1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="Generic-IRQ-Guide"> 6 <bookinfo> 7 <title>Linux generic IRQ handling</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Thomas</firstname> 12 <surname>Gleixner</surname> 13 <affiliation> 14 <address> 15 <email>tglx@linutronix.de</email> 16 </address> 17 </affiliation> 18 </author> 19 <author> 20 <firstname>Ingo</firstname> 21 <surname>Molnar</surname> 22 <affiliation> 23 <address> 24 <email>mingo@elte.hu</email> 25 </address> 26 </affiliation> 27 </author> 28 </authorgroup> 29 30 <copyright> 31 <year>2005-2010</year> 32 <holder>Thomas Gleixner</holder> 33 </copyright> 34 <copyright> 35 <year>2005-2006</year> 36 <holder>Ingo Molnar</holder> 37 </copyright> 38 39 <legalnotice> 40 <para> 41 This documentation is free software; you can redistribute 42 it and/or modify it under the terms of the GNU General Public 43 License version 2 as published by the Free Software Foundation. 44 </para> 45 46 <para> 47 This program is distributed in the hope that it will be 48 useful, but WITHOUT ANY WARRANTY; without even the implied 49 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 50 See the GNU General Public License for more details. 51 </para> 52 53 <para> 54 You should have received a copy of the GNU General Public 55 License along with this program; if not, write to the Free 56 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, 57 MA 02111-1307 USA 58 </para> 59 60 <para> 61 For more details see the file COPYING in the source 62 distribution of Linux. 63 </para> 64 </legalnotice> 65 </bookinfo> 66 67<toc></toc> 68 69 <chapter id="intro"> 70 <title>Introduction</title> 71 <para> 72 The generic interrupt handling layer is designed to provide a 73 complete abstraction of interrupt handling for device drivers. 74 It is able to handle all the different types of interrupt controller 75 hardware. Device drivers use generic API functions to request, enable, 76 disable and free interrupts. The drivers do not have to know anything 77 about interrupt hardware details, so they can be used on different 78 platforms without code changes. 79 </para> 80 <para> 81 This documentation is provided to developers who want to implement 82 an interrupt subsystem based for their architecture, with the help 83 of the generic IRQ handling layer. 84 </para> 85 </chapter> 86 87 <chapter id="rationale"> 88 <title>Rationale</title> 89 <para> 90 The original implementation of interrupt handling in Linux is using 91 the __do_IRQ() super-handler, which is able to deal with every 92 type of interrupt logic. 93 </para> 94 <para> 95 Originally, Russell King identified different types of handlers to 96 build a quite universal set for the ARM interrupt handler 97 implementation in Linux 2.5/2.6. He distinguished between: 98 <itemizedlist> 99 <listitem><para>Level type</para></listitem> 100 <listitem><para>Edge type</para></listitem> 101 <listitem><para>Simple type</para></listitem> 102 </itemizedlist> 103 During the implementation we identified another type: 104 <itemizedlist> 105 <listitem><para>Fast EOI type</para></listitem> 106 </itemizedlist> 107 In the SMP world of the __do_IRQ() super-handler another type 108 was identified: 109 <itemizedlist> 110 <listitem><para>Per CPU type</para></listitem> 111 </itemizedlist> 112 </para> 113 <para> 114 This split implementation of highlevel IRQ handlers allows us to 115 optimize the flow of the interrupt handling for each specific 116 interrupt type. This reduces complexity in that particular codepath 117 and allows the optimized handling of a given type. 118 </para> 119 <para> 120 The original general IRQ implementation used hw_interrupt_type 121 structures and their ->ack(), ->end() [etc.] callbacks to 122 differentiate the flow control in the super-handler. This leads to 123 a mix of flow logic and lowlevel hardware logic, and it also leads 124 to unnecessary code duplication: for example in i386, there is a 125 ioapic_level_irq and a ioapic_edge_irq irq-type which share many 126 of the lowlevel details but have different flow handling. 127 </para> 128 <para> 129 A more natural abstraction is the clean separation of the 130 'irq flow' and the 'chip details'. 131 </para> 132 <para> 133 Analysing a couple of architecture's IRQ subsystem implementations 134 reveals that most of them can use a generic set of 'irq flow' 135 methods and only need to add the chip level specific code. 136 The separation is also valuable for (sub)architectures 137 which need specific quirks in the irq flow itself but not in the 138 chip-details - and thus provides a more transparent IRQ subsystem 139 design. 