1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 
20 #include <asm/cp15.h>
21 #include <asm/cputype.h>
22 #include <asm/sections.h>
23 #include <asm/cachetype.h>
24 #include <asm/setup.h>
25 #include <asm/sizes.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31 
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 
35 #include "mm.h"
36 
37 /*
38  * empty_zero_page is a special page that is used for
39  * zero-initialized data and COW.
40  */
41 struct page *empty_zero_page;
42 EXPORT_SYMBOL(empty_zero_page);
43 
44 /*
45  * The pmd table for the upper-most set of pages.
46  */
47 pmd_t *top_pmd;
48 
49 #define CPOLICY_UNCACHED	0
50 #define CPOLICY_BUFFERED	1
51 #define CPOLICY_WRITETHROUGH	2
52 #define CPOLICY_WRITEBACK	3
53 #define CPOLICY_WRITEALLOC	4
54 
55 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56 static unsigned int ecc_mask __initdata = 0;
57 pgprot_t pgprot_user;
58 pgprot_t pgprot_kernel;
59 
60 EXPORT_SYMBOL(pgprot_user);
61 EXPORT_SYMBOL(pgprot_kernel);
62 
63 struct cachepolicy {
64 	const char	policy[16];
65 	unsigned int	cr_mask;
66 	pmdval_t	pmd;
67 	pteval_t	pte;
68 };
69 
70 static struct cachepolicy cache_policies[] __initdata = {
71 	{
72 		.policy		= "uncached",
73 		.cr_mask	= CR_W|CR_C,
74 		.pmd		= PMD_SECT_UNCACHED,
75 		.pte		= L_PTE_MT_UNCACHED,
76 	}, {
77 		.policy		= "buffered",
78 		.cr_mask	= CR_C,
79 		.pmd		= PMD_SECT_BUFFERED,
80 		.pte		= L_PTE_MT_BUFFERABLE,
81 	}, {
82 		.policy		= "writethrough",
83 		.cr_mask	= 0,
84 		.pmd		= PMD_SECT_WT,
85 		.pte		= L_PTE_MT_WRITETHROUGH,
86 	}, {
87 		.policy		= "writeback",
88 		.cr_mask	= 0,
89 		.pmd		= PMD_SECT_WB,
90 		.pte		= L_PTE_MT_WRITEBACK,
91 	}, {
92 		.policy		= "writealloc",
93 		.cr_mask	= 0,
94 		.pmd		= PMD_SECT_WBWA,
95 		.pte		= L_PTE_MT_WRITEALLOC,
96 	}
97 };
98 
99 /*
100  * These are useful for identifying cache coherency
101  * problems by allowing the cache or the cache and
102  * writebuffer to be turned off.  (Note: the write
103  * buffer should not be on and the cache off).
104  */
early_cachepolicy(char * p)105 static int __init early_cachepolicy(char *p)
106 {
107 	int i;
108 
109 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 		int len = strlen(cache_policies[i].policy);
111 
112 		if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 			cachepolicy = i;
114 			cr_alignment &= ~cache_policies[i].cr_mask;
115 			cr_no_alignment &= ~cache_policies[i].cr_mask;
116 			break;
117 		}
118 	}
119 	if (i == ARRAY_SIZE(cache_policies))
120 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 	/*
122 	 * This restriction is partly to do with the way we boot; it is
123 	 * unpredictable to have memory mapped using two different sets of
124 	 * memory attributes (shared, type, and cache attribs).  We can not
125 	 * change these attributes once the initial assembly has setup the
126 	 * page tables.
