1 /* pgtable.h: FR-V page table mangling
2  *
3  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  * Derived from:
12  *	include/asm-m68knommu/pgtable.h
13  *	include/asm-i386/pgtable.h
14  */
15 
16 #ifndef _ASM_PGTABLE_H
17 #define _ASM_PGTABLE_H
18 
19 #include <asm/mem-layout.h>
20 #include <asm/setup.h>
21 #include <asm/processor.h>
22 
23 #ifndef __ASSEMBLY__
24 #include <linux/threads.h>
25 #include <linux/slab.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
28 #include <linux/sched.h>
29 struct vm_area_struct;
30 #endif
31 
32 #ifndef __ASSEMBLY__
33 #if defined(CONFIG_HIGHPTE)
34 typedef unsigned long pte_addr_t;
35 #else
36 typedef pte_t *pte_addr_t;
37 #endif
38 #endif
39 
40 /*****************************************************************************/
41 /*
42  * MMU-less operation case first
43  */
44 #ifndef CONFIG_MMU
45 
46 #define pgd_present(pgd)	(1)		/* pages are always present on NO_MM */
47 #define pgd_none(pgd)		(0)
48 #define pgd_bad(pgd)		(0)
49 #define pgd_clear(pgdp)
50 #define kern_addr_valid(addr)	(1)
51 #define	pmd_offset(a, b)	((void *) 0)
52 
53 #define PAGE_NONE		__pgprot(0)	/* these mean nothing to NO_MM */
54 #define PAGE_SHARED		__pgprot(0)	/* these mean nothing to NO_MM */
55 #define PAGE_COPY		__pgprot(0)	/* these mean nothing to NO_MM */
56 #define PAGE_READONLY		__pgprot(0)	/* these mean nothing to NO_MM */
57 #define PAGE_KERNEL		__pgprot(0)	/* these mean nothing to NO_MM */
58 
59 #define __swp_type(x)		(0)
60 #define __swp_offset(x)		(0)
61 #define __swp_entry(typ,off)	((swp_entry_t) { ((typ) | ((off) << 7)) })
62 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
63 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
64 
65 #ifndef __ASSEMBLY__
pte_file(pte_t pte)66 static inline int pte_file(pte_t pte) { return 0; }
67 #endif
68 
69 #define ZERO_PAGE(vaddr)	({ BUG(); NULL; })
70 
71 #define swapper_pg_dir		((pgd_t *) NULL)
72 
73 #define pgtable_cache_init()		do {} while (0)
74 
75 #include <asm-generic/pgtable.h>
76 
77 #else /* !CONFIG_MMU */
78 /*****************************************************************************/
79 /*
80  * then MMU operation
81  */
82 
83 /*
84  * ZERO_PAGE is a global shared page that is always zero: used
85  * for zero-mapped memory areas etc..
86  */
87 #ifndef __ASSEMBLY__
88 extern unsigned long empty_zero_page;
89 #define ZERO_PAGE(vaddr)	virt_to_page(empty_zero_page)
90 #endif
91 
92 /*
93  * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry)
94  * [see Documentation/frv/mmu-layout.txt]
95  *
96  * Page Directory:
97  *  - Size: 16KB
98  *  - 64 PGEs per PGD
99  *  - Each PGE holds 1 PUD and covers 64MB
100  *
101  * Page Upper Directory:
102  *  - Size: 256B
103  *  - 1 PUE per PUD
104  *  - Each PUE holds 1 PMD and covers 64MB
105  *
106  * Page Mid-Level Directory
107  *  - Size: 256B
108  *  - 1 PME per PMD
109  *  - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table
110  *  - All STEs are instantiated at the same time
111  *
112  * Page Table
113  *  - Size: 16KB
114  *  - 4096 PTEs per PT
115  *  - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries
116  *
117  * Pages
118  *  - Size: 4KB
119  *
120  * total PTEs
121  *	= 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs
122  *	= 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT
123  *	= 262144 (or 256 * 1024)
124  */
125 #define PGDIR_SHIFT		26
126 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
127 #define PGDIR_MASK		(~(PGDIR_SIZE - 1))
128 #define PTRS_PER_PGD		64
129 
130 #define PUD_SHIFT		26
131 #define PTRS_PER_PUD		1
132 #define PUD_SIZE		(1UL << PUD_SHIFT)
133 #define PUD_MASK		(~(PUD_SIZE - 1))
134 #define PUE_SIZE		256
135 
136 #define PMD_SHIFT		26
137 #define PMD_SIZE		(1UL << PMD_SHIFT)
138 #define PMD_MASK		(~(PMD_SIZE - 1))
139 #define PTRS_PER_PMD		1
140 #define PME_SIZE		256
141 
