1 /*
2  * linux/arch/m32r/kernel/ptrace.c
3  *
4  * Copyright (C) 2002  Hirokazu Takata, Takeo Takahashi
5  * Copyright (C) 2004  Hirokazu Takata, Kei Sakamoto
6  *
7  * Original x86 implementation:
8  *	By Ross Biro 1/23/92
9  *	edited by Linus Torvalds
10  *
11  * Some code taken from sh version:
12  *   Copyright (C) 1999, 2000  Kaz Kojima & Niibe Yutaka
13  * Some code taken from arm version:
14  *   Copyright (C) 2000 Russell King
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/user.h>
25 #include <linux/string.h>
26 #include <linux/signal.h>
27 
28 #include <asm/cacheflush.h>
29 #include <asm/io.h>
30 #include <asm/uaccess.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/mmu_context.h>
34 
35 /*
36  * This routine will get a word off of the process kernel stack.
37  */
38 static inline unsigned long int
get_stack_long(struct task_struct * task,int offset)39 get_stack_long(struct task_struct *task, int offset)
40 {
41 	unsigned long *stack;
42 
43 	stack = (unsigned long *)task_pt_regs(task);
44 
45 	return stack[offset];
46 }
47 
48 /*
49  * This routine will put a word on the process kernel stack.
50  */
51 static inline int
put_stack_long(struct task_struct * task,int offset,unsigned long data)52 put_stack_long(struct task_struct *task, int offset, unsigned long data)
53 {
54 	unsigned long *stack;
55 
56 	stack = (unsigned long *)task_pt_regs(task);
57 	stack[offset] = data;
58 
59 	return 0;
60 }
61 
62 static int reg_offset[] = {
63 	PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
64 	PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_FP, PT_LR, PT_SPU,
65 };
66 
67 /*
68  * Read the word at offset "off" into the "struct user".  We
69  * actually access the pt_regs stored on the kernel stack.
70  */
ptrace_read_user(struct task_struct * tsk,unsigned long off,unsigned long __user * data)71 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
72 			    unsigned long __user *data)
73 {
74 	unsigned long tmp;
75 #ifndef NO_FPU
76 	struct user * dummy = NULL;
77 #endif
78 
79 	if ((off & 3) || off > sizeof(struct user) - 3)
80 		return -EIO;
81 
82 	off >>= 2;
83 	switch (off) {
84 	case PT_EVB:
85 		__asm__ __volatile__ (
86 			"mvfc	%0, cr5 \n\t"
87 	 		: "=r" (tmp)
88 		);
89 		break;
90 	case PT_CBR: {
91 			unsigned long psw;
92 			psw = get_stack_long(tsk, PT_PSW);
93 			tmp = ((psw >> 8) & 1);
94 		}
95 		break;
96 	case PT_PSW: {
97 			unsigned long psw, bbpsw;
98 			psw = get_stack_long(tsk, PT_PSW);
99 			bbpsw = get_stack_long(tsk, PT_BBPSW);
100 			tmp = ((psw >> 8) & 0xff) | ((bbpsw & 0xff) << 8);
101 		}
102 		break;
103 	case PT_PC:
104 		tmp = get_stack_long(tsk, PT_BPC);
105 		break;
106 	case PT_BPC:
107 		off = PT_BBPC;
108 		/* fall through */
109 	default:
110 		if (off < (sizeof(struct pt_regs) >> 2))
111 			tmp = get_stack_long(tsk, off);
112 #ifndef NO_FPU
113 		else if (off >= (long)(&dummy->fpu >> 2) &&
114 			 off < (long)(&dummy->u_fpvalid >> 2)) {
115 			if (!tsk_used_math(tsk)) {
116 				if (off == (long)(&dummy->fpu.fpscr >> 2))
117 					tmp = FPSCR_INIT;
118 				else
119 					tmp = 0;
120 			} else
121 				tmp = ((long *)(&tsk->thread.fpu >> 2))
122 					[off - (long)&dummy->fpu];
123 		} else if (off == (long)(&dummy->u_fpvalid >> 2))