127 	 */
128 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 		cachepolicy = CPOLICY_WRITEBACK;
131 	}
132 	flush_cache_all();
133 	set_cr(cr_alignment);
134 	return 0;
135 }
136 early_param("cachepolicy", early_cachepolicy);
137 
early_nocache(char * __unused)138 static int __init early_nocache(char *__unused)
139 {
140 	char *p = "buffered";
141 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 	early_cachepolicy(p);
143 	return 0;
144 }
145 early_param("nocache", early_nocache);
146 
early_nowrite(char * __unused)147 static int __init early_nowrite(char *__unused)
148 {
149 	char *p = "uncached";
150 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 	early_cachepolicy(p);
152 	return 0;
153 }
154 early_param("nowb", early_nowrite);
155 
156 #ifndef CONFIG_ARM_LPAE
early_ecc(char * p)157 static int __init early_ecc(char *p)
158 {
159 	if (memcmp(p, "on", 2) == 0)
160 		ecc_mask = PMD_PROTECTION;
161 	else if (memcmp(p, "off", 3) == 0)
162 		ecc_mask = 0;
163 	return 0;
164 }
165 early_param("ecc", early_ecc);
166 #endif
167 
noalign_setup(char * __unused)168 static int __init noalign_setup(char *__unused)
169 {
170 	cr_alignment &= ~CR_A;
171 	cr_no_alignment &= ~CR_A;
172 	set_cr(cr_alignment);
173 	return 1;
174 }
175 __setup("noalign", noalign_setup);
176 
177 #ifndef CONFIG_SMP
adjust_cr(unsigned long mask,unsigned long set)178 void adjust_cr(unsigned long mask, unsigned long set)
179 {
180 	unsigned long flags;
181 
182 	mask &= ~CR_A;
183 
184 	set &= mask;
185 
186 	local_irq_save(flags);
187 
188 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 	cr_alignment = (cr_alignment & ~mask) | set;
190 
191 	set_cr((get_cr() & ~mask) | set);
192 
193 	local_irq_restore(flags);
194 }
195 #endif
196 
197 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199 
200 static struct mem_type mem_types[] = {
201 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
202 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 				  L_PTE_SHARED,
204 		.prot_l1	= PMD_TYPE_TABLE,
205 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
206 		.domain		= DOMAIN_IO,
207 	},
208 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210 		.prot_l1	= PMD_TYPE_TABLE,
211 		.prot_sect	= PROT_SECT_DEVICE,
212 		.domain		= DOMAIN_IO,
213 	},
214 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
215 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 		.prot_l1	= PMD_TYPE_TABLE,
217 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
218 		.domain		= DOMAIN_IO,
219 	},
220 	[MT_DEVICE_WC] = {	/* ioremap_wc */
221 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222 		.prot_l1	= PMD_TYPE_TABLE,
223 		.prot_sect	= PROT_SECT_DEVICE,
224 		.domain		= DOMAIN_IO,
225 	},
226 	[MT_UNCACHED] = {
227 		.prot_pte	= PROT_PTE_DEVICE,
228 		.prot_l1	= PMD_TYPE_TABLE,
229 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
230 		.domain		= DOMAIN_IO,
231 	},
232 	[MT_CACHECLEAN] = {
233 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 		.domain    = DOMAIN_KERNEL,
235 	},
236 #ifndef CONFIG_ARM_LPAE
237 	[MT_MINICLEAN] = {
238 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 		.domain    = DOMAIN_KERNEL,
240 	},
241 #endif
242 	[MT_LOW_VECTORS] = {
243 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 				L_PTE_RDONLY,
245 		.prot_l1   = PMD_TYPE_TABLE,
246 		.domain    = DOMAIN_USER,
247 	},
248 	[MT_HIGH_VECTORS] = {
249 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250 				L_PTE_USER | L_PTE_RDONLY,
251 		.prot_l1   = PMD_TYPE_TABLE,
252 		.domain    = DOMAIN_USER,
253 	},
254 	[MT_MEMORY] = {
255 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256 		.prot_l1   = PMD_TYPE_TABLE,
257 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 		.domain    = DOMAIN_KERNEL,
259 	},
260 	[MT_ROM] = {
261 		.prot_sect = PMD_TYPE_SECT,
262 		.domain    = DOMAIN_KERNEL,
263 	},
264 	[MT_MEMORY_NONCACHED] = {
265 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266 				L_PTE_MT_BUFFERABLE,
267 		.prot_l1   = PMD_TYPE_TABLE,
268 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 		.domain    = DOMAIN_KERNEL,
270 	},
271 	[MT_MEMORY_DTCM] = {
272 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273 				L_PTE_XN,
274 		.prot_l1   = PMD_TYPE_TABLE,
275 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 		.domain    = DOMAIN_KERNEL,
277 	},
278 	[MT_MEMORY_ITCM] = {
279 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280 		.prot_l1   = PMD_TYPE_TABLE,
281 		.domain    = DOMAIN_KERNEL,
282 	},
283 	[MT_MEMORY_SO] = {
284 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 				L_PTE_MT_UNCACHED,
286 		.prot_l1   = PMD_TYPE_TABLE,
287 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 				PMD_SECT_UNCACHED | PMD_SECT_XN,
289 		.domain    = DOMAIN_KERNEL,
290 	},
291 };
292 
get_mem_type(unsigned int type)293 const struct mem_type *get_mem_type(unsigned int type)
294 {
295 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
296 }
297 EXPORT_SYMBOL(get_mem_type);
298 
299 /*
300  * Adjust the PMD section entries according to the CPU in use.
