1 /*
2  *   This program is free software; you can redistribute it and/or
3  *   modify it under the terms of the GNU General Public License
4  *   as published by the Free Software Foundation; either version
5  *   2 of the License, or (at your option) any later version.
6  *
7  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8  *     & Swedish University of Agricultural Sciences.
9  *
10  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
11  *     Agricultural Sciences.
12  *
13  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
14  *
15  * This work is based on the LPC-trie which is originally described in:
16  *
17  * An experimental study of compression methods for dynamic tries
18  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19  * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20  *
21  *
22  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24  *
25  *
26  * Code from fib_hash has been reused which includes the following header:
27  *
28  *
29  * INET		An implementation of the TCP/IP protocol suite for the LINUX
30  *		operating system.  INET is implemented using the  BSD Socket
31  *		interface as the means of communication with the user level.
32  *
33  *		IPv4 FIB: lookup engine and maintenance routines.
34  *
35  *
36  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37  *
38  *		This program is free software; you can redistribute it and/or
39  *		modify it under the terms of the GNU General Public License
40  *		as published by the Free Software Foundation; either version
41  *		2 of the License, or (at your option) any later version.
42  *
43  * Substantial contributions to this work comes from:
44  *
45  *		David S. Miller, <davem@davemloft.net>
46  *		Stephen Hemminger <shemminger@osdl.org>
47  *		Paul E. McKenney <paulmck@us.ibm.com>
48  *		Patrick McHardy <kaber@trash.net>
49  */
50 
51 #define VERSION "0.409"
52 
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83 
84 #define MAX_STAT_DEPTH 32
85 
86 #define KEYLENGTH (8*sizeof(t_key))
87 
88 typedef unsigned int t_key;
89 
90 #define T_TNODE 0
91 #define T_LEAF  1
92 #define NODE_TYPE_MASK	0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94 
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97 
98 struct rt_trie_node {
99 	unsigned long parent;
100 	t_key key;
101 };
102 
103 struct leaf {
104 	unsigned long parent;
105 	t_key key;
106 	struct hlist_head list;
107 	struct rcu_head rcu;
108 };
109 
110 struct leaf_info {
111 	struct hlist_node hlist;
112 	struct rcu_head rcu;
113 	int plen;
114 	struct list_head falh;
115 };
116 
117 struct tnode {
118 	unsigned long parent;
119 	t_key key;
120 	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
121 	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
122 	unsigned int full_children;	/* KEYLENGTH bits needed */
123 	unsigned int empty_children;	/* KEYLENGTH bits needed */
124 	union {
125 		struct rcu_head rcu;
126 		struct work_struct work;
127 		struct tnode *tnode_free;
128 	};
129 	struct rt_trie_node *child[0];
130 };
131 
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 	unsigned int gets;
135 	unsigned int backtrack;
136 	unsigned int semantic_match_passed;
137 	unsigned int semantic_match_miss;
138 	unsigned int null_node_hit;
139 	unsigned int resize_node_skipped;
140 };
141 #endif
142 
143 struct trie_stat {
144 	unsigned int totdepth;
145 	unsigned int maxdepth;
146 	unsigned int tnodes;
147 	unsigned int leaves;
148 	unsigned int nullpointers;
149 	unsigned int prefixes;
150 	unsigned int nodesizes[MAX_STAT_DEPTH];
151 };
152 
153 struct trie {
154 	struct rt_trie_node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 	struct trie_use_stats stats;
157 #endif
158 };
159 
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
162 				  int wasfull);
163 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
169 
170 /*
171  * synchronize_rcu after call_rcu for that many pages; it should be especially
172  * useful before resizing the root node with PREEMPT_NONE configs; the value was
173  * obtained experimentally, aiming to avoid visible slowdown.
174  */
175 static const int sync_pages = 128;
176 
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
179 
node_parent(struct rt_trie_node * node)180 static inline struct tnode *node_parent(struct rt_trie_node *node)
181 {
182 	return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183 }
184 
node_parent_rcu(struct rt_trie_node * node)185 static inline struct tnode *node_parent_rcu(struct rt_trie_node *node)
186 {
187 	struct tnode *ret = node_parent(node);
188 
189 	return rcu_dereference_rtnl(ret);
190 }
191 
192 /* Same as rcu_assign_pointer
193  * but that macro() assumes that value is a pointer.
