1 /*
2  *
3  *  linux/arch/cris/kernel/setup.c
4  *
5  *  Copyright (C) 1995  Linus Torvalds
6  *  Copyright (c) 2001  Axis Communications AB
7  */
8 
9 /*
10  * This file handles the architecture-dependent parts of initialization
11  */
12 
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <asm/pgtable.h>
17 #include <linux/seq_file.h>
18 #include <linux/screen_info.h>
19 #include <linux/utsname.h>
20 #include <linux/pfn.h>
21 #include <linux/cpu.h>
22 #include <asm/setup.h>
23 #include <arch/system.h>
24 
25 /*
26  * Setup options
27  */
28 struct screen_info screen_info;
29 
30 extern int root_mountflags;
31 extern char _etext, _edata, _end;
32 
33 char __initdata cris_command_line[COMMAND_LINE_SIZE] = { 0, };
34 
35 extern const unsigned long text_start, edata; /* set by the linker script */
36 extern unsigned long dram_start, dram_end;
37 
38 extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */
39 
40 static struct cpu cpu_devices[NR_CPUS];
41 
42 extern void show_etrax_copyright(void);		/* arch-vX/kernel/setup.c */
43 
44 /* This mainly sets up the memory area, and can be really confusing.
45  *
46  * The physical DRAM is virtually mapped into dram_start to dram_end
47  * (usually c0000000 to c0000000 + DRAM size). The physical address is
48  * given by the macro __pa().
49  *
50  * In this DRAM, the kernel code and data is loaded, in the beginning.
51  * It really starts at c0004000 to make room for some special pages -
52  * the start address is text_start. The kernel data ends at _end. After
53  * this the ROM filesystem is appended (if there is any).
54  *
55  * Between this address and dram_end, we have RAM pages usable to the
56  * boot code and the system.
57  *
58  */
59 
setup_arch(char ** cmdline_p)60 void __init setup_arch(char **cmdline_p)
61 {
62 	extern void init_etrax_debug(void);
63 	unsigned long bootmap_size;
64 	unsigned long start_pfn, max_pfn;
65 	unsigned long memory_start;
66 
67 	/* register an initial console printing routine for printk's */
68 
69 	init_etrax_debug();
70 
71 	/* we should really poll for DRAM size! */
72 
73 	high_memory = &dram_end;
74 
75 	if(romfs_in_flash || !romfs_length) {
76 		/* if we have the romfs in flash, or if there is no rom filesystem,
77 		 * our free area starts directly after the BSS
78 		 */
79 		memory_start = (unsigned long) &_end;
80 	} else {
81 		/* otherwise the free area starts after the ROM filesystem */
82 		printk("ROM fs in RAM, size %lu bytes\n", romfs_length);
83 		memory_start = romfs_start + romfs_length;
84 	}
85 
86 	/* process 1's initial memory region is the kernel code/data */
87 
88 	init_mm.start_code = (unsigned long) &text_start;
89 	init_mm.end_code =   (unsigned long) &_etext;
90 	init_mm.end_data =   (unsigned long) &_edata;
91 	init_mm.brk =        (unsigned long) &_end;
92 
93 	/* min_low_pfn points to the start of DRAM, start_pfn points
94 	 * to the first DRAM pages after the kernel, and max_low_pfn
95 	 * to the end of DRAM.
96 	 */
97 
98         /*
99          * partially used pages are not usable - thus
100          * we are rounding upwards:
101          */
102 
103         start_pfn = PFN_UP(memory_start);  /* usually c0000000 + kernel + romfs */
104 	max_pfn =   PFN_DOWN((unsigned long)high_memory); /* usually c0000000 + dram size */
105 
106         /*
107          * Initialize the boot-time allocator (start, end)
108 	 *
109 	 * We give it access to all our DRAM, but we could as well just have
110 	 * given it a small slice. No point in doing that though, unless we
111 	 * have non-contiguous memory and want the boot-stuff to be in, say,
112 	 * the smallest area.
113 	 *
114 	 * It will put a bitmap of the allocated pages in the beginning
115 	 * of the range we give it, but it won't mark the bitmaps pages
116 	 * as reserved. We have to do that ourselves below.
117 	 *
118 	 * We need to use init_bootmem_node instead of init_bootmem
119 	 * because our map starts at a quite high address (min_low_pfn).
120          */
121 
122 	max_low_pfn = max_pfn;
123 	min_low_pfn = PAGE_OFFSET >> PAGE_SHIFT;
124 
125 	bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
126 					 min_low_pfn,
127 					 max_low_pfn);
128 
129 	/* And free all memory not belonging to the kernel (addr, size) */
130 
131 	free_bootmem(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn - start_pfn));
132 
133         /*
134          * Reserve the bootmem bitmap itself as well. We do this in two
135          * steps (first step was init_bootmem()) because this catches
136          * the (very unlikely) case of us accidentally initializing the
137          * bootmem allocator with an invalid RAM area.
138 	 *
139 	 * Arguments are start, size
140          */
141 
142 	reserve_bootmem(PFN_PHYS(start_pfn), bootmap_size, BOOTMEM_DEFAULT);
143 
144 	/* paging_init() sets up the MMU and marks all pages as reserved */
145 
146 	paging_init();
147 
148 	*cmdline_p = cris_command_line;
149 
150 #ifdef CONFIG_ETRAX_CMDLINE
151         if (!strcmp(cris_command_line, "")) {
152 		strlcpy(cris_command_line, CONFIG_ETRAX_CMDLINE, COMMAND_LINE_SIZE);
153 		cris_command_line[COMMAND_LINE_SIZE - 1] = '\0';
154 	}
155 #endif
156 
157 	/* Save command line for future references. */
158 	memcpy(boot_command_line, cris_command_line, COMMAND_LINE_SIZE);
159 	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
160 
161 	/* give credit for the CRIS port */
162 	show_etrax_copyright();
163 
164 	/* Setup utsname */
165 	strcpy(init_utsname()->machine, cris_machine_name);
166 }
167 
c_start(struct seq_file * m,loff_t * pos)168 static void *c_start(struct seq_file *m, loff_t *pos)
169 {
170 	return *pos < nr_cpu_ids ? (void *)(int)(*pos + 1) : NULL;
171 }
172 
c_next(struct seq_file * m,void * v,loff_t * pos)173 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
174 {
175 	++*pos;
176 	return c_start(m, pos);
177 }
178 
c_stop(struct seq_file * m,void * v)179 static void c_stop(struct seq_file *m, void *v)
180 {
181 }
182 
183 extern int show_cpuinfo(struct seq_file *m, void *v);
184 
185 const struct seq_operations cpuinfo_op = {
186 	.start = c_start,
187 	.next  = c_next,
188 	.stop  = c_stop,
189 	.show  = show_cpuinfo,
190 };
191 
topology_init(void)192 static int __init topology_init(void)
193 {
194 	int i;
195 
196 	for_each_possible_cpu(i) {
197 		 return register_cpu(&cpu_devices[i], i);
198 	}
199 
200 	return 0;
201 }
202 
203 subsys_initcall(topology_init);
204 
205