301  */
build_mem_type_table(void)302 static void __init build_mem_type_table(void)
303 {
304 	struct cachepolicy *cp;
305 	unsigned int cr = get_cr();
306 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
307 	int cpu_arch = cpu_architecture();
308 	int i;
309 
310 	if (cpu_arch < CPU_ARCH_ARMv6) {
311 #if defined(CONFIG_CPU_DCACHE_DISABLE)
312 		if (cachepolicy > CPOLICY_BUFFERED)
313 			cachepolicy = CPOLICY_BUFFERED;
314 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
315 		if (cachepolicy > CPOLICY_WRITETHROUGH)
316 			cachepolicy = CPOLICY_WRITETHROUGH;
317 #endif
318 	}
319 	if (cpu_arch < CPU_ARCH_ARMv5) {
320 		if (cachepolicy >= CPOLICY_WRITEALLOC)
321 			cachepolicy = CPOLICY_WRITEBACK;
322 		ecc_mask = 0;
323 	}
324 	if (is_smp())
325 		cachepolicy = CPOLICY_WRITEALLOC;
326 
327 	/*
328 	 * Strip out features not present on earlier architectures.
329 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
330 	 * without extended page tables don't have the 'Shared' bit.
331 	 */
332 	if (cpu_arch < CPU_ARCH_ARMv5)
333 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
334 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
335 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
336 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
337 			mem_types[i].prot_sect &= ~PMD_SECT_S;
338 
339 	/*
340 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
341 	 * "update-able on write" bit on ARM610).  However, Xscale and
342 	 * Xscale3 require this bit to be cleared.
343 	 */
344 	if (cpu_is_xscale() || cpu_is_xsc3()) {
345 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
346 			mem_types[i].prot_sect &= ~PMD_BIT4;
347 			mem_types[i].prot_l1 &= ~PMD_BIT4;
348 		}
349 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
350 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351 			if (mem_types[i].prot_l1)
352 				mem_types[i].prot_l1 |= PMD_BIT4;
353 			if (mem_types[i].prot_sect)
354 				mem_types[i].prot_sect |= PMD_BIT4;
355 		}
356 	}
357 
358 	/*
359 	 * Mark the device areas according to the CPU/architecture.
360 	 */
361 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
362 		if (!cpu_is_xsc3()) {
363 			/*
364 			 * Mark device regions on ARMv6+ as execute-never
365 			 * to prevent speculative instruction fetches.
366 			 */
367 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
368 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
369 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
370 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
371 		}
372 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
373 			/*
374 			 * For ARMv7 with TEX remapping,
375 			 * - shared device is SXCB=1100
376 			 * - nonshared device is SXCB=0100
377 			 * - write combine device mem is SXCB=0001
378 			 * (Uncached Normal memory)
379 			 */
380 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
381 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
382 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
383 		} else if (cpu_is_xsc3()) {
384 			/*
385 			 * For Xscale3,
386 			 * - shared device is TEXCB=00101
387 			 * - nonshared device is TEXCB=01000
388 			 * - write combine device mem is TEXCB=00100
389 			 * (Inner/Outer Uncacheable in xsc3 parlance)
390 			 */
391 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
392 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
393 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
394 		} else {
395 			/*
396 			 * For ARMv6 and ARMv7 without TEX remapping,
397 			 * - shared device is TEXCB=00001
398 			 * - nonshared device is TEXCB=01000
399 			 * - write combine device mem is TEXCB=00100
400 			 * (Uncached Normal in ARMv6 parlance).
401 			 */
402 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
403 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
404 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
405 		}
406 	} else {
407 		/*
408 		 * On others, write combining is "Uncached/Buffered"
409 		 */
410 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
411 	}
412 
413 	/*
414 	 * Now deal with the memory-type mappings
415 	 */
416 	cp = &cache_policies[cachepolicy];
417 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
418 
419 	/*
420 	 * Only use write-through for non-SMP systems
421 	 */
422 	if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
423 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
424 
425 	/*
426 	 * Enable CPU-specific coherency if supported.
427 	 * (Only available on XSC3 at the moment.)
428 	 */
429 	if (arch_is_coherent() && cpu_is_xsc3()) {
430 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
431 		mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
432 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
433 		mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434 	}
435 	/*
436 	 * ARMv6 and above have extended page tables.
437 	 */
438 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
439 #ifndef CONFIG_ARM_LPAE
440 		/*
441 		 * Mark cache clean areas and XIP ROM read only
442 		 * from SVC mode and no access from userspace.
443 		 */
444 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447 #endif
448 
449 		if (is_smp()) {
450 			/*
451 			 * Mark memory with the "shared" attribute
452 			 * for SMP systems
453 			 */
454 			user_pgprot |= L_PTE_SHARED;
455 			kern_pgprot |= L_PTE_SHARED;
456 			vecs_pgprot |= L_PTE_SHARED;
457 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
458 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
459 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
460 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
461 			mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
462 			mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
463 			mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
464 			mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
465 		}
466 	}
467 
468 	/*
469 	 * Non-cacheable Normal - intended for memory areas that must
470 	 * not cause dirty cache line writebacks when used
471 	 */
472 	if (cpu_arch >= CPU_ARCH_ARMv6) {
473 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
474 			/* Non-cacheable Normal is XCB = 001 */
475 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
476 				PMD_SECT_BUFFERED;
477 		} else {
478 			/* For both ARMv6 and non-TEX-remapping ARMv7 */
479 			mem_types[MT_MEMORY_NONCACHED].prot_sect |=
480 				PMD_SECT_TEX(1);
481 		}
482 	} else {
483 		mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
484 	}
485 
486 #ifdef CONFIG_ARM_LPAE
487 	/*
488 	 * Do not generate access flag faults for the kernel mappings.