194  */
node_set_parent(struct rt_trie_node * node,struct tnode * ptr)195 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
196 {
197 	smp_wmb();
198 	node->parent = (unsigned long)ptr | NODE_TYPE(node);
199 }
200 
tnode_get_child(struct tnode * tn,unsigned int i)201 static inline struct rt_trie_node *tnode_get_child(struct tnode *tn, unsigned int i)
202 {
203 	BUG_ON(i >= 1U << tn->bits);
204 
205 	return tn->child[i];
206 }
207 
tnode_get_child_rcu(struct tnode * tn,unsigned int i)208 static inline struct rt_trie_node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
209 {
210 	struct rt_trie_node *ret = tnode_get_child(tn, i);
211 
212 	return rcu_dereference_rtnl(ret);
213 }
214 
tnode_child_length(const struct tnode * tn)215 static inline int tnode_child_length(const struct tnode *tn)
216 {
217 	return 1 << tn->bits;
218 }
219 
mask_pfx(t_key k,unsigned int l)220 static inline t_key mask_pfx(t_key k, unsigned int l)
221 {
222 	return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223 }
224 
tkey_extract_bits(t_key a,unsigned int offset,unsigned int bits)225 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
226 {
227 	if (offset < KEYLENGTH)
228 		return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
229 	else
230 		return 0;
231 }
232 
tkey_equals(t_key a,t_key b)233 static inline int tkey_equals(t_key a, t_key b)
234 {
235 	return a == b;
236 }
237 
tkey_sub_equals(t_key a,int offset,int bits,t_key b)238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239 {
240 	if (bits == 0 || offset >= KEYLENGTH)
241 		return 1;
242 	bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 	return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
244 }
245 
tkey_mismatch(t_key a,int offset,t_key b)246 static inline int tkey_mismatch(t_key a, int offset, t_key b)
247 {
248 	t_key diff = a ^ b;
249 	int i = offset;
250 
251 	if (!diff)
252 		return 0;
253 	while ((diff << i) >> (KEYLENGTH-1) == 0)
254 		i++;
255 	return i;
256 }
257 
258 /*
259   To understand this stuff, an understanding of keys and all their bits is
260   necessary. Every node in the trie has a key associated with it, but not
261   all of the bits in that key are significant.
262 
263   Consider a node 'n' and its parent 'tp'.
264 
265   If n is a leaf, every bit in its key is significant. Its presence is
266   necessitated by path compression, since during a tree traversal (when
267   searching for a leaf - unless we are doing an insertion) we will completely
268   ignore all skipped bits we encounter. Thus we need to verify, at the end of
269   a potentially successful search, that we have indeed been walking the
270   correct key path.
271 
272   Note that we can never "miss" the correct key in the tree if present by
273   following the wrong path. Path compression ensures that segments of the key
274   that are the same for all keys with a given prefix are skipped, but the
275   skipped part *is* identical for each node in the subtrie below the skipped
276   bit! trie_insert() in this implementation takes care of that - note the
277   call to tkey_sub_equals() in trie_insert().
278 
279   if n is an internal node - a 'tnode' here, the various parts of its key
280   have many different meanings.
281 
282   Example:
283   _________________________________________________________________
284   | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285   -----------------------------------------------------------------
286     0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
287 
288   _________________________________________________________________
289   | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290   -----------------------------------------------------------------
291    16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31
292 
293   tp->pos = 7
294   tp->bits = 3
295   n->pos = 15
296   n->bits = 4
297 
298   First, let's just ignore the bits that come before the parent tp, that is
299   the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300   not use them for anything.
301 
302   The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303   index into the parent's child array. That is, they will be used to find
304   'n' among tp's children.
305 
306   The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307   for the node n.
308 
309   All the bits we have seen so far are significant to the node n. The rest
310   of the bits are really not needed or indeed known in n->key.
311 
312   The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313   n's child array, and will of course be different for each child.
