1 /*
2  * kvm eventfd support - use eventfd objects to signal various KVM events
3  *
4  * Copyright 2009 Novell.  All Rights Reserved.
5  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6  *
7  * Author:
8  *	Gregory Haskins <ghaskins@novell.com>
9  *
10  * This file is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License
12  * as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
22  */
23 
24 #include <linux/kvm_host.h>
25 #include <linux/kvm.h>
26 #include <linux/workqueue.h>
27 #include <linux/syscalls.h>
28 #include <linux/wait.h>
29 #include <linux/poll.h>
30 #include <linux/file.h>
31 #include <linux/list.h>
32 #include <linux/eventfd.h>
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 
36 #include "iodev.h"
37 
38 /*
39  * --------------------------------------------------------------------
40  * irqfd: Allows an fd to be used to inject an interrupt to the guest
41  *
42  * Credit goes to Avi Kivity for the original idea.
43  * --------------------------------------------------------------------
44  */
45 
46 struct _irqfd {
47 	/* Used for MSI fast-path */
48 	struct kvm *kvm;
49 	wait_queue_t wait;
50 	/* Update side is protected by irqfds.lock */
51 	struct kvm_kernel_irq_routing_entry __rcu *irq_entry;
52 	/* Used for level IRQ fast-path */
53 	int gsi;
54 	struct work_struct inject;
55 	/* Used for setup/shutdown */
56 	struct eventfd_ctx *eventfd;
57 	struct list_head list;
58 	poll_table pt;
59 	struct work_struct shutdown;
60 };
61 
62 static struct workqueue_struct *irqfd_cleanup_wq;
63 
64 static void
irqfd_inject(struct work_struct * work)65 irqfd_inject(struct work_struct *work)
66 {
67 	struct _irqfd *irqfd = container_of(work, struct _irqfd, inject);
68 	struct kvm *kvm = irqfd->kvm;
69 
70 	kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1);
71 	kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0);
72 }
73 
74 /*
75  * Race-free decouple logic (ordering is critical)
76  */
77 static void
irqfd_shutdown(struct work_struct * work)78 irqfd_shutdown(struct work_struct *work)
79 {
80 	struct _irqfd *irqfd = container_of(work, struct _irqfd, shutdown);
81 	u64 cnt;
82 
83 	/*
84 	 * Synchronize with the wait-queue and unhook ourselves to prevent
85 	 * further events.
86 	 */
87 	eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt);
88 
89 	/*
90 	 * We know no new events will be scheduled at this point, so block
91 	 * until all previously outstanding events have completed
92 	 */
93 	flush_work_sync(&irqfd->inject);
94 
95 	/*
96 	 * It is now safe to release the object's resources
97 	 */
98 	eventfd_ctx_put(irqfd->eventfd);
99 	kfree(irqfd);
100 }
101 
102 
103 /* assumes kvm->irqfds.lock is held */
104 static bool
irqfd_is_active(struct _irqfd * irqfd)105 irqfd_is_active(struct _irqfd *irqfd)
106 {
107 	return list_empty(&irqfd->list) ? false : true;
108 }
109 
110 /*
111  * Mark the irqfd as inactive and schedule it for removal
112  *
113  * assumes kvm->irqfds.lock is held
114  */
115 static void
irqfd_deactivate(struct _irqfd * irqfd)116 irqfd_deactivate(struct _irqfd *irqfd)
117 {
118 	BUG_ON(!irqfd_is_active(irqfd));
119 
120 	list_del_init(&irqfd->list);
121 
122 	queue_work(irqfd_cleanup_wq, &irqfd->shutdown);
123 }
124 
125 /*
126  * Called with wqh->lock held and interrupts disabled
127  */
128 static int
irqfd_wakeup(wait_queue_t * wait,unsigned mode,int sync,void * key)129 irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key)
130 {
131 	struct _irqfd *irqfd = container_of(wait, struct _irqfd, wait);
132 	unsigned long flags = (unsigned long)key;
133 	struct kvm_kernel_irq_routing_entry *irq;
134 	struct kvm *kvm = irqfd->kvm;
135 
136 	if (flags & POLLIN) {
137 		rcu_read_lock();
138 		irq = rcu_dereference(irqfd->irq_entry);
139 		/* An event has been signaled, inject an interrupt */
140 		if (irq)
141 			kvm_set_msi(irq, kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1);
142 		else
143 			schedule_work(&irqfd->inject);
144 		rcu_read_unlock();
145 	}
146 
147 	if (flags & POLLHUP) {
148 		/* The eventfd is closing, detach from KVM */
149 		unsigned long flags;
150 
151 		spin_lock_irqsave(&kvm->irqfds.lock, flags);
152 
153 		/*
154 		 * We must check if someone deactivated the irqfd before
155 		 * we could acquire the irqfds.lock since the item is
156 		 * deactivated from the KVM side before it is unhooked from
157 		 * the wait-queue.  If it is already deactivated, we can
158 		 * simply return knowing the other side will cleanup for us.