489 	 */
490 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
491 		mem_types[i].prot_pte |= PTE_EXT_AF;
492 		if (mem_types[i].prot_sect)
493 			mem_types[i].prot_sect |= PMD_SECT_AF;
494 	}
495 	kern_pgprot |= PTE_EXT_AF;
496 	vecs_pgprot |= PTE_EXT_AF;
497 #endif
498 
499 	for (i = 0; i < 16; i++) {
500 		pteval_t v = pgprot_val(protection_map[i]);
501 		protection_map[i] = __pgprot(v | user_pgprot);
502 	}
503 
504 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
505 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
506 
507 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
508 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
509 				 L_PTE_DIRTY | kern_pgprot);
510 
511 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
512 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
513 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
514 	mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
515 	mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
516 	mem_types[MT_ROM].prot_sect |= cp->pmd;
517 
518 	switch (cp->pmd) {
519 	case PMD_SECT_WT:
520 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
521 		break;
522 	case PMD_SECT_WB:
523 	case PMD_SECT_WBWA:
524 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
525 		break;
526 	}
527 	printk("Memory policy: ECC %sabled, Data cache %s\n",
528 		ecc_mask ? "en" : "dis", cp->policy);
529 
530 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
531 		struct mem_type *t = &mem_types[i];
532 		if (t->prot_l1)
533 			t->prot_l1 |= PMD_DOMAIN(t->domain);
534 		if (t->prot_sect)
535 			t->prot_sect |= PMD_DOMAIN(t->domain);
536 	}
537 }
538 
539 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)540 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
541 			      unsigned long size, pgprot_t vma_prot)
542 {
543 	if (!pfn_valid(pfn))
544 		return pgprot_noncached(vma_prot);
545 	else if (file->f_flags & O_SYNC)
546 		return pgprot_writecombine(vma_prot);
547 	return vma_prot;
548 }
549 EXPORT_SYMBOL(phys_mem_access_prot);
550 #endif
551 
552 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
553 
early_alloc_aligned(unsigned long sz,unsigned long align)554 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
555 {
556 	void *ptr = __va(memblock_alloc(sz, align));
557 	memset(ptr, 0, sz);
558 	return ptr;
559 }
560 
early_alloc(unsigned long sz)561 static void __init *early_alloc(unsigned long sz)
562 {
563 	return early_alloc_aligned(sz, sz);
564 }
565 
early_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot)566 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
567 {
568 	if (pmd_none(*pmd)) {
569 		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
570 		__pmd_populate(pmd, __pa(pte), prot);
571 	}
572 	BUG_ON(pmd_bad(*pmd));
573 	return pte_offset_kernel(pmd, addr);
574 }
575 
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type)576 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
577 				  unsigned long end, unsigned long pfn,
578 				  const struct mem_type *type)
579 {
580 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
581 	do {
582 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
583 		pfn++;
584 	} while (pte++, addr += PAGE_SIZE, addr != end);
585 }
586 
alloc_init_section(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys,const struct mem_type * type)587 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
588 				      unsigned long end, phys_addr_t phys,
589 				      const struct mem_type *type)
590 {
591 	pmd_t *pmd = pmd_offset(pud, addr);
592 
593 	/*
594 	 * Try a section mapping - end, addr and phys must all be aligned
595 	 * to a section boundary.  Note that PMDs refer to the individual
596 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
597 	 * up one logical pointer to an L2 table.
598 	 */
599 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
600 		pmd_t *p = pmd;
601 
602 #ifndef CONFIG_ARM_LPAE
603 		if (addr & SECTION_SIZE)
604 			pmd++;
605 #endif
606 
607 		do {
608 			*pmd = __pmd(phys | type->prot_sect);
609 			phys += SECTION_SIZE;
610 		} while (pmd++, addr += SECTION_SIZE, addr != end);
611 
612 		flush_pmd_entry(p);
613 	} else {
614 		/*
615 		 * No need to loop; pte's aren't interested in the
616 		 * individual L1 entries.