140 </para> 141 <para> 142 Each interrupt descriptor is assigned its own highlevel flow 143 handler, which is normally one of the generic 144 implementations. (This highlevel flow handler implementation also 145 makes it simple to provide demultiplexing handlers which can be 146 found in embedded platforms on various architectures.) 147 </para> 148 <para> 149 The separation makes the generic interrupt handling layer more 150 flexible and extensible. For example, an (sub)architecture can 151 use a generic irq-flow implementation for 'level type' interrupts 152 and add a (sub)architecture specific 'edge type' implementation. 153 </para> 154 <para> 155 To make the transition to the new model easier and prevent the 156 breakage of existing implementations, the __do_IRQ() super-handler 157 is still available. This leads to a kind of duality for the time 158 being. Over time the new model should be used in more and more 159 architectures, as it enables smaller and cleaner IRQ subsystems. 160 It's deprecated for three years now and about to be removed. 161 </para> 162 </chapter> 163 <chapter id="bugs"> 164 <title>Known Bugs And Assumptions</title> 165 <para> 166 None (knock on wood). 167 </para> 168 </chapter> 169 170 <chapter id="Abstraction"> 171 <title>Abstraction layers</title> 172 <para> 173 There are three main levels of abstraction in the interrupt code: 174 <orderedlist> 175 <listitem><para>Highlevel driver API</para></listitem> 176 <listitem><para>Highlevel IRQ flow handlers</para></listitem> 177 <listitem><para>Chiplevel hardware encapsulation</para></listitem> 178 </orderedlist> 179 </para> 180 <sect1 id="Interrupt_control_flow"> 181 <title>Interrupt control flow</title> 182 <para> 183 Each interrupt is described by an interrupt descriptor structure 184 irq_desc. The interrupt is referenced by an 'unsigned int' numeric 185 value which selects the corresponding interrupt decription structure 186 in the descriptor structures array. 187 The descriptor structure contains status information and pointers 188 to the interrupt flow method and the interrupt chip structure 189 which are assigned to this interrupt. 190 </para> 191 <para> 192 Whenever an interrupt triggers, the lowlevel arch code calls into 193 the generic interrupt code by calling desc->handle_irq(). 194 This highlevel IRQ handling function only uses desc->irq_data.chip 195 primitives referenced by the assigned chip descriptor structure. 196 </para> 197 </sect1> 198 <sect1 id="Highlevel_Driver_API"> 199 <title>Highlevel Driver API</title> 200 <para> 201 The highlevel Driver API consists of following functions: 202 <itemizedlist> 203 <listitem><para>request_irq()</para></listitem> 204 <listitem><para>free_irq()</para></listitem> 205 <listitem><para>disable_irq()</para></listitem> 206 <listitem><para>enable_irq()</para></listitem> 207 <listitem><para>disable_irq_nosync() (SMP only)</para></listitem> 208 <listitem><para>synchronize_irq() (SMP only)</para></listitem> 209 <listitem><para>irq_set_irq_type()</para></listitem> 210 <listitem><para>irq_set_irq_wake()</para></listitem> 211 <listitem><para>irq_set_handler_data()</para></listitem> 212 <listitem><para>irq_set_chip()</para></listitem> 213 <listitem><para>irq_set_chip_data()</para></listitem> 214 </itemizedlist> 215 See the autogenerated function documentation for details. 216 </para> 217 </sect1> 218 <sect1 id="Highlevel_IRQ_flow_handlers"> 219 <title>Highlevel IRQ flow handlers</title> 220 <para> 221 The generic layer provides a set of pre-defined irq-flow methods: 222 <itemizedlist> 223 <listitem><para>handle_level_irq</para></listitem> 224 <listitem><para>handle_edge_irq</para></listitem> 225 <listitem><para>handle_fasteoi_irq</para></listitem> 226 <listitem><para>handle_simple_irq</para></listitem> 227 <listitem><para>handle_percpu_irq</para></listitem> 228 <listitem><para>handle_edge_eoi_irq</para></listitem> 229 <listitem><para>handle_bad_irq</para></listitem> 230 </itemizedlist> 231 The interrupt flow handlers (either predefined or architecture 232 specific) are assigned to specific interrupts by the architecture 233 either during bootup or during device initialization. 