124 			tmp = !!tsk_used_math(tsk);
125 #endif /* not NO_FPU */
126 		else
127 			tmp = 0;
128 	}
129 
130 	return put_user(tmp, data);
131 }
132 
ptrace_write_user(struct task_struct * tsk,unsigned long off,unsigned long data)133 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
134 			     unsigned long data)
135 {
136 	int ret = -EIO;
137 #ifndef NO_FPU
138 	struct user * dummy = NULL;
139 #endif
140 
141 	if ((off & 3) || off > sizeof(struct user) - 3)
142 		return -EIO;
143 
144 	off >>= 2;
145 	switch (off) {
146 	case PT_EVB:
147 	case PT_BPC:
148 	case PT_SPI:
149 		/* We don't allow to modify evb. */
150 		ret = 0;
151 		break;
152 	case PT_PSW:
153 	case PT_CBR: {
154 			/* We allow to modify only cbr in psw */
155 			unsigned long psw;
156 			psw = get_stack_long(tsk, PT_PSW);
157 			psw = (psw & ~0x100) | ((data & 1) << 8);
158 			ret = put_stack_long(tsk, PT_PSW, psw);
159 		}
160 		break;
161 	case PT_PC:
162 		off = PT_BPC;
163 		data &= ~1;
164 		/* fall through */
165 	default:
166 		if (off < (sizeof(struct pt_regs) >> 2))
167 			ret = put_stack_long(tsk, off, data);
168 #ifndef NO_FPU
169 		else if (off >= (long)(&dummy->fpu >> 2) &&
170 			 off < (long)(&dummy->u_fpvalid >> 2)) {
171 			set_stopped_child_used_math(tsk);
172 			((long *)&tsk->thread.fpu)
173 				[off - (long)&dummy->fpu] = data;
174 			ret = 0;
175 		} else if (off == (long)(&dummy->u_fpvalid >> 2)) {
176 			conditional_stopped_child_used_math(data, tsk);
177 			ret = 0;
178 		}
179 #endif /* not NO_FPU */
180 		break;
181 	}
182 
183 	return ret;
184 }
185 
186 /*
187  * Get all user integer registers.
188  */
ptrace_getregs(struct task_struct * tsk,void __user * uregs)189 static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
190 {
191 	struct pt_regs *regs = task_pt_regs(tsk);
192 
193 	return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
194 }
195 
196 /*
197  * Set all user integer registers.
198  */
ptrace_setregs(struct task_struct * tsk,void __user * uregs)199 static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
200 {
201 	struct pt_regs newregs;
202 	int ret;
203 
204 	ret = -EFAULT;
205 	if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
206 		struct pt_regs *regs = task_pt_regs(tsk);
207 		*regs = newregs;
208 		ret = 0;
209 	}
210 
211 	return ret;
212 }
213 
214 
215 static inline int
check_condition_bit(struct task_struct * child)216 check_condition_bit(struct task_struct *child)
217 {
218 	return (int)((get_stack_long(child, PT_PSW) >> 8) & 1);
219 }
220 
221 static int
check_condition_src(unsigned long op,unsigned long regno1,unsigned long regno2,struct task_struct * child)222 check_condition_src(unsigned long op, unsigned long regno1,
223 		    unsigned long regno2, struct task_struct *child)
224 {
225 	unsigned long reg1, reg2;
226 
227 	reg2 = get_stack_long(child, reg_offset[regno2]);
228 
229 	switch (op) {
230 	case 0x0: /* BEQ */
231 		reg1 = get_stack_long(child, reg_offset[regno1]);
232 		return reg1 == reg2;
233 	case 0x1: /* BNE */
234 		reg1 = get_stack_long(child, reg_offset[regno1]);
235 		return reg1 != reg2;
236 	case 0x8: /* BEQZ */
237 		return reg2 == 0;
238 	case 0x9: /* BNEZ */
239 		return reg2 != 0;
240 	case 0xa: /* BLTZ */
241 		return (int)reg2 < 0;
