1 /*
2  * Physical mapping layer for MTD using the Axis partitiontable format
3  *
4  * Copyright (c) 2001, 2002 Axis Communications AB
5  *
6  * This file is under the GPL.
7  *
8  * First partition is always sector 0 regardless of if we find a partitiontable
9  * or not. In the start of the next sector, there can be a partitiontable that
10  * tells us what other partitions to define. If there isn't, we use a default
11  * partition split defined below.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 
21 #include <linux/mtd/concat.h>
22 #include <linux/mtd/map.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/mtdram.h>
25 #include <linux/mtd/partitions.h>
26 
27 #include <asm/axisflashmap.h>
28 #include <asm/mmu.h>
29 #include <arch/sv_addr_ag.h>
30 
31 #ifdef CONFIG_CRIS_LOW_MAP
32 #define FLASH_UNCACHED_ADDR  KSEG_8
33 #define FLASH_CACHED_ADDR    KSEG_5
34 #else
35 #define FLASH_UNCACHED_ADDR  KSEG_E
36 #define FLASH_CACHED_ADDR    KSEG_F
37 #endif
38 
39 #if CONFIG_ETRAX_FLASH_BUSWIDTH==1
40 #define flash_data __u8
41 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
42 #define flash_data __u16
43 #elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
44 #define flash_data __u32
45 #endif
46 
47 /* From head.S */
48 extern unsigned long romfs_start, romfs_length, romfs_in_flash;
49 
50 /* The master mtd for the entire flash. */
51 struct mtd_info* axisflash_mtd = NULL;
52 
53 /* Map driver functions. */
54 
flash_read(struct map_info * map,unsigned long ofs)55 static map_word flash_read(struct map_info *map, unsigned long ofs)
56 {
57 	map_word tmp;
58 	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
59 	return tmp;
60 }
61 
flash_copy_from(struct map_info * map,void * to,unsigned long from,ssize_t len)62 static void flash_copy_from(struct map_info *map, void *to,
63 			    unsigned long from, ssize_t len)
64 {
65 	memcpy(to, (void *)(map->map_priv_1 + from), len);
66 }
67 
flash_write(struct map_info * map,map_word d,unsigned long adr)68 static void flash_write(struct map_info *map, map_word d, unsigned long adr)
69 {
70 	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
71 }
72 
73 /*
74  * The map for chip select e0.
75  *
76  * We run into tricky coherence situations if we mix cached with uncached
77  * accesses to we only use the uncached version here.
78  *
79  * The size field is the total size where the flash chips may be mapped on the
80  * chip select. MTD probes should find all devices there and it does not matter
81  * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
82  * probes will ignore them.
83  *
84  * The start address in map_priv_1 is in virtual memory so we cannot use
85  * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
86  * address of cse0.
87  */
88 static struct map_info map_cse0 = {
89 	.name = "cse0",
90 	.size = MEM_CSE0_SIZE,
91 	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
92 	.read = flash_read,
93 	.copy_from = flash_copy_from,
94 	.write = flash_write,
95 	.map_priv_1 = FLASH_UNCACHED_ADDR
96 };
97 
98 /*
99  * The map for chip select e1.
100  *
101  * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
102  * address, but there isn't.
103  */
104 static struct map_info map_cse1 = {
105 	.name = "cse1",
106 	.size = MEM_CSE1_SIZE,
107 	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
108 	.read = flash_read,
109 	.copy_from = flash_copy_from,
110 	.write = flash_write,
111 	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
112 };
113 
114 /* If no partition-table was found, we use this default-set. */
115 #define MAX_PARTITIONS         7
116 #define NUM_DEFAULT_PARTITIONS 3
117 
118 /*
119  * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
120  * size of one flash block and "filesystem"-partition needs 5 blocks to be able
121  * to use JFFS.
122  */
123 static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
124 	{
125 		.name = "boot firmware",
126 		.size = CONFIG_ETRAX_PTABLE_SECTOR,
127 		.offset = 0
128 	},
129 	{
130 		.name = "kernel",
131 		.size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
132 		.offset = CONFIG_ETRAX_PTABLE_SECTOR
133 	},
134 	{
135 		.name = "filesystem",
136 		.size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
137 		.offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
138 	}
139 };
140 
141 /* Initialize the ones normally used. */
142 static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
143 	{
144 		.name = "part0",
145 		.size = CONFIG_ETRAX_PTABLE_SECTOR,
146 		.offset = 0
147 	},
148 	{
149 		.name = "part1",
150 		.size = 0,
151 		.offset = 0
152 	},
153 	{
154 		.name = "part2",
155 		.size = 0,
156 		.offset = 0
157 	},
158 	{
159 		.name = "part3",
160 		.size = 0,
161 		.offset = 0
162 	},
163 	{
164 		.name = "part4",
165 		.size = 0,
166 		.offset = 0
167 	},
168 	{
169 		.name = "part5",
170 		.size = 0,
171 		.offset = 0
172 	},
173 	{
174 		.name = "part6",
175 		.size = 0,
176 		.offset = 0
177 	},
178 };
179 
180 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
181 /* Main flash device */
182 static struct mtd_partition main_partition = {
183 	.name = "main",
184 	.size = 0,
185 	.offset = 0
186 };
187 #endif
188 
189 /*
190  * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
191  * chips in that order (because the amd_flash-driver is faster).