617 		 */
618 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
619 	}
620 }
621 
alloc_init_pud(pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long phys,const struct mem_type * type)622 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
623 	unsigned long end, unsigned long phys, const struct mem_type *type)
624 {
625 	pud_t *pud = pud_offset(pgd, addr);
626 	unsigned long next;
627 
628 	do {
629 		next = pud_addr_end(addr, end);
630 		alloc_init_section(pud, addr, next, phys, type);
631 		phys += next - addr;
632 	} while (pud++, addr = next, addr != end);
633 }
634 
635 #ifndef CONFIG_ARM_LPAE
create_36bit_mapping(struct map_desc * md,const struct mem_type * type)636 static void __init create_36bit_mapping(struct map_desc *md,
637 					const struct mem_type *type)
638 {
639 	unsigned long addr, length, end;
640 	phys_addr_t phys;
641 	pgd_t *pgd;
642 
643 	addr = md->virtual;
644 	phys = __pfn_to_phys(md->pfn);
645 	length = PAGE_ALIGN(md->length);
646 
647 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
648 		printk(KERN_ERR "MM: CPU does not support supersection "
649 		       "mapping for 0x%08llx at 0x%08lx\n",
650 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
651 		return;
652 	}
653 
654 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
655 	 *	Since domain assignments can in fact be arbitrary, the
656 	 *	'domain == 0' check below is required to insure that ARMv6
657 	 *	supersections are only allocated for domain 0 regardless
658 	 *	of the actual domain assignments in use.
659 	 */
660 	if (type->domain) {
661 		printk(KERN_ERR "MM: invalid domain in supersection "
662 		       "mapping for 0x%08llx at 0x%08lx\n",
663 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
664 		return;
665 	}
666 
667 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
668 		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
669 		       " at 0x%08lx invalid alignment\n",
670 		       (long long)__pfn_to_phys((u64)md->pfn), addr);
671 		return;
672 	}
673 
674 	/*
675 	 * Shift bits [35:32] of address into bits [23:20] of PMD
676 	 * (See ARMv6 spec).
677 	 */
678 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
679 
680 	pgd = pgd_offset_k(addr);
681 	end = addr + length;
682 	do {
683 		pud_t *pud = pud_offset(pgd, addr);
684 		pmd_t *pmd = pmd_offset(pud, addr);
685 		int i;
686 
687 		for (i = 0; i < 16; i++)
688 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
689 
690 		addr += SUPERSECTION_SIZE;
691 		phys += SUPERSECTION_SIZE;
692 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
693 	} while (addr != end);
694 }
695 #endif	/* !CONFIG_ARM_LPAE */
696 
697 /*
698  * Create the page directory entries and any necessary
699  * page tables for the mapping specified by `md'.  We
700  * are able to cope here with varying sizes and address
701  * offsets, and we take full advantage of sections and
702  * supersections.
703  */
create_mapping(struct map_desc * md)704 static void __init create_mapping(struct map_desc *md)
705 {
706 	unsigned long addr, length, end;
707 	phys_addr_t phys;
708 	const struct mem_type *type;
709 	pgd_t *pgd;
710 
711 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
712 		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
713 		       " at 0x%08lx in user region\n",
714 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
715 		return;
716 	}
717 
718 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
719 	    md->virtual >= PAGE_OFFSET &&
720 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
721 		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
722 		       " at 0x%08lx out of vmalloc space\n",
723 		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
724 	}
725 
726 	type = &mem_types[md->type];
727 
728 #ifndef CONFIG_ARM_LPAE
729 	/*
730 	 * Catch 36-bit addresses
731 	 */
732 	if (md->pfn >= 0x100000) {
733 		create_36bit_mapping(md, type);
734 		return;
735 	}
736 #endif
737 
738 	addr = md->virtual & PAGE_MASK;
739 	phys = __pfn_to_phys(md->pfn);
740 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
741 
742 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
743 		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
744 		       "be mapped using pages, ignoring.\n",
745 		       (long long)__pfn_to_phys(md->pfn), addr);
746 		return;
747 	}
748 
749 	pgd = pgd_offset_k(addr);
750 	end = addr + length;
751 	do {
752 		unsigned long next = pgd_addr_end(addr, end);
753 
754 		alloc_init_pud(pgd, addr, next, phys, type);
755 
756 		phys += next - addr;
757 		addr = next;
758 	} while (pgd++, addr != end);
759 }
760 
761 /*
762  * Create the architecture specific mappings
763  */
iotable_init(struct map_desc * io_desc,int nr)764 void __init iotable_init(struct map_desc *io_desc, int nr)
765 {
766 	struct map_desc *md;
767 	struct vm_struct *vm;
768 
769 	if (!nr)
770 		return;
771 
772 	vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
773 
774 	for (md = io_desc; nr; md++, nr--) {
775 		create_mapping(md);
776 		vm->addr = (void *)(md->virtual & PAGE_MASK);
777 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
778 		vm->phys_addr = __pfn_to_phys(md->pfn);
779 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
780 		vm->flags |= VM_ARM_MTYPE(md->type);
781 		vm->caller = iotable_init;
782 		vm_area_add_early(vm++);
783 	}
784 }
785 
786 #ifndef CONFIG_ARM_LPAE
787 
788 /*
789  * The Linux PMD is made of two consecutive section entries covering 2MB
790  * (see definition in include/asm/pgtable-2level.h).  However a call to
791  * create_mapping() may optimize static mappings by using individual
792  * 1MB section mappings.  This leaves the actual PMD potentially half
793  * initialized if the top or bottom section entry isn't used, leaving it
794  * open to problems if a subsequent ioremap() or vmalloc() tries to use
795  * the virtual space left free by that unused section entry.