242 	case 0xb: /* BGEZ */
243 		return (int)reg2 >= 0;
244 	case 0xc: /* BLEZ */
245 		return (int)reg2 <= 0;
246 	case 0xd: /* BGTZ */
247 		return (int)reg2 > 0;
248 	default:
249 		/* never reached */
250 		return 0;
251 	}
252 }
253 
254 static void
compute_next_pc_for_16bit_insn(unsigned long insn,unsigned long pc,unsigned long * next_pc,struct task_struct * child)255 compute_next_pc_for_16bit_insn(unsigned long insn, unsigned long pc,
256 			       unsigned long *next_pc,
257 			       struct task_struct *child)
258 {
259 	unsigned long op, op2, op3;
260 	unsigned long disp;
261 	unsigned long regno;
262 	int parallel = 0;
263 
264 	if (insn & 0x00008000)
265 		parallel = 1;
266 	if (pc & 3)
267 		insn &= 0x7fff;	/* right slot */
268 	else
269 		insn >>= 16;	/* left slot */
270 
271 	op = (insn >> 12) & 0xf;
272 	op2 = (insn >> 8) & 0xf;
273 	op3 = (insn >> 4) & 0xf;
274 
275 	if (op == 0x7) {
276 		switch (op2) {
277 		case 0xd: /* BNC */
278 		case 0x9: /* BNCL */
279 			if (!check_condition_bit(child)) {
280 				disp = (long)(insn << 24) >> 22;
281 				*next_pc = (pc & ~0x3) + disp;
282 				return;
283 			}
284 			break;
285 		case 0x8: /* BCL */
286 		case 0xc: /* BC */
287 			if (check_condition_bit(child)) {
288 				disp = (long)(insn << 24) >> 22;
289 				*next_pc = (pc & ~0x3) + disp;
290 				return;
291 			}
292 			break;
293 		case 0xe: /* BL */
294 		case 0xf: /* BRA */
295 			disp = (long)(insn << 24) >> 22;
296 			*next_pc = (pc & ~0x3) + disp;
297 			return;
298 			break;
299 		}
300 	} else if (op == 0x1) {
301 		switch (op2) {
302 		case 0x0:
303 			if (op3 == 0xf) { /* TRAP */
304 #if 1
305 				/* pass through */
306 #else
307  				/* kernel space is not allowed as next_pc */
308 				unsigned long evb;
309 				unsigned long trapno;
310 				trapno = insn & 0xf;
311 				__asm__ __volatile__ (
312 					"mvfc %0, cr5\n"
313 		 			:"=r"(evb)
314 		 			:
315 				);
316 				*next_pc = evb + (trapno << 2);
317 				return;
318 #endif
319 			} else if (op3 == 0xd) { /* RTE */
320 				*next_pc = get_stack_long(child, PT_BPC);
321 				return;
322 			}
323 			break;
324 		case 0xc: /* JC */
325 			if (op3 == 0xc && check_condition_bit(child)) {
326 				regno = insn & 0xf;
327 				*next_pc = get_stack_long(child,
328 							  reg_offset[regno]);
329 				return;
330 			}
331 			break;
332 		case 0xd: /* JNC */
333 			if (op3 == 0xc && !check_condition_bit(child)) {
334 				regno = insn & 0xf;
335 				*next_pc = get_stack_long(child,
336 							  reg_offset[regno]);
337 				return;
338 			}
339 			break;
340 		case 0xe: /* JL */
341 		case 0xf: /* JMP */
342 			if (op3 == 0xc) { /* JMP */
343 				regno = insn & 0xf;
344 				*next_pc = get_stack_long(child,
345 							  reg_offset[regno]);
346 				return;
347 			}
348 			break;
349 		}
350 	}
351 	if (parallel)
352 		*next_pc = pc + 4;
353 	else
354 		*next_pc = pc + 2;
355 }
356 
357 static void
compute_next_pc_for_32bit_insn(unsigned long insn,unsigned long pc,unsigned long * next_pc,struct task_struct * child)358 compute_next_pc_for_32bit_insn(unsigned long insn, unsigned long pc,
359 			       unsigned long *next_pc,
360 			       struct task_struct *child)
361 {
362 	unsigned long op;
363 	unsigned long op2;
364 	unsigned long disp;