192  */
probe_cs(struct map_info * map_cs)193 static struct mtd_info *probe_cs(struct map_info *map_cs)
194 {
195 	struct mtd_info *mtd_cs = NULL;
196 
197 	printk(KERN_INFO
198                "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
199 	       map_cs->name, map_cs->size, map_cs->map_priv_1);
200 
201 #ifdef CONFIG_MTD_CFI
202 	mtd_cs = do_map_probe("cfi_probe", map_cs);
203 #endif
204 #ifdef CONFIG_MTD_JEDECPROBE
205 	if (!mtd_cs)
206 		mtd_cs = do_map_probe("jedec_probe", map_cs);
207 #endif
208 
209 	return mtd_cs;
210 }
211 
212 /*
213  * Probe each chip select individually for flash chips. If there are chips on
214  * both cse0 and cse1, the mtd_info structs will be concatenated to one struct
215  * so that MTD partitions can cross chip boundries.
216  *
217  * The only known restriction to how you can mount your chips is that each
218  * chip select must hold similar flash chips. But you need external hardware
219  * to do that anyway and you can put totally different chips on cse0 and cse1
220  * so it isn't really much of a restriction.
221  */
flash_probe(void)222 static struct mtd_info *flash_probe(void)
223 {
224 	struct mtd_info *mtd_cse0;
225 	struct mtd_info *mtd_cse1;
226 	struct mtd_info *mtd_cse;
227 
228 	mtd_cse0 = probe_cs(&map_cse0);
229 	mtd_cse1 = probe_cs(&map_cse1);
230 
231 	if (!mtd_cse0 && !mtd_cse1) {
232 		/* No chip found. */
233 		return NULL;
234 	}
235 
236 	if (mtd_cse0 && mtd_cse1) {
237 		struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
238 
239 		/* Since the concatenation layer adds a small overhead we
240 		 * could try to figure out if the chips in cse0 and cse1 are
241 		 * identical and reprobe the whole cse0+cse1 window. But since
242 		 * flash chips are slow, the overhead is relatively small.
243 		 * So we use the MTD concatenation layer instead of further
244 		 * complicating the probing procedure.
245 		 */
246 		mtd_cse = mtd_concat_create(mtds, ARRAY_SIZE(mtds),
247 					    "cse0+cse1");
248 		if (!mtd_cse) {
249 			printk(KERN_ERR "%s and %s: Concatenation failed!\n",
250 			       map_cse0.name, map_cse1.name);
251 
252 			/* The best we can do now is to only use what we found
253 			 * at cse0.
254 			 */
255 			mtd_cse = mtd_cse0;
256 			map_destroy(mtd_cse1);
257 		}
258 	} else {
259 		mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
260 	}
261 
262 	return mtd_cse;
263 }
264 
265 /*
266  * Probe the flash chip(s) and, if it succeeds, read the partition-table
267  * and register the partitions with MTD.
268  */
init_axis_flash(void)269 static int __init init_axis_flash(void)
270 {
271 	struct mtd_info *mymtd;
272 	int err = 0;
273 	int pidx = 0;
274 	struct partitiontable_head *ptable_head = NULL;
275 	struct partitiontable_entry *ptable;
276 	int use_default_ptable = 1; /* Until proven otherwise. */
277 	const char pmsg[] = "  /dev/flash%d at 0x%08x, size 0x%08x\n";
278 
279 	if (!(mymtd = flash_probe())) {
280 		/* There's no reason to use this module if no flash chip can
281 		 * be identified. Make sure that's understood.
282 		 */
283 		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
284 	} else {
285 		printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
286 		       mymtd->name, mymtd->size);
287 		axisflash_mtd = mymtd;
288 	}
289 
290 	if (mymtd) {
291 		mymtd->owner = THIS_MODULE;
292 		ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
293 			      CONFIG_ETRAX_PTABLE_SECTOR +
294 			      PARTITION_TABLE_OFFSET);
295 	}
296 	pidx++;  /* First partition is always set to the default. */
297 
298 	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
299 	    && (ptable_head->size <
300 		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
301 		PARTITIONTABLE_END_MARKER_SIZE))
302 	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
303 				  ptable_head->size -
304 				  PARTITIONTABLE_END_MARKER_SIZE)
305 		== PARTITIONTABLE_END_MARKER)) {
306 		/* Looks like a start, sane length and end of a
307 		 * partition table, lets check csum etc.