796  *
797  * Let's avoid the issue by inserting dummy vm entries covering the unused
798  * PMD halves once the static mappings are in place.
799  */
800 
pmd_empty_section_gap(unsigned long addr)801 static void __init pmd_empty_section_gap(unsigned long addr)
802 {
803 	struct vm_struct *vm;
804 
805 	vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
806 	vm->addr = (void *)addr;
807 	vm->size = SECTION_SIZE;
808 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
809 	vm->caller = pmd_empty_section_gap;
810 	vm_area_add_early(vm);
811 }
812 
fill_pmd_gaps(void)813 static void __init fill_pmd_gaps(void)
814 {
815 	struct vm_struct *vm;
816 	unsigned long addr, next = 0;
817 	pmd_t *pmd;
818 
819 	/* we're still single threaded hence no lock needed here */
820 	for (vm = vmlist; vm; vm = vm->next) {
821 		if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))
822 			continue;
823 		addr = (unsigned long)vm->addr;
824 		if (addr < next)
825 			continue;
826 
827 		/*
828 		 * Check if this vm starts on an odd section boundary.
829 		 * If so and the first section entry for this PMD is free
830 		 * then we block the corresponding virtual address.
831 		 */
832 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
833 			pmd = pmd_off_k(addr);
834 			if (pmd_none(*pmd))
835 				pmd_empty_section_gap(addr & PMD_MASK);
836 		}
837 
838 		/*
839 		 * Then check if this vm ends on an odd section boundary.
840 		 * If so and the second section entry for this PMD is empty
841 		 * then we block the corresponding virtual address.
842 		 */
843 		addr += vm->size;
844 		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
845 			pmd = pmd_off_k(addr) + 1;
846 			if (pmd_none(*pmd))
847 				pmd_empty_section_gap(addr);
848 		}
849 
850 		/* no need to look at any vm entry until we hit the next PMD */
851 		next = (addr + PMD_SIZE - 1) & PMD_MASK;
852 	}
853 }
854 
855 #else
856 #define fill_pmd_gaps() do { } while (0)
857 #endif
858 
859 static void * __initdata vmalloc_min =
860 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
861 
862 /*
863  * vmalloc=size forces the vmalloc area to be exactly 'size'
864  * bytes. This can be used to increase (or decrease) the vmalloc
865  * area - the default is 240m.
866  */
early_vmalloc(char * arg)867 static int __init early_vmalloc(char *arg)
868 {
869 	unsigned long vmalloc_reserve = memparse(arg, NULL);
870 
871 	if (vmalloc_reserve < SZ_16M) {
872 		vmalloc_reserve = SZ_16M;
873 		printk(KERN_WARNING
874 			"vmalloc area too small, limiting to %luMB\n",
875 			vmalloc_reserve >> 20);
876 	}
877 
878 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
879 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
880 		printk(KERN_WARNING
881 			"vmalloc area is too big, limiting to %luMB\n",
882 			vmalloc_reserve >> 20);
883 	}
884 
885 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
886 	return 0;
887 }
888 early_param("vmalloc", early_vmalloc);
889 
890 static phys_addr_t lowmem_limit __initdata = 0;
891 
sanity_check_meminfo(void)892 void __init sanity_check_meminfo(void)
893 {
894 	int i, j, highmem = 0;
895 
896 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
897 		struct membank *bank = &meminfo.bank[j];
898 		*bank = meminfo.bank[i];
899 
900 		if (bank->start > ULONG_MAX)
901 			highmem = 1;
902 
903 #ifdef CONFIG_HIGHMEM
904 		if (__va(bank->start) >= vmalloc_min ||
905 		    __va(bank->start) < (void *)PAGE_OFFSET)
906 			highmem = 1;
907 
908 		bank->highmem = highmem;
909 
910 		/*
911 		 * Split those memory banks which are partially overlapping
912 		 * the vmalloc area greatly simplifying things later.
