address);
314 		pud_k = pud_offset(pgd_k, address);
315 		if (!pud_present(*pud_k))
316 			goto no_context;
317 
318 		pmd = pmd_offset(pud, address);
319 		pmd_k = pmd_offset(pud_k, address);
320 
321 		if (!pmd_present(*pmd_k))
322 			goto bad_area_nosemaphore;
323 
324 		set_pmd(pmd, *pmd_k);
325 
326 		/* Make sure the actual PTE exists as well to
327 		 * catch kernel vmalloc-area accesses to non-mapped
328 		 * addresses. If we don't do this, this will just
329 		 * silently loop forever.
330 		 */
331 
332 		pte_k = pte_offset_kernel(pmd_k, address);
333 		if (!pte_present(*pte_k))
334 			goto no_context;
335 
336 		return;
337 	}
338 }
339