1 /****************************************************************************
2 
3    Copyright Echo Digital Audio Corporation (c) 1998 - 2004
4    All rights reserved
5    www.echoaudio.com
6 
7    This file is part of Echo Digital Audio's generic driver library.
8 
9    Echo Digital Audio's generic driver library is free software;
10    you can redistribute it and/or modify it under the terms of
11    the GNU General Public License as published by the Free Software
12    Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22    MA  02111-1307, USA.
23 
24    *************************************************************************
25 
26  Translation from C++ and adaptation for use in ALSA-Driver
27  were made by Giuliano Pochini <pochini@shiny.it>
28 
29 ****************************************************************************/
30 
31 
32 /******************************************************************************
33 	MIDI lowlevel code
34 ******************************************************************************/
35 
36 /* Start and stop Midi input */
enable_midi_input(struct echoaudio * chip,char enable)37 static int enable_midi_input(struct echoaudio *chip, char enable)
38 {
39 	DE_MID(("enable_midi_input(%d)\n", enable));
40 
41 	if (wait_handshake(chip))
42 		return -EIO;
43 
44 	if (enable) {
45 		chip->mtc_state = MIDI_IN_STATE_NORMAL;
46 		chip->comm_page->flags |=
47 			cpu_to_le32(DSP_FLAG_MIDI_INPUT);
48 	} else
49 		chip->comm_page->flags &=
50 			~cpu_to_le32(DSP_FLAG_MIDI_INPUT);
51 
52 	clear_handshake(chip);
53 	return send_vector(chip, DSP_VC_UPDATE_FLAGS);
54 }
55 
56 
57 
58 /* Send a buffer full of MIDI data to the DSP
59 Returns how many actually written or < 0 on error */
write_midi(struct echoaudio * chip,u8 * data,int bytes)60 static int write_midi(struct echoaudio *chip, u8 *data, int bytes)
61 {
62 	if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE))
63 		return -EINVAL;
64 
65 	if (wait_handshake(chip))
66 		return -EIO;
67 
68 	/* HF4 indicates that it is safe to write MIDI output data */
69 	if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4))
70 		return 0;
71 
72 	chip->comm_page->midi_output[0] = bytes;
73 	memcpy(&chip->comm_page->midi_output[1], data, bytes);
74 	chip->comm_page->midi_out_free_count = 0;
75 	clear_handshake(chip);
76 	send_vector(chip, DSP_VC_MIDI_WRITE);
77 	DE_MID(("write_midi: %d\n", bytes));
78 	return bytes;
79 }
80 
81 
82 
83 /* Run the state machine for MIDI input data
84 MIDI time code sync isn't supported by this code right now, but you still need
85 this state machine to parse the incoming MIDI data stream.  Every time the DSP
86 sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data
87 stream. The DSP sample position is represented as a 32 bit unsigned value,
88 with the high 16 bits first, followed by the low 16 bits. Since these aren't
89 real MIDI bytes, the following logic is needed to skip them. */
mtc_process_data(struct echoaudio * chip,short midi_byte)90 static inline int mtc_process_data(struct echoaudio *chip, short midi_byte)
91 {
92 	switch (chip->mtc_state) {
93 	case MIDI_IN_STATE_NORMAL:
94 		if (midi_byte == 0xF1)
95 			chip->mtc_state = MIDI_IN_STATE_TS_HIGH;
96 		break;
97 	case MIDI_IN_STATE_TS_HIGH:
98 		chip->mtc_state = MIDI_IN_STATE_TS_LOW;
99 		return MIDI_IN_SKIP_DATA;
100 		break;
101 	case MIDI_IN_STATE_TS_LOW:
102 		chip->mtc_state = MIDI_IN_STATE_F1_DATA;
103 		return MIDI_IN_SKIP_DATA;
104 		break;
105 	case MIDI_IN_STATE_F1_DATA:
106 		chip->mtc_state = MIDI_IN_STATE_NORMAL;
107 		break;
108 	}
109 	return 0;
110 }
111 
112 
113 
114 /* This function is called from the IRQ handler and it reads the midi data
115 from the DSP's buffer.  It returns the number of bytes received. */
midi_service_irq(struct echoaudio * chip)116 static int midi_service_irq(struct echoaudio *chip)