159 		 * We cannot race against the irqfd going away since the
160 		 * other side is required to acquire wqh->lock, which we hold
161 		 */
162 		if (irqfd_is_active(irqfd))
163 			irqfd_deactivate(irqfd);
164 
165 		spin_unlock_irqrestore(&kvm->irqfds.lock, flags);
166 	}
167 
168 	return 0;
169 }
170 
171 static void
irqfd_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)172 irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh,
173 			poll_table *pt)
174 {
175 	struct _irqfd *irqfd = container_of(pt, struct _irqfd, pt);
176 	add_wait_queue(wqh, &irqfd->wait);
177 }
178 
179 /* Must be called under irqfds.lock */
irqfd_update(struct kvm * kvm,struct _irqfd * irqfd,struct kvm_irq_routing_table * irq_rt)180 static void irqfd_update(struct kvm *kvm, struct _irqfd *irqfd,
181 			 struct kvm_irq_routing_table *irq_rt)
182 {
183 	struct kvm_kernel_irq_routing_entry *e;
184 	struct hlist_node *n;
185 
186 	if (irqfd->gsi >= irq_rt->nr_rt_entries) {
187 		rcu_assign_pointer(irqfd->irq_entry, NULL);
188 		return;
189 	}
190 
191 	hlist_for_each_entry(e, n, &irq_rt->map[irqfd->gsi], link) {
192 		/* Only fast-path MSI. */
193 		if (e->type == KVM_IRQ_ROUTING_MSI)
194 			rcu_assign_pointer(irqfd->irq_entry, e);
195 		else
196 			rcu_assign_pointer(irqfd->irq_entry, NULL);
197 	}
198 }
199 
200 static int
kvm_irqfd_assign(struct kvm * kvm,int fd,int gsi)201 kvm_irqfd_assign(struct kvm *kvm, int fd, int gsi)
202 {
203 	struct kvm_irq_routing_table *irq_rt;
204 	struct _irqfd *irqfd, *tmp;
205 	struct file *file = NULL;
206 	struct eventfd_ctx *eventfd = NULL;
207 	int ret;
208 	unsigned int events;
209 
210 	irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL);
211 	if (!irqfd)
212 		return -ENOMEM;
213 
214 	irqfd->kvm = kvm;
215 	irqfd->gsi = gsi;
216 	INIT_LIST_HEAD(&irqfd->list);
217 	INIT_WORK(&irqfd->inject, irqfd_inject);
218 	INIT_WORK(&irqfd->shutdown, irqfd_shutdown);
219 
220 	file = eventfd_fget(fd);
221 	if (IS_ERR(file)) {
222 		ret = PTR_ERR(file);
223 		goto fail;
224 	}
225 
226 	eventfd = eventfd_ctx_fileget(file);
227 	if (IS_ERR(eventfd)) {
228 		ret = PTR_ERR(eventfd);
229 		goto fail;
230 	}
231 
232 	irqfd->eventfd = eventfd;
233 
234 	/*
235 	 * Install our own custom wake-up handling so we are notified via
236 	 * a callback whenever someone signals the underlying eventfd
237 	 */
238 	init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup);
239 	init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc);
240 
241 	spin_lock_irq(&kvm->irqfds.lock);
242 
243 	ret = 0;
244 	list_for_each_entry(tmp, &kvm->irqfds.items, list) {
245 		if (irqfd->eventfd != tmp->eventfd)
246 			continue;
247 		/* This fd is used for another irq already. */
248 		ret = -EBUSY;
249 		spin_unlock_irq(&kvm->irqfds.lock);
250 		goto fail;
251 	}
252 
253 	irq_rt = rcu_dereference_protected(kvm->irq_routing,
254 					   lockdep_is_held(&kvm->irqfds.lock));
255 	irqfd_update(kvm, irqfd, irq_rt);
256 
257 	events = file->f_op->poll(file, &irqfd->pt);
258 
259 	list_add_tail(&irqfd->list, &kvm->irqfds.items);
260 
261 	/*
262 	 * Check if there was an event already pending on the eventfd
263 	 * before we registered, and trigger it as if we didn't miss it.