142 #define __frv_PT_SIZE		256
143 
144 #define PTRS_PER_PTE		4096
145 
146 #define USER_PGDS_IN_LAST_PML4	(TASK_SIZE / PGDIR_SIZE)
147 #define FIRST_USER_ADDRESS	0
148 
149 #define USER_PGD_PTRS		(PAGE_OFFSET >> PGDIR_SHIFT)
150 #define KERNEL_PGD_PTRS		(PTRS_PER_PGD - USER_PGD_PTRS)
151 
152 #define TWOLEVEL_PGDIR_SHIFT	26
153 #define BOOT_USER_PGD_PTRS	(__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
154 #define BOOT_KERNEL_PGD_PTRS	(PTRS_PER_PGD - BOOT_USER_PGD_PTRS)
155 
156 #ifndef __ASSEMBLY__
157 
158 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
159 
160 #define pte_ERROR(e) \
161 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte)
162 #define pmd_ERROR(e) \
163 	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
164 #define pud_ERROR(e) \
165 	printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e)))
166 #define pgd_ERROR(e) \
167 	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e))))
168 
169 /*
170  * Certain architectures need to do special things when PTEs
171  * within a page table are directly modified.  Thus, the following
172  * hook is made available.
173  */
174 #define set_pte(pteptr, pteval)				\
175 do {							\
176 	*(pteptr) = (pteval);				\
177 	asm volatile("dcf %M0" :: "U"(*pteptr));	\
178 } while(0)
179 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
180 
181 /*
182  * pgd_offset() returns a (pgd_t *)
183  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
184  */
185 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
186 
187 /*
188  * a shortcut which implies the use of the kernel's pgd, instead
189  * of a process's
190  */
191 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
192 
193 /*
194  * The "pgd_xxx()" functions here are trivial for a folded two-level
195  * setup: the pud is never bad, and a pud always exists (as it's folded
196  * into the pgd entry)
197  */
pgd_none(pgd_t pgd)198 static inline int pgd_none(pgd_t pgd)		{ return 0; }
pgd_bad(pgd_t pgd)199 static inline int pgd_bad(pgd_t pgd)		{ return 0; }
pgd_present(pgd_t pgd)200 static inline int pgd_present(pgd_t pgd)	{ return 1; }
pgd_clear(pgd_t * pgd)201 static inline void pgd_clear(pgd_t *pgd)	{ }
202 
203 #define pgd_populate(mm, pgd, pud)		do { } while (0)
204 /*
205  * (puds are folded into pgds so this doesn't get actually called,
206  * but the define is needed for a generic inline function.)
207  */
208 #define set_pgd(pgdptr, pgdval)				\
209 do {							\
210 	memcpy((pgdptr), &(pgdval), sizeof(pgd_t));	\
211 	asm volatile("dcf %M0" :: "U"(*(pgdptr)));	\
212 } while(0)
213 
pud_offset(pgd_t * pgd,unsigned long address)214 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
215 {
216 	return (pud_t *) pgd;
217 }
218 
219 #define pgd_page(pgd)				(pud_page((pud_t){ pgd }))
220 #define pgd_page_vaddr(pgd)			(pud_page_vaddr((pud_t){ pgd }))
221 
222 /*
223  * allocating and freeing a pud is trivial: the 1-entry pud is
224  * inside the pgd, so has no extra memory associated with it.
225  */
226 #define pud_alloc_one(mm, address)		NULL
227 #define pud_free(mm, x)				do { } while (0)
228 #define __pud_free_tlb(tlb, x, address)		do { } while (0)
229 
230 /*
231  * The "pud_xxx()" functions here are trivial for a folded two-level
232  * setup: the pmd is never bad, and a pmd always exists (as it's folded
233  * into the pud entry)
234  */
pud_none(pud_t pud)235 static inline int pud_none(pud_t pud)		{ return 0; }
pud_bad(pud_t pud)236 static inline int pud_bad(pud_t pud)		{ return 0; }
pud_present(pud_t pud)237 static inline int pud_present(pud_t pud)	{ return 1; }
pud_clear(pud_t * pud)238 static inline void pud_clear(pud_t *pud)	{ }
239 
240 #define pud_populate(mm, pmd, pte)		do { } while (0)
241 
242 /*
243  * (pmds are folded into puds so this doesn't get actually called,
244  * but the define is needed for a generic inline function.)