234 </para> 235 <sect2 id="Default_flow_implementations"> 236 <title>Default flow implementations</title> 237 <sect3 id="Helper_functions"> 238 <title>Helper functions</title> 239 <para> 240 The helper functions call the chip primitives and 241 are used by the default flow implementations. 242 The following helper functions are implemented (simplified excerpt): 243 <programlisting> 244default_enable(struct irq_data *data) 245{ 246 desc->irq_data.chip->irq_unmask(data); 247} 248 249default_disable(struct irq_data *data) 250{ 251 if (!delay_disable(data)) 252 desc->irq_data.chip->irq_mask(data); 253} 254 255default_ack(struct irq_data *data) 256{ 257 chip->irq_ack(data); 258} 259 260default_mask_ack(struct irq_data *data) 261{ 262 if (chip->irq_mask_ack) { 263 chip->irq_mask_ack(data); 264 } else { 265 chip->irq_mask(data); 266 chip->irq_ack(data); 267 } 268} 269 270noop(struct irq_data *data)) 271{ 272} 273 274 </programlisting> 275 </para> 276 </sect3> 277 </sect2> 278 <sect2 id="Default_flow_handler_implementations"> 279 <title>Default flow handler implementations</title> 280 <sect3 id="Default_Level_IRQ_flow_handler"> 281 <title>Default Level IRQ flow handler</title> 282 <para> 283 handle_level_irq provides a generic implementation 284 for level-triggered interrupts. 285 </para> 286 <para> 287 The following control flow is implemented (simplified excerpt): 288 <programlisting> 289desc->irq_data.chip->irq_mask_ack(); 290handle_irq_event(desc->action); 291desc->irq_data.chip->irq_unmask(); 292 </programlisting> 293 </para> 294 </sect3> 295 <sect3 id="Default_FASTEOI_IRQ_flow_handler"> 296 <title>Default Fast EOI IRQ flow handler</title> 297 <para> 298 handle_fasteoi_irq provides a generic implementation 299 for interrupts, which only need an EOI at the end of 300 the handler 301 </para> 302 <para> 303 The following control flow is implemented (simplified excerpt): 304 <programlisting> 305handle_irq_event(desc->action); 306desc->irq_data.chip->irq_eoi(); 307 </programlisting> 308 </para> 309 </sect3> 310 <sect3 id="Default_Edge_IRQ_flow_handler"> 311 <title>Default Edge IRQ flow handler</title> 312 <para> 313 handle_edge_irq provides a generic implementation 314 for edge-triggered interrupts. 315 </para> 316 <para> 317 The following control flow is implemented (simplified excerpt): 318 <programlisting> 319if (desc->status & running) { 320 desc->irq_data.chip->irq_mask_ack(); 321 desc->status |= pending | masked; 322 return; 323} 324desc->irq_data.chip->irq_ack(); 325desc->status |= running; 326do { 327 if (desc->status & masked) 328 desc->irq_data.chip->irq_unmask(); 329 desc->status &= ~pending; 330 handle_irq_event(desc->action); 331} while (status & pending); 332desc->status &= ~running; 333 </programlisting> 334 </para> 335 </sect3> 336 <sect3 id="Default_simple_IRQ_flow_handler"> 337 <title>Default simple IRQ flow handler</title> 338 <para> 339 handle_simple_irq provides a generic implementation 340 for simple interrupts. 341 </para> 342 <para> 343 Note: The simple flow handler does not call any 344 handler/chip primitives. 345 </para> 346 <para> 347 The following control flow is implemented (simplified excerpt): 348 <programlisting> 349handle_irq_event(desc->action); 350 </programlisting> 351 </para> 352 </sect3> 353 <sect3 id="Default_per_CPU_flow_handler"> 354 <title>Default per CPU flow handler</title> 355 <para> 356 handle_percpu_irq provides a generic implementation 357 for per CPU interrupts. 358 </para> 359 <para> 360 Per CPU interrupts are only available on SMP and 361 the handler provides a simplified version without 362 locking. 363 </para> 364 <para> 365 The following control flow is implemented (simplified excerpt): 366 <programlisting> 367if (desc->irq_data.chip->irq_ack) 368 desc->irq_data.chip->irq_ack(); 369handle_irq_event(desc->action); 370if (desc->irq_data.chip->irq_eoi) 371 desc->irq_data.chip->irq_eoi(); 372 </programlisting> 373 </para> 374 </sect3> 375 <sect3 id="EOI_Edge_IRQ_flow_handler"> 376 <title>EOI Edge IRQ flow handler</title> 377 <para> 378 handle_edge_eoi_irq provides an abnomination of the edge 379 handler which is solely used to tame a badly wreckaged 380 irq controller on powerpc/cell. 381 </para> 382 </sect3> 383 <sect3 id="BAD_IRQ_flow_handler"> 384 <title>Bad IRQ flow handler</title> 385 <para> 386 handle_bad_irq is used for spurious interrupts which 387 have no real handler assigned.. 