365 	unsigned long regno1, regno2;
366 
367 	op = (insn >> 28) & 0xf;
368 	if (op == 0xf) { 	/* branch 24-bit relative */
369 		op2 = (insn >> 24) & 0xf;
370 		switch (op2) {
371 		case 0xd:	/* BNC */
372 		case 0x9:	/* BNCL */
373 			if (!check_condition_bit(child)) {
374 				disp = (long)(insn << 8) >> 6;
375 				*next_pc = (pc & ~0x3) + disp;
376 				return;
377 			}
378 			break;
379 		case 0x8:	/* BCL */
380 		case 0xc:	/* BC */
381 			if (check_condition_bit(child)) {
382 				disp = (long)(insn << 8) >> 6;
383 				*next_pc = (pc & ~0x3) + disp;
384 				return;
385 			}
386 			break;
387 		case 0xe:	/* BL */
388 		case 0xf:	/* BRA */
389 			disp = (long)(insn << 8) >> 6;
390 			*next_pc = (pc & ~0x3) + disp;
391 			return;
392 		}
393 	} else if (op == 0xb) { /* branch 16-bit relative */
394 		op2 = (insn >> 20) & 0xf;
395 		switch (op2) {
396 		case 0x0: /* BEQ */
397 		case 0x1: /* BNE */
398 		case 0x8: /* BEQZ */
399 		case 0x9: /* BNEZ */
400 		case 0xa: /* BLTZ */
401 		case 0xb: /* BGEZ */
402 		case 0xc: /* BLEZ */
403 		case 0xd: /* BGTZ */
404 			regno1 = ((insn >> 24) & 0xf);
405 			regno2 = ((insn >> 16) & 0xf);
406 			if (check_condition_src(op2, regno1, regno2, child)) {
407 				disp = (long)(insn << 16) >> 14;
408 				*next_pc = (pc & ~0x3) + disp;
409 				return;
410 			}
411 			break;
412 		}
413 	}
414 	*next_pc = pc + 4;
415 }
416 
417 static inline void
compute_next_pc(unsigned long insn,unsigned long pc,unsigned long * next_pc,struct task_struct * child)418 compute_next_pc(unsigned long insn, unsigned long pc,
419 		unsigned long *next_pc, struct task_struct *child)
420 {
421 	if (insn & 0x80000000)
422 		compute_next_pc_for_32bit_insn(insn, pc, next_pc, child);
423 	else
424 		compute_next_pc_for_16bit_insn(insn, pc, next_pc, child);
425 }
426 
427 static int
register_debug_trap(struct task_struct * child,unsigned long next_pc,unsigned long next_insn,unsigned long * code)428 register_debug_trap(struct task_struct *child, unsigned long next_pc,
429 	unsigned long next_insn, unsigned long *code)
430 {
431 	struct debug_trap *p = &child->thread.debug_trap;
432 	unsigned long addr = next_pc & ~3;
433 
434 	if (p->nr_trap == MAX_TRAPS) {
435 		printk("kernel BUG at %s %d: p->nr_trap = %d\n",
436 					__FILE__, __LINE__, p->nr_trap);
437 		return -1;
438 	}
439 	p->addr[p->nr_trap] = addr;
440 	p->insn[p->nr_trap] = next_insn;
441 	p->nr_trap++;
442 	if (next_pc & 3) {
443 		*code = (next_insn & 0xffff0000) | 0x10f1;
444 		/* xxx --> TRAP1 */
445 	} else {
446 		if ((next_insn & 0x80000000) || (next_insn & 0x8000)) {
447 			*code = 0x10f17000;
448 			/* TRAP1 --> NOP */
449 		} else {
450 			*code = (next_insn & 0xffff) | 0x10f10000;
451 			/* TRAP1 --> xxx */
452 		}
453 	}
454 	return 0;
455 }
456 
457 static int
unregister_debug_trap(struct task_struct * child,unsigned long addr,unsigned long * code)458 unregister_debug_trap(struct task_struct *child, unsigned long addr,
459 		      unsigned long *code)
460 {
461 	struct debug_trap *p = &child->thread.debug_trap;
462         int i;
463 
464 	/* Search debug trap entry. */
465 	for (i = 0; i < p->nr_trap; i++) {
466 		if (p->addr[i] == addr)
467 			break;
468 	}
469 	if (i >= p->nr_trap) {
470 		/* The trap may be requested from debugger.