314 
315 
316   The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317   at this point.
318 
319 */
320 
check_tnode(const struct tnode * tn)321 static inline void check_tnode(const struct tnode *tn)
322 {
323 	WARN_ON(tn && tn->pos+tn->bits > 32);
324 }
325 
326 static const int halve_threshold = 25;
327 static const int inflate_threshold = 50;
328 static const int halve_threshold_root = 15;
329 static const int inflate_threshold_root = 30;
330 
__alias_free_mem(struct rcu_head * head)331 static void __alias_free_mem(struct rcu_head *head)
332 {
333 	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 	kmem_cache_free(fn_alias_kmem, fa);
335 }
336 
alias_free_mem_rcu(struct fib_alias * fa)337 static inline void alias_free_mem_rcu(struct fib_alias *fa)
338 {
339 	call_rcu(&fa->rcu, __alias_free_mem);
340 }
341 
__leaf_free_rcu(struct rcu_head * head)342 static void __leaf_free_rcu(struct rcu_head *head)
343 {
344 	struct leaf *l = container_of(head, struct leaf, rcu);
345 	kmem_cache_free(trie_leaf_kmem, l);
346 }
347 
free_leaf(struct leaf * l)348 static inline void free_leaf(struct leaf *l)
349 {
350 	call_rcu_bh(&l->rcu, __leaf_free_rcu);
351 }
352 
__leaf_info_free_rcu(struct rcu_head * head)353 static void __leaf_info_free_rcu(struct rcu_head *head)
354 {
355 	kfree(container_of(head, struct leaf_info, rcu));
356 }
357 
free_leaf_info(struct leaf_info * leaf)358 static inline void free_leaf_info(struct leaf_info *leaf)
359 {
360 	call_rcu(&leaf->rcu, __leaf_info_free_rcu);
361 }
362 
tnode_alloc(size_t size)363 static struct tnode *tnode_alloc(size_t size)
364 {
365 	if (size <= PAGE_SIZE)
366 		return kzalloc(size, GFP_KERNEL);
367 	else
368 		return vzalloc(size);
369 }
370 
__tnode_vfree(struct work_struct * arg)371 static void __tnode_vfree(struct work_struct *arg)
372 {
373 	struct tnode *tn = container_of(arg, struct tnode, work);
374 	vfree(tn);
375 }
376 
__tnode_free_rcu(struct rcu_head * head)377 static void __tnode_free_rcu(struct rcu_head *head)
378 {
379 	struct tnode *tn = container_of(head, struct tnode, rcu);
380 	size_t size = sizeof(struct tnode) +
381 		      (sizeof(struct rt_trie_node *) << tn->bits);
382 
383 	if (size <= PAGE_SIZE)
384 		kfree(tn);
385 	else {
386 		INIT_WORK(&tn->work, __tnode_vfree);
387 		schedule_work(&tn->work);
388 	}
389 }
390 
tnode_free(struct tnode * tn)391 static inline void tnode_free(struct tnode *tn)
392 {
393 	if (IS_LEAF(tn))
394 		free_leaf((struct leaf *) tn);
395 	else
396 		call_rcu(&tn->rcu, __tnode_free_rcu);
397 }
398 
tnode_free_safe(struct tnode * tn)399 static void tnode_free_safe(struct tnode *tn)
400 {
401 	BUG_ON(IS_LEAF(tn));
402 	tn->tnode_free = tnode_free_head;
403 	tnode_free_head = tn;
404 	tnode_free_size += sizeof(struct tnode) +
405 			   (sizeof(struct rt_trie_node *) << tn->bits);
406 }
407 
tnode_free_flush(void)408 static void tnode_free_flush(void)
409 {
410 	struct tnode *tn;
411 
412 	while ((tn = tnode_free_head)) {
413 		tnode_free_head = tn->tnode_free;
414 		tn->tnode_free = NULL;
415 		tnode_free(tn);
416 	}
417 
418 	if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 		tnode_free_size = 0;
420 		synchronize_rcu();
421 	}
422 }
423 
leaf_new(void)424 static struct leaf *leaf_new(void)
425 {
426 	struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
427 	if (l) {
428 		l->parent = T_LEAF;
429 		INIT_HLIST_HEAD(&l->list);
430 	}
431 	return l;
432 }
433 
leaf_info_new(int plen)434 static struct leaf_info *leaf_info_new(int plen)
435 {
436 	struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL);
437 	if (li) {
438 		li->plen = plen;
439 		INIT_LIST_HEAD(&li->falh);
440 	}
441 	return li;
442 }
443 
tnode_new(t_key key,int pos,int bits)444 static struct tnode *tnode_new(t_key key, int pos, int bits)
445 {
446 	size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
447 	struct tnode *tn = tnode_alloc(sz);
448 
449 	if (tn) {
450 		tn->parent = T_TNODE;
451 		tn->pos = pos;
452 		tn->bits = bits;
453 		tn->key = key;
454 		tn->full_children = 0;
455 		tn->empty_children = 1<<bits;
456 	}
457 
458 	pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
459 		 sizeof(struct rt_trie_node) << bits);
460 	return tn;
461 }
462 
463 /*
464  * Check whether a tnode 'n' is "full", i.e. it is an internal node
465  * and no bits are skipped. See discussion in dyntree paper p. 6
466  */
467 
tnode_full(const struct tnode * tn,const struct rt_trie_node * n)468 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
469 {
470 	if (n == NULL || IS_LEAF(n))
471 		return 0;
472 
473 	return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474 }
475 
put_child(struct trie * t,struct tnode * tn,int i,struct rt_trie_node * n)476 static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 			     struct rt_trie_node *n)
478 {
479 	tnode_put_child_reorg(tn, i, n, -1);
480 }
481 
482  /*
483   * Add a child at position i overwriting the old value.