264 	 */
265 	if (events & POLLIN)
266 		schedule_work(&irqfd->inject);
267 
268 	spin_unlock_irq(&kvm->irqfds.lock);
269 
270 	/*
271 	 * do not drop the file until the irqfd is fully initialized, otherwise
272 	 * we might race against the POLLHUP
273 	 */
274 	fput(file);
275 
276 	return 0;
277 
278 fail:
279 	if (eventfd && !IS_ERR(eventfd))
280 		eventfd_ctx_put(eventfd);
281 
282 	if (!IS_ERR(file))
283 		fput(file);
284 
285 	kfree(irqfd);
286 	return ret;
287 }
288 
289 void
kvm_eventfd_init(struct kvm * kvm)290 kvm_eventfd_init(struct kvm *kvm)
291 {
292 	spin_lock_init(&kvm->irqfds.lock);
293 	INIT_LIST_HEAD(&kvm->irqfds.items);
294 	INIT_LIST_HEAD(&kvm->ioeventfds);
295 }
296 
297 /*
298  * shutdown any irqfd's that match fd+gsi
299  */
300 static int
kvm_irqfd_deassign(struct kvm * kvm,int fd,int gsi)301 kvm_irqfd_deassign(struct kvm *kvm, int fd, int gsi)
302 {
303 	struct _irqfd *irqfd, *tmp;
304 	struct eventfd_ctx *eventfd;
305 
306 	eventfd = eventfd_ctx_fdget(fd);
307 	if (IS_ERR(eventfd))
308 		return PTR_ERR(eventfd);
309 
310 	spin_lock_irq(&kvm->irqfds.lock);
311 
312 	list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) {
313 		if (irqfd->eventfd == eventfd && irqfd->gsi == gsi) {
314 			/*
315 			 * This rcu_assign_pointer is needed for when
316 			 * another thread calls kvm_irq_routing_update before
317 			 * we flush workqueue below (we synchronize with
318 			 * kvm_irq_routing_update using irqfds.lock).
319 			 * It is paired with synchronize_rcu done by caller
320 			 * of that function.
321 			 */
322 			rcu_assign_pointer(irqfd->irq_entry, NULL);
323 			irqfd_deactivate(irqfd);
324 		}
325 	}
326 
327 	spin_unlock_irq(&kvm->irqfds.lock);
328 	eventfd_ctx_put(eventfd);
329 
330 	/*
331 	 * Block until we know all outstanding shutdown jobs have completed
332 	 * so that we guarantee there will not be any more interrupts on this
333 	 * gsi once this deassign function returns.
334 	 */
335 	flush_workqueue(irqfd_cleanup_wq);
336 
337 	return 0;
338 }
339 
340 int
kvm_irqfd(struct kvm * kvm,int fd,int gsi,int flags)341 kvm_irqfd(struct kvm *kvm, int fd, int gsi, int flags)
342 {
343 	if (flags & KVM_IRQFD_FLAG_DEASSIGN)
344 		return kvm_irqfd_deassign(kvm, fd, gsi);
345 
346 	return kvm_irqfd_assign(kvm, fd, gsi);
347 }
348 
349 /*
350  * This function is called as the kvm VM fd is being released. Shutdown all
351  * irqfds that still remain open
352  */
353 void
kvm_irqfd_release(struct kvm * kvm)354 kvm_irqfd_release(struct kvm *kvm)
355 {
356 	struct _irqfd *irqfd, *tmp;
357 
358 	spin_lock_irq(&kvm->irqfds.lock);
359 
360 	list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list)
361 		irqfd_deactivate(irqfd);
362 
363 	spin_unlock_irq(&kvm->irqfds.lock);
364 
365 	/*
366 	 * Block until we know all outstanding shutdown jobs have completed
367 	 * since we do not take a kvm* reference.
368 	 */
369 	flush_workqueue(irqfd_cleanup_wq);
370 
371 }
372 
373 /*
374  * Change irq_routing and irqfd.
375  * Caller must invoke synchronize_rcu afterwards.