913 		 */
914 		if (!highmem && __va(bank->start) < vmalloc_min &&
915 		    bank->size > vmalloc_min - __va(bank->start)) {
916 			if (meminfo.nr_banks >= NR_BANKS) {
917 				printk(KERN_CRIT "NR_BANKS too low, "
918 						 "ignoring high memory\n");
919 			} else {
920 				memmove(bank + 1, bank,
921 					(meminfo.nr_banks - i) * sizeof(*bank));
922 				meminfo.nr_banks++;
923 				i++;
924 				bank[1].size -= vmalloc_min - __va(bank->start);
925 				bank[1].start = __pa(vmalloc_min - 1) + 1;
926 				bank[1].highmem = highmem = 1;
927 				j++;
928 			}
929 			bank->size = vmalloc_min - __va(bank->start);
930 		}
931 #else
932 		bank->highmem = highmem;
933 
934 		/*
935 		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
936 		 */
937 		if (highmem) {
938 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
939 			       "(!CONFIG_HIGHMEM).\n",
940 			       (unsigned long long)bank->start,
941 			       (unsigned long long)bank->start + bank->size - 1);
942 			continue;
943 		}
944 
945 		/*
946 		 * Check whether this memory bank would entirely overlap
947 		 * the vmalloc area.
948 		 */
949 		if (__va(bank->start) >= vmalloc_min ||
950 		    __va(bank->start) < (void *)PAGE_OFFSET) {
951 			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
952 			       "(vmalloc region overlap).\n",
953 			       (unsigned long long)bank->start,
954 			       (unsigned long long)bank->start + bank->size - 1);
955 			continue;
956 		}
957 
958 		/*
959 		 * Check whether this memory bank would partially overlap
960 		 * the vmalloc area.
961 		 */
962 		if (__va(bank->start + bank->size) > vmalloc_min ||
963 		    __va(bank->start + bank->size) < __va(bank->start)) {
964 			unsigned long newsize = vmalloc_min - __va(bank->start);
965 			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
966 			       "to -%.8llx (vmalloc region overlap).\n",
967 			       (unsigned long long)bank->start,
968 			       (unsigned long long)bank->start + bank->size - 1,
969 			       (unsigned long long)bank->start + newsize - 1);
970 			bank->size = newsize;
971 		}
972 #endif
973 		if (!bank->highmem && bank->start + bank->size > lowmem_limit)
974 			lowmem_limit = bank->start + bank->size;
975 
976 		j++;
977 	}
978 #ifdef CONFIG_HIGHMEM
979 	if (highmem) {
980 		const char *reason = NULL;
981 
982 		if (cache_is_vipt_aliasing()) {
983 			/*
984 			 * Interactions between kmap and other mappings
985 			 * make highmem support with aliasing VIPT caches
986 			 * rather difficult.
987 			 */
988 			reason = "with VIPT aliasing cache";
989 		}
990 		if (reason) {
991 			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
992 				reason);
993 			while (j > 0 && meminfo.bank[j - 1].highmem)
994 				j--;
995 		}
996 	}
997 #endif
998 	meminfo.nr_banks = j;
999 	high_memory = __va(lowmem_limit - 1) + 1;
1000 	memblock_set_current_limit(lowmem_limit);
1001 }
1002 
prepare_page_table(void)1003 static inline void prepare_page_table(void)
1004 {
1005 	unsigned long addr;
1006 	phys_addr_t end;
1007 
1008 	/*
1009 	 * Clear out all the mappings below the kernel image.
1010 	 */
1011 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1012 		pmd_clear(pmd_off_k(addr));
1013 
1014 #ifdef CONFIG_XIP_KERNEL
1015 	/* The XIP kernel is mapped in the module area -- skip over it */
1016 	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1017 #endif
1018 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1019 		pmd_clear(pmd_off_k(addr));
1020 
1021 	/*
1022 	 * Find the end of the first block of lowmem.
1023 	 */
1024 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1025 	if (end >= lowmem_limit)
1026 		end = lowmem_limit;
1027 
1028 	/*
1029 	 * Clear out all the kernel space mappings, except for the first
1030 	 * memory bank, up to the vmalloc region.
1031 	 */
1032 	for (addr = __phys_to_virt(end);
1033 	     addr < VMALLOC_START; addr += PMD_SIZE)
1034 		pmd_clear(pmd_off_k(addr));
1035 }
1036 
1037 #ifdef CONFIG_ARM_LPAE
1038 /* the first page is reserved for pgd */
1039 #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1040 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1041 #else
1042 #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1043 #endif
1044 
1045 /*
1046  * Reserve the special regions of memory
1047  */
arm_mm_memblock_reserve(void)1048 void __init arm_mm_memblock_reserve(void)
1049 {
1050 	/*
1051 	 * Reserve the page tables.  These are already in use,
1052 	 * and can only be in node 0.
1053 	 */
1054 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1055 
1056 #ifdef CONFIG_SA1111
1057 	/*
1058 	 * Because of the SA1111 DMA bug, we want to preserve our
1059 	 * precious DMA-able memory...
1060 	 */
1061 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1062 #endif
1063 }
1064 
1065 /*
1066  * Set up the device mappings.  Since we clear out the page tables for all
1067  * mappings above VMALLOC_START, we will remove any debug device mappings.