471 		 * ptrace should do nothing in this case.
472 		 */
473 		return 0;
474 	}
475 
476 	/* Recover original instruction code. */
477 	*code = p->insn[i];
478 
479 	/* Shift debug trap entries. */
480 	while (i < p->nr_trap - 1) {
481 		p->insn[i] = p->insn[i + 1];
482 		p->addr[i] = p->addr[i + 1];
483 		i++;
484 	}
485 	p->nr_trap--;
486 	return 1;
487 }
488 
489 static void
unregister_all_debug_traps(struct task_struct * child)490 unregister_all_debug_traps(struct task_struct *child)
491 {
492 	struct debug_trap *p = &child->thread.debug_trap;
493 	int i;
494 
495 	for (i = 0; i < p->nr_trap; i++)
496 		access_process_vm(child, p->addr[i], &p->insn[i], sizeof(p->insn[i]), 1);
497 	p->nr_trap = 0;
498 }
499 
500 static inline void
invalidate_cache(void)501 invalidate_cache(void)
502 {
503 #if defined(CONFIG_CHIP_M32700) || defined(CONFIG_CHIP_OPSP)
504 
505 	_flush_cache_copyback_all();
506 
507 #else	/* ! CONFIG_CHIP_M32700 */
508 
509 	/* Invalidate cache */
510 	__asm__ __volatile__ (
511                 "ldi    r0, #-1					\n\t"
512                 "ldi    r1, #0					\n\t"
513                 "stb    r1, @r0		; cache off		\n\t"
514                 ";						\n\t"
515                 "ldi    r0, #-2					\n\t"
516                 "ldi    r1, #1					\n\t"
517                 "stb    r1, @r0		; cache invalidate	\n\t"
518                 ".fillinsn					\n"
519                 "0:						\n\t"
520                 "ldb    r1, @r0		; invalidate check	\n\t"
521                 "bnez   r1, 0b					\n\t"
522                 ";						\n\t"
523                 "ldi    r0, #-1					\n\t"
524                 "ldi    r1, #1					\n\t"
525                 "stb    r1, @r0		; cache on		\n\t"
526 		: : : "r0", "r1", "memory"
527 	);
528 	/* FIXME: copying-back d-cache and invalidating i-cache are needed.
529 	 */
530 #endif	/* CONFIG_CHIP_M32700 */
531 }
532 
533 /* Embed a debug trap (TRAP1) code */
534 static int
embed_debug_trap(struct task_struct * child,unsigned long next_pc)535 embed_debug_trap(struct task_struct *child, unsigned long next_pc)
536 {
537 	unsigned long next_insn, code;
538 	unsigned long addr = next_pc & ~3;
539 
540 	if (access_process_vm(child, addr, &next_insn, sizeof(next_insn), 0)
541 	    != sizeof(next_insn)) {
542 		return -1; /* error */
543 	}
544 
545 	/* Set a trap code. */
546 	if (register_debug_trap(child, next_pc, next_insn, &code)) {
547 		return -1; /* error */
548 	}
549 	if (access_process_vm(child, addr, &code, sizeof(code), 1)
550 	    != sizeof(code)) {
551 		return -1; /* error */
552 	}
553 	return 0; /* success */
554 }
555 
556 void
withdraw_debug_trap(struct pt_regs * regs)557 withdraw_debug_trap(struct pt_regs *regs)
558 {
559 	unsigned long addr;
560 	unsigned long code;
561 
562  	addr = (regs->bpc - 2) & ~3;
563 	regs->bpc -= 2;
564 	if (unregister_debug_trap(current, addr, &code)) {
565 	    access_process_vm(current, addr, &code, sizeof(code), 1);
566 	    invalidate_cache();
567 	}
568 }
569 
570 void
init_debug_traps(struct task_struct * child)571 init_debug_traps(struct task_struct *child)
572 {
573 	struct debug_trap *p = &child->thread.debug_trap;
574 	int i;
575 	p->nr_trap = 0;
576 	for (i = 0; i < MAX_TRAPS; i++) {
577 		p->addr[i] = 0;
578 		p->insn[i] = 0;
579 	}
580 }
581 