245  */
246 #define set_pud(pudptr, pudval)			set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval })
247 
248 #define pud_page(pud)				(pmd_page((pmd_t){ pud }))
249 #define pud_page_vaddr(pud)			(pmd_page_vaddr((pmd_t){ pud }))
250 
251 /*
252  * (pmds are folded into pgds so this doesn't get actually called,
253  * but the define is needed for a generic inline function.)
254  */
255 extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd);
256 
257 #define set_pmd(pmdptr, pmdval)			\
258 do {						\
259 	__set_pmd((pmdptr), (pmdval).ste[0]);	\
260 } while(0)
261 
262 #define __pmd_index(address)			0
263 
pmd_offset(pud_t * dir,unsigned long address)264 static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address)
265 {
266 	return (pmd_t *) dir + __pmd_index(address);
267 }
268 
269 #define pte_same(a, b)		((a).pte == (b).pte)
270 #define pte_page(x)		(mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT))))
271 #define pte_none(x)		(!(x).pte)
272 #define pte_pfn(x)		((unsigned long)(((x).pte >> PAGE_SHIFT)))
273 #define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
274 #define pfn_pmd(pfn, prot)	__pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
275 
276 #define VMALLOC_VMADDR(x)	((unsigned long) (x))
277 
278 #endif /* !__ASSEMBLY__ */
279 
280 /*
281  * control flags in AMPR registers and TLB entries
282  */
283 #define _PAGE_BIT_PRESENT	xAMPRx_V_BIT
284 #define _PAGE_BIT_WP		DAMPRx_WP_BIT
285 #define _PAGE_BIT_NOCACHE	xAMPRx_C_BIT
286 #define _PAGE_BIT_SUPER		xAMPRx_S_BIT
287 #define _PAGE_BIT_ACCESSED	xAMPRx_RESERVED8_BIT
288 #define _PAGE_BIT_DIRTY		xAMPRx_M_BIT
289 #define _PAGE_BIT_NOTGLOBAL	xAMPRx_NG_BIT
290 
291 #define _PAGE_PRESENT		xAMPRx_V
292 #define _PAGE_WP		DAMPRx_WP
293 #define _PAGE_NOCACHE		xAMPRx_C
294 #define _PAGE_SUPER		xAMPRx_S
295 #define _PAGE_ACCESSED		xAMPRx_RESERVED8	/* accessed if set */
296 #define _PAGE_DIRTY		xAMPRx_M
297 #define _PAGE_NOTGLOBAL		xAMPRx_NG
298 
299 #define _PAGE_RESERVED_MASK	(xAMPRx_RESERVED8 | xAMPRx_RESERVED13)
300 
301 #define _PAGE_FILE		0x002	/* set:pagecache unset:swap */
302 #define _PAGE_PROTNONE		0x000	/* If not present */
303 
304 #define _PAGE_CHG_MASK		(PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
305 
306 #define __PGPROT_BASE \
307 	(_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED)
308 
309 #define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
310 #define PAGE_SHARED	__pgprot(__PGPROT_BASE)
311 #define PAGE_COPY	__pgprot(__PGPROT_BASE | _PAGE_WP)
312 #define PAGE_READONLY	__pgprot(__PGPROT_BASE | _PAGE_WP)
313 
314 #define __PAGE_KERNEL		(__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY)
315 #define __PAGE_KERNEL_NOCACHE	(__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE)
316 #define __PAGE_KERNEL_RO	(__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP)
317 
318 #define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL)
319 
320 #define PAGE_KERNEL		MAKE_GLOBAL(__PAGE_KERNEL)
321 #define PAGE_KERNEL_RO		MAKE_GLOBAL(__PAGE_KERNEL_RO)
322 #define PAGE_KERNEL_NOCACHE	MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
323 
324 #define _PAGE_TABLE		(_PAGE_PRESENT | xAMPRx_SS_16Kb)
325 
326 #ifndef __ASSEMBLY__
327 
328 /*
329  * The FR451 can do execute protection by virtue of having separate TLB miss handlers for
330  * instruction access and for data access. However, we don't have enough reserved bits to say
331  * "execute only", so we don't bother. If you can read it, you can execute it and vice versa.