484   * Update the value of full_children and empty_children.
485   */
486 
tnode_put_child_reorg(struct tnode * tn,int i,struct rt_trie_node * n,int wasfull)487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
488 				  int wasfull)
489 {
490 	struct rt_trie_node *chi = tn->child[i];
491 	int isfull;
492 
493 	BUG_ON(i >= 1<<tn->bits);
494 
495 	/* update emptyChildren */
496 	if (n == NULL && chi != NULL)
497 		tn->empty_children++;
498 	else if (n != NULL && chi == NULL)
499 		tn->empty_children--;
500 
501 	/* update fullChildren */
502 	if (wasfull == -1)
503 		wasfull = tnode_full(tn, chi);
504 
505 	isfull = tnode_full(tn, n);
506 	if (wasfull && !isfull)
507 		tn->full_children--;
508 	else if (!wasfull && isfull)
509 		tn->full_children++;
510 
511 	if (n)
512 		node_set_parent(n, tn);
513 
514 	rcu_assign_pointer(tn->child[i], n);
515 }
516 
517 #define MAX_WORK 10
resize(struct trie * t,struct tnode * tn)518 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
519 {
520 	int i;
521 	struct tnode *old_tn;
522 	int inflate_threshold_use;
523 	int halve_threshold_use;
524 	int max_work;
525 
526 	if (!tn)
527 		return NULL;
528 
529 	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 		 tn, inflate_threshold, halve_threshold);
531 
532 	/* No children */
533 	if (tn->empty_children == tnode_child_length(tn)) {
534 		tnode_free_safe(tn);
535 		return NULL;
536 	}
537 	/* One child */
538 	if (tn->empty_children == tnode_child_length(tn) - 1)
539 		goto one_child;
540 	/*
541 	 * Double as long as the resulting node has a number of
542 	 * nonempty nodes that are above the threshold.
543 	 */
544 
545 	/*
546 	 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 	 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548 	 * Telecommunications, page 6:
549 	 * "A node is doubled if the ratio of non-empty children to all
550 	 * children in the *doubled* node is at least 'high'."
551 	 *
552 	 * 'high' in this instance is the variable 'inflate_threshold'. It
553 	 * is expressed as a percentage, so we multiply it with
554 	 * tnode_child_length() and instead of multiplying by 2 (since the
555 	 * child array will be doubled by inflate()) and multiplying
556 	 * the left-hand side by 100 (to handle the percentage thing) we
557 	 * multiply the left-hand side by 50.
558 	 *
559 	 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 	 * - tn->empty_children is of course the number of non-null children
561 	 * in the current node. tn->full_children is the number of "full"
562 	 * children, that is non-null tnodes with a skip value of 0.
563 	 * All of those will be doubled in the resulting inflated tnode, so
564 	 * we just count them one extra time here.
565 	 *
566 	 * A clearer way to write this would be:
567 	 *
568 	 * to_be_doubled = tn->full_children;
569 	 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
570 	 *     tn->full_children;
571 	 *
572 	 * new_child_length = tnode_child_length(tn) * 2;
573 	 *
574 	 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
575 	 *      new_child_length;
576 	 * if (new_fill_factor >= inflate_threshold)
577 	 *
578 	 * ...and so on, tho it would mess up the while () loop.