388 </para> 389 </sect3> 390 </sect2> 391 <sect2 id="Quirks_and_optimizations"> 392 <title>Quirks and optimizations</title> 393 <para> 394 The generic functions are intended for 'clean' architectures and chips, 395 which have no platform-specific IRQ handling quirks. If an architecture 396 needs to implement quirks on the 'flow' level then it can do so by 397 overriding the highlevel irq-flow handler. 398 </para> 399 </sect2> 400 <sect2 id="Delayed_interrupt_disable"> 401 <title>Delayed interrupt disable</title> 402 <para> 403 This per interrupt selectable feature, which was introduced by Russell 404 King in the ARM interrupt implementation, does not mask an interrupt 405 at the hardware level when disable_irq() is called. The interrupt is 406 kept enabled and is masked in the flow handler when an interrupt event 407 happens. This prevents losing edge interrupts on hardware which does 408 not store an edge interrupt event while the interrupt is disabled at 409 the hardware level. When an interrupt arrives while the IRQ_DISABLED 410 flag is set, then the interrupt is masked at the hardware level and 411 the IRQ_PENDING bit is set. When the interrupt is re-enabled by 412 enable_irq() the pending bit is checked and if it is set, the 413 interrupt is resent either via hardware or by a software resend 414 mechanism. (It's necessary to enable CONFIG_HARDIRQS_SW_RESEND when 415 you want to use the delayed interrupt disable feature and your 416 hardware is not capable of retriggering an interrupt.) 417 The delayed interrupt disable is not configurable. 418 </para> 419 </sect2> 420 </sect1> 421 <sect1 id="Chiplevel_hardware_encapsulation"> 422 <title>Chiplevel hardware encapsulation</title> 423 <para> 424 The chip level hardware descriptor structure irq_chip 425 contains all the direct chip relevant functions, which 426 can be utilized by the irq flow implementations. 427 <itemizedlist> 428 <listitem><para>irq_ack()</para></listitem> 429 <listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem> 430 <listitem><para>irq_mask()</para></listitem> 431 <listitem><para>irq_unmask()</para></listitem> 432 <listitem><para>irq_eoi() - Optional, required for eoi flow handlers</para></listitem> 433 <listitem><para>irq_retrigger() - Optional</para></listitem> 434 <listitem><para>irq_set_type() - Optional</para></listitem> 435 <listitem><para>irq_set_wake() - Optional</para></listitem> 436 </itemizedlist> 437 These primitives are strictly intended to mean what they say: ack means 438 ACK, masking means masking of an IRQ line, etc. It is up to the flow 439 handler(s) to use these basic units of lowlevel functionality. 440 </para> 441 </sect1> 442 </chapter> 443 444 <chapter id="doirq"> 445 <title>__do_IRQ entry point</title> 446 <para> 447 The original implementation __do_IRQ() was an alternative entry 448 point for all types of interrupts. It not longer exists. 449 </para> 450 <para> 451 This handler turned out to be not suitable for all 452 interrupt hardware and was therefore reimplemented with split 453 functionality for edge/level/simple/percpu interrupts. This is not 454 only a functional optimization. It also shortens code paths for 455 interrupts. 456 </para> 457 </chapter> 458 459 <chapter id="locking"> 460 <title>Locking on SMP</title> 461 <para> 462 The locking of chip registers is up to the architecture that 463 defines the chip primitives. The per-irq structure is 464 protected via desc->lock, by the generic layer. 465 </para> 466 </chapter> 467 <chapter id="structs"> 468 <title>Structures</title> 469 <para> 470 This chapter contains the autogenerated documentation of the structures which are 471 used in the generic IRQ layer. 472 </para> 473!Iinclude/linux/irq.h 474!Iinclude/linux/interrupt.h 475 </chapter> 476 477 <chapter id="pubfunctions"> 478 <title>Public Functions Provided</title> 479 <para> 480 This chapter contains the autogenerated documentation of the kernel API functions 481 which are exported. 482 </para> 483!Ekernel/irq/manage.c 484!Ekernel/irq/chip.c 485 </chapter> 486 487 <chapter id="intfunctions"> 488 <title>Internal Functions Provided</title> 489 <para> 490 This chapter contains the autogenerated documentation of the internal functions. 491 </para> 492!Ikernel/irq/irqdesc.c 493!Ikernel/irq/handle.c 494!Ikernel/irq/chip.c 495 </chapter> 496 497 <chapter id="credits"> 498 <title>Credits</title> 499 <para> 500 The following people have contributed to this document: 501 <orderedlist> 502 <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> 503 <listitem><para>Ingo Molnar<email>mingo@elte.hu</email></para></listitem> 504 </orderedlist> 505 </para> 506 </chapter> 507</book> 508