376  */
kvm_irq_routing_update(struct kvm * kvm,struct kvm_irq_routing_table * irq_rt)377 void kvm_irq_routing_update(struct kvm *kvm,
378 			    struct kvm_irq_routing_table *irq_rt)
379 {
380 	struct _irqfd *irqfd;
381 
382 	spin_lock_irq(&kvm->irqfds.lock);
383 
384 	rcu_assign_pointer(kvm->irq_routing, irq_rt);
385 
386 	list_for_each_entry(irqfd, &kvm->irqfds.items, list)
387 		irqfd_update(kvm, irqfd, irq_rt);
388 
389 	spin_unlock_irq(&kvm->irqfds.lock);
390 }
391 
392 /*
393  * create a host-wide workqueue for issuing deferred shutdown requests
394  * aggregated from all vm* instances. We need our own isolated single-thread
395  * queue to prevent deadlock against flushing the normal work-queue.
396  */
irqfd_module_init(void)397 static int __init irqfd_module_init(void)
398 {
399 	irqfd_cleanup_wq = create_singlethread_workqueue("kvm-irqfd-cleanup");
400 	if (!irqfd_cleanup_wq)
401 		return -ENOMEM;
402 
403 	return 0;
404 }
405 
irqfd_module_exit(void)406 static void __exit irqfd_module_exit(void)
407 {
408 	destroy_workqueue(irqfd_cleanup_wq);
409 }
410 
411 module_init(irqfd_module_init);
412 module_exit(irqfd_module_exit);
413 
414 /*
415  * --------------------------------------------------------------------
416  * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal.
417  *
418  * userspace can register a PIO/MMIO address with an eventfd for receiving
419  * notification when the memory has been touched.
420  * --------------------------------------------------------------------
421  */
422 
423 struct _ioeventfd {
424 	struct list_head     list;
425 	u64                  addr;
426 	int                  length;
427 	struct eventfd_ctx  *eventfd;
428 	u64                  datamatch;
429 	struct kvm_io_device dev;
430 	bool                 wildcard;
431 };
432 
433 static inline struct _ioeventfd *
to_ioeventfd(struct kvm_io_device * dev)434 to_ioeventfd(struct kvm_io_device *dev)
435 {
436 	return container_of(dev, struct _ioeventfd, dev);
437 }
438 
439 static void
ioeventfd_release(struct _ioeventfd * p)440 ioeventfd_release(struct _ioeventfd *p)
441 {
442 	eventfd_ctx_put(p->eventfd);
443 	list_del(&p->list);
444 	kfree(p);
445 }
446 
447 static bool
ioeventfd_in_range(struct _ioeventfd * p,gpa_t addr,int len,const void * val)448 ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val)
449 {
450 	u64 _val;
451 
452 	if (!(addr == p->addr && len == p->length))
453 		/* address-range must be precise for a hit */
454 		return false;
455 
456 	if (p->wildcard)
457 		/* all else equal, wildcard is always a hit */
458 		return true;
459 
460 	/* otherwise, we have to actually compare the data */
461 
462 	BUG_ON(!IS_ALIGNED((unsigned long)val, len));
463 
464 	switch (len) {
465 	case 1:
466 		_val = *(u8 *)val;
467 		break;
468 	case 2:
469 		_val = *(u16 *)val;
470 		break;
471 	case 4:
472 		_val = *(u32 *)val;
473 		break;
474 	case 8:
475 		_val = *(u64 *)val;
476 		break;
477 	default:
478 		return false;
479 	}
480 
481 	return _val == p->datamatch ? true : false;
482 }
483 
484 /* MMIO/PIO writes trigger an event if the addr/val match */
485 static int
ioeventfd_write(struct kvm_io_device * this,gpa_t addr,int len,const void * val)486 ioeventfd_write(struct kvm_io_device *this, gpa_t addr, int len,
487 		const void *val)
488 {
489 	struct _ioeventfd *p = to_ioeventfd(this);
490 
491 	if (!ioeventfd_in_range(p, addr, len, val))
492 		return -EOPNOTSUPP;
493 
494 	eventfd_signal(p->eventfd, 1);
495 	return 0;
496 }
497 
498 /*
499  * This function is called as KVM is completely shutting down.  We do not
500  * need to worry about locking just nuke anything we have as quickly as possible
501  */
502 static void
ioeventfd_destructor(struct kvm_io_device * this)503 ioeventfd_destructor(struct kvm_io_device *this)
504 {
505 	struct _ioeventfd *p = to_ioeventfd(this);
506 
507 	ioeventfd_release(p);
508 }
509 
510 static const struct kvm_io_device_ops ioeventfd_ops = {
511 	.write      = ioeventfd_write,