1068  * This means you have to be careful how you debug this function, or any
1069  * called function.  This means you can't use any function or debugging
1070  * method which may touch any device, otherwise the kernel _will_ crash.
1071  */
devicemaps_init(struct machine_desc * mdesc)1072 static void __init devicemaps_init(struct machine_desc *mdesc)
1073 {
1074 	struct map_desc map;
1075 	unsigned long addr;
1076 	void *vectors;
1077 
1078 	/*
1079 	 * Allocate the vector page early.
1080 	 */
1081 	vectors = early_alloc(PAGE_SIZE);
1082 
1083 	early_trap_init(vectors);
1084 
1085 	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1086 		pmd_clear(pmd_off_k(addr));
1087 
1088 	/*
1089 	 * Map the kernel if it is XIP.
1090 	 * It is always first in the modulearea.
1091 	 */
1092 #ifdef CONFIG_XIP_KERNEL
1093 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1094 	map.virtual = MODULES_VADDR;
1095 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1096 	map.type = MT_ROM;
1097 	create_mapping(&map);
1098 #endif
1099 
1100 	/*
1101 	 * Map the cache flushing regions.
1102 	 */
1103 #ifdef FLUSH_BASE
1104 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1105 	map.virtual = FLUSH_BASE;
1106 	map.length = SZ_1M;
1107 	map.type = MT_CACHECLEAN;
1108 	create_mapping(&map);
1109 #endif
1110 #ifdef FLUSH_BASE_MINICACHE
1111 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1112 	map.virtual = FLUSH_BASE_MINICACHE;
1113 	map.length = SZ_1M;
1114 	map.type = MT_MINICLEAN;
1115 	create_mapping(&map);
1116 #endif
1117 
1118 	/*
1119 	 * Create a mapping for the machine vectors at the high-vectors
1120 	 * location (0xffff0000).  If we aren't using high-vectors, also
1121 	 * create a mapping at the low-vectors virtual address.
1122 	 */
1123 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1124 	map.virtual = 0xffff0000;
1125 	map.length = PAGE_SIZE;
1126 	map.type = MT_HIGH_VECTORS;
1127 	create_mapping(&map);
1128 
1129 	if (!vectors_high()) {
1130 		map.virtual = 0;
1131 		map.type = MT_LOW_VECTORS;
1132 		create_mapping(&map);
1133 	}
1134 
1135 	/*
1136 	 * Ask the machine support to map in the statically mapped devices.
1137 	 */
1138 	if (mdesc->map_io)
1139 		mdesc->map_io();
1140 	fill_pmd_gaps();
1141 
1142 	/*
1143 	 * Finally flush the caches and tlb to ensure that we're in a
1144 	 * consistent state wrt the writebuffer.  This also ensures that
1145 	 * any write-allocated cache lines in the vector page are written
1146 	 * back.  After this point, we can start to touch devices again.
1147 	 */
1148 	local_flush_tlb_all();
1149 	flush_cache_all();
1150 }
1151 
kmap_init(void)1152 static void __init kmap_init(void)
1153 {
1154 #ifdef CONFIG_HIGHMEM
1155 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1156 		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1157 #endif
1158 }
1159 
map_lowmem(void)1160 static void __init map_lowmem(void)
1161 {
1162 	struct memblock_region *reg;
1163 
1164 	/* Map all the lowmem memory banks. */
1165 	for_each_memblock(memory, reg) {
1166 		phys_addr_t start = reg->base;
1167 		phys_addr_t end = start + reg->size;
1168 		struct map_desc map;
1169 
1170 		if (end > lowmem_limit)
1171 			end = lowmem_limit;
1172 		if (start >= end)
1173 			break;
1174 
1175 		map.pfn = __phys_to_pfn(start);
1176 		map.virtual = __phys_to_virt(start);
1177 		map.length = end - start;
1178 		map.type = MT_MEMORY;
1179 
1180 		create_mapping(&map);
1181 	}
1182 }
1183 
1184 /*
1185  * paging_init() sets up the page tables, initialises the zone memory
1186  * maps, and sets up the zero page, bad page and bad page tables.
1187  */
paging_init(struct machine_desc * mdesc)1188 void __init paging_init(struct machine_desc *mdesc)
1189 {
1190 	void *zero_page;
1191 
1192 	memblock_set_current_limit(lowmem_limit);
1193 
1194 	build_mem_type_table();
1195 	prepare_page_table();
1196 	map_lowmem();
1197 	devicemaps_init(mdesc);
1198 	kmap_init();
1199 
1200 	top_pmd = pmd_off_k(0xffff0000);
1201 
1202 	/* allocate the zero page. */
1203 	zero_page = early_alloc(PAGE_SIZE);
1204 
1205 	bootmem_init();
1206 
1207 	empty_zero_page = virt_to_page(zero_page);
1208 	__flush_dcache_page(NULL, empty_zero_page);
1209 }
1210