579 	 *
580 	 * anyway,
581 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 	 *      inflate_threshold
583 	 *
584 	 * avoid a division:
585 	 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 	 *      inflate_threshold * new_child_length
587 	 *
588 	 * expand not_to_be_doubled and to_be_doubled, and shorten:
589 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 	 *    tn->full_children) >= inflate_threshold * new_child_length
591 	 *
592 	 * expand new_child_length:
593 	 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 	 *    tn->full_children) >=
595 	 *      inflate_threshold * tnode_child_length(tn) * 2
596 	 *
597 	 * shorten again:
598 	 * 50 * (tn->full_children + tnode_child_length(tn) -
599 	 *    tn->empty_children) >= inflate_threshold *
600 	 *    tnode_child_length(tn)
601 	 *
602 	 */
603 
604 	check_tnode(tn);
605 
606 	/* Keep root node larger  */
607 
608 	if (!node_parent((struct rt_trie_node *)tn)) {
609 		inflate_threshold_use = inflate_threshold_root;
610 		halve_threshold_use = halve_threshold_root;
611 	} else {
612 		inflate_threshold_use = inflate_threshold;
613 		halve_threshold_use = halve_threshold;
614 	}
615 
616 	max_work = MAX_WORK;
617 	while ((tn->full_children > 0 &&  max_work-- &&
618 		50 * (tn->full_children + tnode_child_length(tn)
619 		      - tn->empty_children)
620 		>= inflate_threshold_use * tnode_child_length(tn))) {
621 
622 		old_tn = tn;
623 		tn = inflate(t, tn);
624 
625 		if (IS_ERR(tn)) {
626 			tn = old_tn;
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 			t->stats.resize_node_skipped++;
629 #endif
630 			break;
631 		}
632 	}
633 
634 	check_tnode(tn);
635 
636 	/* Return if at least one inflate is run */
637 	if (max_work != MAX_WORK)
638 		return (struct rt_trie_node *) tn;
639 
640 	/*
641 	 * Halve as long as the number of empty children in this
642 	 * node is above threshold.
643 	 */
644 
645 	max_work = MAX_WORK;
646 	while (tn->bits > 1 &&  max_work-- &&
647 	       100 * (tnode_child_length(tn) - tn->empty_children) <
648 	       halve_threshold_use * tnode_child_length(tn)) {
649 
650 		old_tn = tn;
651 		tn = halve(t, tn);
652 		if (IS_ERR(tn)) {
653 			tn = old_tn;
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 			t->stats.resize_node_skipped++;
656 #endif
657 			break;
658 		}
659 	}
660 
661 
662 	/* Only one child remains */
663 	if (tn->empty_children == tnode_child_length(tn) - 1) {
664 one_child:
665 		for (i = 0; i < tnode_child_length(tn); i++) {
666 			struct rt_trie_node *n;
667 
668 			n = tn->child[i];
669 			if (!n)
670 				continue;
671 
672 			/* compress one level */
673 
674 			node_set_parent(n, NULL);
675 			tnode_free_safe(tn);
676 			return n;
677 		}
678 	}
679 	return (struct rt_trie_node *) tn;
680 }
681 
inflate(struct trie * t,struct tnode * tn)682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
683 {
684 	struct tnode *oldtnode = tn;
685 	int olen = tnode_child_length(tn);
686 	int i;
687 
688 	pr_debug("In inflate\n");
689 
690 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691 
692 	if (!tn)
693 		return ERR_PTR(-ENOMEM);
694 
695 	/*
696 	 * Preallocate and store tnodes before the actual work so we
697 	 * don't get into an inconsistent state if memory allocation
698 	 * fails. In case of failure we return the oldnode and  inflate
699 	 * of tnode is ignored.