117 {
118 	short int count, midi_byte, i, received;
119 
120 	/* The count is at index 0, followed by actual data */
121 	count = le16_to_cpu(chip->comm_page->midi_input[0]);
122 
123 	if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE))
124 		return 0;
125 
126 	/* Get the MIDI data from the comm page */
127 	i = 1;
128 	received = 0;
129 	for (i = 1; i <= count; i++) {
130 		/* Get the MIDI byte */
131 		midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]);
132 
133 		/* Parse the incoming MIDI stream. The incoming MIDI data
134 		consists of MIDI bytes and timestamps for the MIDI time code
135 		0xF1 bytes. mtc_process_data() is a little state machine that
136 		parses the stream. If you get MIDI_IN_SKIP_DATA back, then
137 		this is a timestamp byte, not a MIDI byte, so don't store it
138 		in the MIDI input buffer. */
139 		if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA)
140 			continue;
141 
142 		chip->midi_buffer[received++] = (u8)midi_byte;
143 	}
144 
145 	return received;
146 }
147 
148 
149 
150 
151 /******************************************************************************
152 	MIDI interface
153 ******************************************************************************/
154 
snd_echo_midi_input_open(struct snd_rawmidi_substream * substream)155 static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream)
156 {
157 	struct echoaudio *chip = substream->rmidi->private_data;
158 
159 	chip->midi_in = substream;
160 	DE_MID(("rawmidi_iopen\n"));
161 	return 0;
162 }
163 
164 
165 
snd_echo_midi_input_trigger(struct snd_rawmidi_substream * substream,int up)166 static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream,
167 					int up)
168 {
169 	struct echoaudio *chip = substream->rmidi->private_data;
170 
171 	if (up != chip->midi_input_enabled) {
172 		spin_lock_irq(&chip->lock);
173 		enable_midi_input(chip, up);
174 		spin_unlock_irq(&chip->lock);
175 		chip->midi_input_enabled = up;
176 	}
177 }
178 
179 
180 
snd_echo_midi_input_close(struct snd_rawmidi_substream * substream)181 static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream)
182 {
183 	struct echoaudio *chip = substream->rmidi->private_data;
184 
185 	chip->midi_in = NULL;
186 	DE_MID(("rawmidi_iclose\n"));
187 	return 0;
188 }
189 
190 
191 
snd_echo_midi_output_open(struct snd_rawmidi_substream * substream)192 static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream)
193 {
194 	struct echoaudio *chip = substream->rmidi->private_data;
195 
196 	chip->tinuse = 0;
197 	chip->midi_full = 0;
198 	chip->midi_out = substream;
199 	DE_MID(("rawmidi_oopen\n"));
200 	return 0;
201 }
202 
203 
204 
snd_echo_midi_output_write(unsigned long data)205 static void snd_echo_midi_output_write(unsigned long data)
206 {
207 	struct echoaudio *chip = (struct echoaudio *)data;
208 	unsigned long flags;
209 	int bytes, sent, time;
210 	unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1];
211 
212 	DE_MID(("snd_echo_midi_output_write\n"));
213 	/* No interrupts are involved: we have to check at regular intervals
214 	if the card's output buffer has room for new data. */
215 	sent = bytes = 0;
216 	spin_lock_irqsave(&chip->lock, flags);
217 	chip->midi_full = 0;
218 	if (!snd_rawmidi_transmit_empty(chip->midi_out)) {
219 		bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf,
220 						  MIDI_OUT_BUFFER_SIZE - 1);
221 		DE_MID(("Try to send %d bytes...\n", bytes));
222 		sent = write_midi(chip, buf, bytes);
223 		if (sent < 0) {
224 			snd_printk(KERN_ERR "write_midi() error %d\n", sent);
225 			/* retry later */
226 			sent = 9000;
227 			chip->midi_full = 1;
228 		} else if (sent > 0) {
229 			DE_MID(("%d bytes sent\n", sent));
230 			snd_rawmidi_transmit_ack(chip->midi_out, sent);
231 		} else {
232 			/* Buffer is full. DSP's internal buffer is 64 (128 ?)