308 		 */
309 		int ptable_ok = 0;
310 		struct partitiontable_entry *max_addr =
311 			(struct partitiontable_entry *)
312 			((unsigned long)ptable_head + sizeof(*ptable_head) +
313 			 ptable_head->size);
314 		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
315 		unsigned char *p;
316 		unsigned long csum = 0;
317 
318 		ptable = (struct partitiontable_entry *)
319 			((unsigned long)ptable_head + sizeof(*ptable_head));
320 
321 		/* Lets be PARANOID, and check the checksum. */
322 		p = (unsigned char*) ptable;
323 
324 		while (p <= (unsigned char*)max_addr) {
325 			csum += *p++;
326 			csum += *p++;
327 			csum += *p++;
328 			csum += *p++;
329 		}
330 		ptable_ok = (csum == ptable_head->checksum);
331 
332 		/* Read the entries and use/show the info.  */
333 		printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
334 		       (ptable_ok ? " valid" : "n invalid"), ptable_head,
335 		       max_addr);
336 
337 		/* We have found a working bootblock.  Now read the
338 		 * partition table.  Scan the table.  It ends when
339 		 * there is 0xffffffff, that is, empty flash.
340 		 */
341 		while (ptable_ok
342 		       && ptable->offset != 0xffffffff
343 		       && ptable < max_addr
344 		       && pidx < MAX_PARTITIONS) {
345 
346 			axis_partitions[pidx].offset = offset + ptable->offset;
347 			axis_partitions[pidx].size = ptable->size;
348 
349 			printk(pmsg, pidx, axis_partitions[pidx].offset,
350 			       axis_partitions[pidx].size);
351 			pidx++;
352 			ptable++;
353 		}
354 		use_default_ptable = !ptable_ok;
355 	}
356 
357 	if (romfs_in_flash) {
358 		/* Add an overlapping device for the root partition (romfs). */
359 
360 		axis_partitions[pidx].name = "romfs";
361 		axis_partitions[pidx].size = romfs_length;
362 		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
363 		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
364 
365 		printk(KERN_INFO
366                        " Adding readonly flash partition for romfs image:\n");
367 		printk(pmsg, pidx, axis_partitions[pidx].offset,
368 		       axis_partitions[pidx].size);
369 		pidx++;
370 	}
371 
372 #ifdef CONFIG_ETRAX_AXISFLASHMAP_MTD0WHOLE
373 	if (mymtd) {
374 		main_partition.size = mymtd->size;
375 		err = mtd_device_register(mymtd, &main_partition, 1);
376 		if (err)
377 			panic("axisflashmap: Could not initialize "
378 			      "partition for whole main mtd device!\n");
379 	}
380 #endif
381 
382         if (mymtd) {
383 		if (use_default_ptable) {
384 			printk(KERN_INFO " Using default partition table.\n");
385 			err = mtd_device_register(mymtd,
386 						  axis_default_partitions,
387 						  NUM_DEFAULT_PARTITIONS);
388 		} else {
389 			err = mtd_device_register(mymtd, axis_partitions,
390 						  pidx);
391 		}
392 
393 		if (err)
394 			panic("axisflashmap could not add MTD partitions!\n");
395 	}
396 
397 	if (!romfs_in_flash) {
398 		/* Create an RAM device for the root partition (romfs). */
399 
400 #if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
401 		/* No use trying to boot this kernel from RAM. Panic! */
402 		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
403 		       "device due to kernel (mis)configuration!\n");
404 		panic("This kernel cannot boot from RAM!\n");
405 #else
406 		struct mtd_info *mtd_ram;
407 
408 		mtd_ram = kmalloc(sizeof(struct mtd_info), GFP_KERNEL);
409 		if (!mtd_ram)
410 			panic("axisflashmap couldn't allocate memory for "
411 			      "mtd_info!\n");
412 
413 		printk(KERN_INFO " Adding RAM partition for romfs image:\n");
414 		printk(pmsg, pidx, (unsigned)romfs_start,
415 			(unsigned)romfs_length);
416 
417 		err = mtdram_init_device(mtd_ram,
418 			(void *)romfs_start,
419 			romfs_length,
420 			"romfs");
421 		if (err)
422 			panic("axisflashmap could not initialize MTD RAM "
423 			      "device!\n");
424 #endif
425 	}
426 	return err;
427 }
428 
429 /* This adds the above to the kernels init-call chain. */
430 module_init(init_axis_flash);
431 
432 EXPORT_SYMBOL(axisflash_mtd);
433