700 	 */
701 
702 	for (i = 0; i < olen; i++) {
703 		struct tnode *inode;
704 
705 		inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 		if (inode &&
707 		    IS_TNODE(inode) &&
708 		    inode->pos == oldtnode->pos + oldtnode->bits &&
709 		    inode->bits > 1) {
710 			struct tnode *left, *right;
711 			t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
712 
713 			left = tnode_new(inode->key&(~m), inode->pos + 1,
714 					 inode->bits - 1);
715 			if (!left)
716 				goto nomem;
717 
718 			right = tnode_new(inode->key|m, inode->pos + 1,
719 					  inode->bits - 1);
720 
721 			if (!right) {
722 				tnode_free(left);
723 				goto nomem;
724 			}
725 
726 			put_child(t, tn, 2*i, (struct rt_trie_node *) left);
727 			put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
728 		}
729 	}
730 
731 	for (i = 0; i < olen; i++) {
732 		struct tnode *inode;
733 		struct rt_trie_node *node = tnode_get_child(oldtnode, i);
734 		struct tnode *left, *right;
735 		int size, j;
736 
737 		/* An empty child */
738 		if (node == NULL)
739 			continue;
740 
741 		/* A leaf or an internal node with skipped bits */
742 
743 		if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 		   tn->pos + tn->bits - 1) {
745 			if (tkey_extract_bits(node->key,
746 					      oldtnode->pos + oldtnode->bits,
747 					      1) == 0)
748 				put_child(t, tn, 2*i, node);
749 			else
750 				put_child(t, tn, 2*i+1, node);
751 			continue;
752 		}
753 
754 		/* An internal node with two children */
755 		inode = (struct tnode *) node;
756 
757 		if (inode->bits == 1) {
758 			put_child(t, tn, 2*i, inode->child[0]);
759 			put_child(t, tn, 2*i+1, inode->child[1]);
760 
761 			tnode_free_safe(inode);
762 			continue;
763 		}
764 
765 		/* An internal node with more than two children */
766 
767 		/* We will replace this node 'inode' with two new
768 		 * ones, 'left' and 'right', each with half of the
769 		 * original children. The two new nodes will have
770 		 * a position one bit further down the key and this
771 		 * means that the "significant" part of their keys
772 		 * (see the discussion near the top of this file)
773 		 * will differ by one bit, which will be "0" in
774 		 * left's key and "1" in right's key. Since we are
775 		 * moving the key position by one step, the bit that
776 		 * we are moving away from - the bit at position
777 		 * (inode->pos) - is the one that will differ between
778 		 * left and right. So... we synthesize that bit in the
779 		 * two  new keys.
780 		 * The mask 'm' below will be a single "one" bit at
781 		 * the position (inode->pos)
782 		 */
783 
784 		/* Use the old key, but set the new significant
785 		 *   bit to zero.
786 		 */
787 
788 		left = (struct tnode *) tnode_get_child(tn, 2*i);
789 		put_child(t, tn, 2*i, NULL);
790 
791 		BUG_ON(!left);
792 
793 		right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 		put_child(t, tn, 2*i+1, NULL);
795 
796 		BUG_ON(!right);
797 
798 		size = tnode_child_length(left);
799 		for (j = 0; j < size; j++) {
800 			put_child(t, left, j, inode->child[j]);
801 			put_child(t, right, j, inode->child[j + size]);
802 		}
803 		put_child(t, tn, 2*i, resize(t, left));
804 		put_child(t, tn, 2*i+1, resize(t, right));
805 
806 		tnode_free_safe(inode);
807 	}
808 	tnode_free_safe(oldtnode);
809 	return tn;
810 nomem:
811 	{
812 		int size = tnode_child_length(tn);
813 		int j;
814 
815 		for (j = 0; j < size; j++)
816 			if (tn->child[j])
817 				tnode_free((struct tnode *)tn->child[j]);
818 
819 		tnode_free(tn);
820 
821 		return ERR_PTR(-ENOMEM);
822 	}
823 }
824 
halve(struct trie * t,struct tnode * tn)825 static struct tnode *halve(struct trie *t, struct tnode *tn)
826 {
827 	struct tnode *oldtnode = tn;
828 	struct rt_trie_node *left, *right;
829 	int i;
830 	int olen = tnode_child_length(tn);
831 
832 	pr_debug("In halve\n");
833 
834 	tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
835 
836 	if (!tn)
837 		return ERR_PTR(-ENOMEM);
838 
839 	/*
840 	 * Preallocate and store tnodes before the actual work so we
841 	 * don't get into an inconsistent state if memory allocation
842 	 * fails. In case of failure we return the oldnode and halve
843 	 * of tnode is ignored.