233 			bytes long. Let's wait until half of them are sent */
234 			DE_MID(("Full\n"));
235 			sent = 32;
236 			chip->midi_full = 1;
237 		}
238 	}
239 
240 	/* We restart the timer only if there is some data left to send */
241 	if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) {
242 		/* The timer will expire slightly after the data has been
243 		   sent */
244 		time = (sent << 3) / 25 + 1;	/* 8/25=0.32ms to send a byte */
245 		mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000);
246 		DE_MID(("Timer armed(%d)\n", ((time * HZ + 999) / 1000)));
247 	}
248 	spin_unlock_irqrestore(&chip->lock, flags);
249 }
250 
251 
252 
snd_echo_midi_output_trigger(struct snd_rawmidi_substream * substream,int up)253 static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream,
254 					 int up)
255 {
256 	struct echoaudio *chip = substream->rmidi->private_data;
257 
258 	DE_MID(("snd_echo_midi_output_trigger(%d)\n", up));
259 	spin_lock_irq(&chip->lock);
260 	if (up) {
261 		if (!chip->tinuse) {
262 			init_timer(&chip->timer);
263 			chip->timer.function = snd_echo_midi_output_write;
264 			chip->timer.data = (unsigned long)chip;
265 			chip->tinuse = 1;
266 		}
267 	} else {
268 		if (chip->tinuse) {
269 			chip->tinuse = 0;
270 			spin_unlock_irq(&chip->lock);
271 			del_timer_sync(&chip->timer);
272 			DE_MID(("Timer removed\n"));
273 			return;
274 		}
275 	}
276 	spin_unlock_irq(&chip->lock);
277 
278 	if (up && !chip->midi_full)
279 		snd_echo_midi_output_write((unsigned long)chip);
280 }
281 
282 
283 
snd_echo_midi_output_close(struct snd_rawmidi_substream * substream)284 static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream)
285 {
286 	struct echoaudio *chip = substream->rmidi->private_data;
287 
288 	chip->midi_out = NULL;
289 	DE_MID(("rawmidi_oclose\n"));
290 	return 0;
291 }
292 
293 
294 
295 static struct snd_rawmidi_ops snd_echo_midi_input = {
296 	.open = snd_echo_midi_input_open,
297 	.close = snd_echo_midi_input_close,
298 	.trigger = snd_echo_midi_input_trigger,
299 };
300 
301 static struct snd_rawmidi_ops snd_echo_midi_output = {
302 	.open = snd_echo_midi_output_open,
303 	.close = snd_echo_midi_output_close,
304 	.trigger = snd_echo_midi_output_trigger,
305 };
306 
307 
308 
309 /* <--snd_echo_probe() */
snd_echo_midi_create(struct snd_card * card,struct echoaudio * chip)310 static int __devinit snd_echo_midi_create(struct snd_card *card,
311 					  struct echoaudio *chip)
312 {
313 	int err;
314 
315 	if ((err = snd_rawmidi_new(card, card->shortname, 0, 1, 1,
316 				   &chip->rmidi)) < 0)
317 		return err;
318 
319 	strcpy(chip->rmidi->name, card->shortname);
320 	chip->rmidi->private_data = chip;
321 
322 	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
323 			    &snd_echo_midi_input);
324 	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
325 			    &snd_echo_midi_output);
326 
327 	chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
328 		SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
329 	DE_INIT(("MIDI ok\n"));
330 	return 0;
331 }
332