332  */
333 #define __P000	PAGE_NONE
334 #define __P001	PAGE_READONLY
335 #define __P010	PAGE_COPY
336 #define __P011	PAGE_COPY
337 #define __P100	PAGE_READONLY
338 #define __P101	PAGE_READONLY
339 #define __P110	PAGE_COPY
340 #define __P111	PAGE_COPY
341 
342 #define __S000	PAGE_NONE
343 #define __S001	PAGE_READONLY
344 #define __S010	PAGE_SHARED
345 #define __S011	PAGE_SHARED
346 #define __S100	PAGE_READONLY
347 #define __S101	PAGE_READONLY
348 #define __S110	PAGE_SHARED
349 #define __S111	PAGE_SHARED
350 
351 /*
352  * Define this to warn about kernel memory accesses that are
353  * done without a 'access_ok(VERIFY_WRITE,..)'
354  */
355 #undef TEST_ACCESS_OK
356 
357 #define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
358 #define pte_clear(mm,addr,xp)	do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
359 
360 #define pmd_none(x)	(!pmd_val(x))
361 #define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
362 #define	pmd_bad(x)	(pmd_val(x) & xAMPRx_SS)
363 #define pmd_clear(xp)	do { __set_pmd(xp, 0); } while(0)
364 
365 #define pmd_page_vaddr(pmd) \
366 	((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
367 
368 #ifndef CONFIG_DISCONTIGMEM
369 #define pmd_page(pmd)	(pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
370 #endif
371 
372 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
373 
374 /*
375  * The following only work if pte_present() is true.
376  * Undefined behaviour if not..
377  */
pte_dirty(pte_t pte)378 static inline int pte_dirty(pte_t pte)		{ return (pte).pte & _PAGE_DIRTY; }
pte_young(pte_t pte)379 static inline int pte_young(pte_t pte)		{ return (pte).pte & _PAGE_ACCESSED; }
pte_write(pte_t pte)380 static inline int pte_write(pte_t pte)		{ return !((pte).pte & _PAGE_WP); }
pte_special(pte_t pte)381 static inline int pte_special(pte_t pte)	{ return 0; }
382 
pte_mkclean(pte_t pte)383 static inline pte_t pte_mkclean(pte_t pte)	{ (pte).pte &= ~_PAGE_DIRTY; return pte; }
pte_mkold(pte_t pte)384 static inline pte_t pte_mkold(pte_t pte)	{ (pte).pte &= ~_PAGE_ACCESSED; return pte; }
pte_wrprotect(pte_t pte)385 static inline pte_t pte_wrprotect(pte_t pte)	{ (pte).pte |= _PAGE_WP; return pte; }
pte_mkdirty(pte_t pte)386 static inline pte_t pte_mkdirty(pte_t pte)	{ (pte).pte |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)387 static inline pte_t pte_mkyoung(pte_t pte)	{ (pte).pte |= _PAGE_ACCESSED; return pte; }
pte_mkwrite(pte_t pte)388 static inline pte_t pte_mkwrite(pte_t pte)	{ (pte).pte &= ~_PAGE_WP; return pte; }
pte_mkspecial(pte_t pte)389 static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }
390 
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)391 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
392 {
393 	int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep);
394 	asm volatile("dcf %M0" :: "U"(*ptep));
395 	return i;
396 }
397 
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)398 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
399 {
400 	unsigned long x = xchg(&ptep->pte, 0);
401 	asm volatile("dcf %M0" :: "U"(*ptep));
402 	return __pte(x);
403 }
404 
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)405 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
406 {
407 	set_bit(_PAGE_BIT_WP, ptep);
408 	asm volatile("dcf %M0" :: "U"(*ptep));
409 }
410 
411 /*
412  * Macro to mark a page protection value as "uncacheable"
413  */
414 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE))
415 
416 /*
417  * Conversion functions: convert a page and protection to a page entry,
418  * and a page entry and page directory to the page they refer to.