user_enable_single_step(struct task_struct * child)582 void user_enable_single_step(struct task_struct *child)
583 {
584 	unsigned long next_pc;
585 	unsigned long pc, insn;
586 
587 	clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
588 
589 	/* Compute next pc.  */
590 	pc = get_stack_long(child, PT_BPC);
591 
592 	if (access_process_vm(child, pc&~3, &insn, sizeof(insn), 0)
593 	    != sizeof(insn))
594 		return -EIO;
595 
596 	compute_next_pc(insn, pc, &next_pc, child);
597 	if (next_pc & 0x80000000)
598 		return -EIO;
599 
600 	if (embed_debug_trap(child, next_pc))
601 		return -EIO;
602 
603 	invalidate_cache();
604 	return 0;
605 }
606 
user_disable_single_step(struct task_struct * child)607 void user_disable_single_step(struct task_struct *child)
608 {
609 	unregister_all_debug_traps(child);
610 	invalidate_cache();
611 }
612 
613 /*
614  * Called by kernel/ptrace.c when detaching..
615  *
616  * Make sure single step bits etc are not set.
617  */
ptrace_disable(struct task_struct * child)618 void ptrace_disable(struct task_struct *child)
619 {
620 	/* nothing to do.. */
621 }
622 
623 long
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)624 arch_ptrace(struct task_struct *child, long request,
625 	    unsigned long addr, unsigned long data)
626 {
627 	int ret;
628 	unsigned long __user *datap = (unsigned long __user *) data;
629 
630 	switch (request) {
631 	/*
632 	 * read word at location "addr" in the child process.
633 	 */
634 	case PTRACE_PEEKTEXT:
635 	case PTRACE_PEEKDATA:
636 		ret = generic_ptrace_peekdata(child, addr, data);
637 		break;
638 
639 	/*
640 	 * read the word at location addr in the USER area.
641 	 */
642 	case PTRACE_PEEKUSR:
643 		ret = ptrace_read_user(child, addr, datap);
644 		break;
645 
646 	/*
647 	 * write the word at location addr.
648 	 */
649 	case PTRACE_POKETEXT:
650 	case PTRACE_POKEDATA:
651 		ret = generic_ptrace_pokedata(child, addr, data);
652 		if (ret == 0 && request == PTRACE_POKETEXT)
653 			invalidate_cache();
654 		break;
655 
656 	/*
657 	 * write the word at location addr in the USER area.
658 	 */
659 	case PTRACE_POKEUSR:
660 		ret = ptrace_write_user(child, addr, data);
661 		break;
662 
663 	case PTRACE_GETREGS:
664 		ret = ptrace_getregs(child, datap);
665 		break;
666 
667 	case PTRACE_SETREGS:
668 		ret = ptrace_setregs(child, datap);
669 		break;
670 
671 	default:
672 		ret = ptrace_request(child, request, addr, data);
673 		break;
674 	}
675 
676 	return ret;
677 }
678 
679 /* notification of system call entry/exit
680  * - triggered by current->work.syscall_trace
681  */
do_syscall_trace(void)682 void do_syscall_trace(void)
683 {
684 	if (!test_thread_flag(TIF_SYSCALL_TRACE))
685 		return;
686 	if (!(current->ptrace & PT_PTRACED))
687 		return;
688 	/* the 0x80 provides a way for the tracing parent to distinguish
689 	   between a syscall stop and SIGTRAP delivery */
690 	ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
691 				 ? 0x80 : 0));
692 
693 	/*
694 	 * this isn't the same as continuing with a signal, but it will do
695 	 * for normal use.  strace only continues with a signal if the
696 	 * stopping signal is not SIGTRAP.  -brl
697 	 */
698 	if (current->exit_code) {
699 		send_sig(current->exit_code, current, 1);
700 		current->exit_code = 0;
701 	}
702 }
703