512 	.destructor = ioeventfd_destructor,
513 };
514 
515 /* assumes kvm->slots_lock held */
516 static bool
ioeventfd_check_collision(struct kvm * kvm,struct _ioeventfd * p)517 ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p)
518 {
519 	struct _ioeventfd *_p;
520 
521 	list_for_each_entry(_p, &kvm->ioeventfds, list)
522 		if (_p->addr == p->addr && _p->length == p->length &&
523 		    (_p->wildcard || p->wildcard ||
524 		     _p->datamatch == p->datamatch))
525 			return true;
526 
527 	return false;
528 }
529 
530 static int
kvm_assign_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)531 kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
532 {
533 	int                       pio = args->flags & KVM_IOEVENTFD_FLAG_PIO;
534 	enum kvm_bus              bus_idx = pio ? KVM_PIO_BUS : KVM_MMIO_BUS;
535 	struct _ioeventfd        *p;
536 	struct eventfd_ctx       *eventfd;
537 	int                       ret;
538 
539 	/* must be natural-word sized */
540 	switch (args->len) {
541 	case 1:
542 	case 2:
543 	case 4:
544 	case 8:
545 		break;
546 	default:
547 		return -EINVAL;
548 	}
549 
550 	/* check for range overflow */
551 	if (args->addr + args->len < args->addr)
552 		return -EINVAL;
553 
554 	/* check for extra flags that we don't understand */
555 	if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK)
556 		return -EINVAL;
557 
558 	eventfd = eventfd_ctx_fdget(args->fd);
559 	if (IS_ERR(eventfd))
560 		return PTR_ERR(eventfd);
561 
562 	p = kzalloc(sizeof(*p), GFP_KERNEL);
563 	if (!p) {
564 		ret = -ENOMEM;
565 		goto fail;
566 	}
567 
568 	INIT_LIST_HEAD(&p->list);
569 	p->addr    = args->addr;
570 	p->length  = args->len;
571 	p->eventfd = eventfd;
572 
573 	/* The datamatch feature is optional, otherwise this is a wildcard */
574 	if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH)
575 		p->datamatch = args->datamatch;
576 	else
577 		p->wildcard = true;
578 
579 	mutex_lock(&kvm->slots_lock);
580 
581 	/* Verify that there isn't a match already */
582 	if (ioeventfd_check_collision(kvm, p)) {
583 		ret = -EEXIST;
584 		goto unlock_fail;
585 	}
586 
587 	kvm_iodevice_init(&p->dev, &ioeventfd_ops);
588 
589 	ret = kvm_io_bus_register_dev(kvm, bus_idx, &p->dev);
590 	if (ret < 0)
591 		goto unlock_fail;
592 
593 	list_add_tail(&p->list, &kvm->ioeventfds);
594 
595 	mutex_unlock(&kvm->slots_lock);
596 
597 	return 0;
598 
599 unlock_fail:
600 	mutex_unlock(&kvm->slots_lock);
601 
602 fail:
603 	kfree(p);
604 	eventfd_ctx_put(eventfd);
605 
606 	return ret;
607 }
608 
609 static int
kvm_deassign_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)610 kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
611 {
612 	int                       pio = args->flags & KVM_IOEVENTFD_FLAG_PIO;
613 	enum kvm_bus              bus_idx = pio ? KVM_PIO_BUS : KVM_MMIO_BUS;
614 	struct _ioeventfd        *p, *tmp;
615 	struct eventfd_ctx       *eventfd;
616 	int                       ret = -ENOENT;
617 
618 	eventfd = eventfd_ctx_fdget(args->fd);
619 	if (IS_ERR(eventfd))
620 		return PTR_ERR(eventfd);
621 
622 	mutex_lock(&kvm->slots_lock);
623 
624 	list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) {
625 		bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH);
626 
627 		if (p->eventfd != eventfd  ||
628 		    p->addr != args->addr  ||
629 		    p->length != args->len ||
630 		    p->wildcard != wildcard)
631 			continue;
632 
633 		if (!p->wildcard && p->datamatch != args->datamatch)
634 			continue;
635 
636 		kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev);
637 		ioeventfd_release(p);
638 		ret = 0;
639 		break;
640 	}
641 
642 	mutex_unlock(&kvm->slots_lock);
643 
644 	eventfd_ctx_put(eventfd);
645 
646 	return ret;
647 }
648 
649 int
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)650 kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
651 {
652 	if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN)
653 		return kvm_deassign_ioeventfd(kvm, args);
654 
655 	return kvm_assign_ioeventfd(kvm, args);
656 }
657