419  */
420 
421 #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
422 #define mk_pte_huge(entry)	((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
423 
424 /* This takes a physical page address that is used by the remapping functions */
425 #define mk_pte_phys(physpage, pgprot)	pfn_pte((physpage) >> PAGE_SHIFT, pgprot)
426 
pte_modify(pte_t pte,pgprot_t newprot)427 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
428 {
429 	pte.pte &= _PAGE_CHG_MASK;
430 	pte.pte |= pgprot_val(newprot);
431 	return pte;
432 }
433 
434 /* to find an entry in a page-table-directory. */
435 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
436 #define pgd_index_k(addr) pgd_index(addr)
437 
438 /* Find an entry in the bottom-level page table.. */
439 #define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
440 
441 /*
442  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
443  *
444  * this macro returns the index of the entry in the pte page which would
445  * control the given virtual address
446  */
447 #define pte_index(address) \
448 		(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
449 #define pte_offset_kernel(dir, address) \
450 	((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))
451 
452 #if defined(CONFIG_HIGHPTE)
453 #define pte_offset_map(dir, address) \
454 	((pte_t *)kmap_atomic(pmd_page(*(dir))) + pte_index(address))
455 #define pte_unmap(pte) kunmap_atomic(pte)
456 #else
457 #define pte_offset_map(dir, address) \
458 	((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
459 #define pte_unmap(pte) do { } while (0)
460 #endif
461 
462 /*
463  * Handle swap and file entries
464  * - the PTE is encoded in the following format:
465  *	bit 0:		Must be 0 (!_PAGE_PRESENT)
466  *	bit 1:		Type: 0 for swap, 1 for file (_PAGE_FILE)
467  *	bits 2-7:	Swap type
468  *	bits 8-31:	Swap offset
469  *	bits 2-31:	File pgoff
470  */
471 #define __swp_type(x)			(((x).val >> 2) & 0x1f)
472 #define __swp_offset(x)			((x).val >> 8)
473 #define __swp_entry(type, offset)	((swp_entry_t) { ((type) << 2) | ((offset) << 8) })
474 #define __pte_to_swp_entry(_pte)	((swp_entry_t) { (_pte).pte })
475 #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
476 
pte_file(pte_t pte)477 static inline int pte_file(pte_t pte)
478 {
479 	return pte.pte & _PAGE_FILE;
480 }
481 
482 #define PTE_FILE_MAX_BITS	29
483 
484 #define pte_to_pgoff(PTE)	((PTE).pte >> 2)
485 #define pgoff_to_pte(off)	__pte((off) << 2 | _PAGE_FILE)
486 
487 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
488 #define PageSkip(page)		(0)
489 #define kern_addr_valid(addr)	(1)
490 
491 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
492 		remap_pfn_range(vma, vaddr, pfn, size, prot)
493 
494 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
495 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
496 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
497 #define __HAVE_ARCH_PTE_SAME
498 #include <asm-generic/pgtable.h>
499 
500 /*
501  * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache
502  */
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)503 static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
504 {
505 	struct mm_struct *mm;
506 	unsigned long ampr;
507 
508 	mm = current->mm;
509 	if (mm) {
510 		pgd_t *pge = pgd_offset(mm, address);
511 		pud_t *pue = pud_offset(pge, address);
512 		pmd_t *pme = pmd_offset(pue, address);
513 
514 		ampr = pme->ste[0] & 0xffffff00;
515 		ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C |
516 			xAMPRx_V;
517 	} else {
518 		address = ULONG_MAX;
519 		ampr = 0;
520 	}
521 
522 	asm volatile("movgs %0,scr0\n"
523 		     "movgs %0,scr1\n"
524 		     "movgs %1,dampr4\n"
525 		     "movgs %1,dampr5\n"
526 		     :
527 		     : "r"(address), "r"(ampr)
528 		     );
529 }
530 
531 #ifdef CONFIG_PROC_FS
532 extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer);
533 #endif
534 
535 extern void __init pgtable_cache_init(void);
536 
537 #endif /* !__ASSEMBLY__ */
538 #endif /* !CONFIG_MMU */
539 
540 #ifndef __ASSEMBLY__
541 extern void __init paging_init(void);
542 #endif /* !__ASSEMBLY__ */
543 
544 #endif /* _ASM_PGTABLE_H */
545