844 	 */
845 
846 	for (i = 0; i < olen; i += 2) {
847 		left = tnode_get_child(oldtnode, i);
848 		right = tnode_get_child(oldtnode, i+1);
849 
850 		/* Two nonempty children */
851 		if (left && right) {
852 			struct tnode *newn;
853 
854 			newn = tnode_new(left->key, tn->pos + tn->bits, 1);
855 
856 			if (!newn)
857 				goto nomem;
858 
859 			put_child(t, tn, i/2, (struct rt_trie_node *)newn);
860 		}
861 
862 	}
863 
864 	for (i = 0; i < olen; i += 2) {
865 		struct tnode *newBinNode;
866 
867 		left = tnode_get_child(oldtnode, i);
868 		right = tnode_get_child(oldtnode, i+1);
869 
870 		/* At least one of the children is empty */
871 		if (left == NULL) {
872 			if (right == NULL)    /* Both are empty */
873 				continue;
874 			put_child(t, tn, i/2, right);
875 			continue;
876 		}
877 
878 		if (right == NULL) {
879 			put_child(t, tn, i/2, left);
880 			continue;
881 		}
882 
883 		/* Two nonempty children */
884 		newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 		put_child(t, tn, i/2, NULL);
886 		put_child(t, newBinNode, 0, left);
887 		put_child(t, newBinNode, 1, right);
888 		put_child(t, tn, i/2, resize(t, newBinNode));
889 	}
890 	tnode_free_safe(oldtnode);
891 	return tn;
892 nomem:
893 	{
894 		int size = tnode_child_length(tn);
895 		int j;
896 
897 		for (j = 0; j < size; j++)
898 			if (tn->child[j])
899 				tnode_free((struct tnode *)tn->child[j]);
900 
901 		tnode_free(tn);
902 
903 		return ERR_PTR(-ENOMEM);
904 	}
905 }
906 
907 /* readside must use rcu_read_lock currently dump routines
908  via get_fa_head and dump */
909 
find_leaf_info(struct leaf * l,int plen)910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
911 {
912 	struct hlist_head *head = &l->list;
913 	struct hlist_node *node;
914 	struct leaf_info *li;
915 
916 	hlist_for_each_entry_rcu(li, node, head, hlist)
917 		if (li->plen == plen)
918 			return li;
919 
920 	return NULL;
921 }
922 
get_fa_head(struct leaf * l,int plen)923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
924 {
925 	struct leaf_info *li = find_leaf_info(l, plen);
926 
927 	if (!li)
928 		return NULL;
929 
930 	return &li->falh;
931 }
932 
insert_leaf_info(struct hlist_head * head,struct leaf_info * new)933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934 {
935 	struct leaf_info *li = NULL, *last = NULL;
936 	struct hlist_node *node;
937 
938 	if (hlist_empty(head)) {
939 		hlist_add_head_rcu(&new->hlist, head);
940 	} else {
941 		hlist_for_each_entry(li, node, head, hlist) {
942 			if (new->plen > li->plen)
943 				break;
944 
945 			last = li;
946 		}
947 		if (last)
948 			hlist_add_after_rcu(&last->hlist, &new->hlist);
949 		else
950 			hlist_add_before_rcu(&new->hlist, &li->hlist);
951 	}
952 }
953 
954 /* rcu_read_lock needs to be hold by caller from readside */
955 
956 static struct leaf *
fib_find_node(struct trie * t,u32 key)957 fib_find_node(struct trie *t, u32 key)
958 {
959 	int pos;
960 	struct tnode *tn;
961 	struct rt_trie_node *n;
962 
963 	pos = 0;
964 	n = rcu_dereference_rtnl(t->trie);
965 
966 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
967 		tn = (struct tnode *) n;
968 
969 		check_tnode(tn);
970 
971 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 			pos = tn->pos + tn->bits;
973 			n = tnode_get_child_rcu(tn,
974 						tkey_extract_bits(key,
975 								  tn->pos,
976 								  tn->bits));
977 		} else
978 			break;
979 	}
980 	/* Case we have found a leaf. Compare prefixes */
981 
982 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 		return (struct leaf *)n;
984 
985 	return NULL;
986 }
987 
trie_rebalance(struct trie * t,struct tnode * tn)988 static void trie_rebalance(struct trie *t, struct tnode *tn)
989 {
990 	int wasfull;
991 	t_key cindex, key;
992 	struct tnode *tp;
993 
994 	key = tn->key;
995 
996 	while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
997 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 		wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
999 		tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000 
1001 		tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 				      (struct rt_trie_node *)tn, wasfull);
1003 
1004 		tp = node_parent((struct rt_trie_node *) tn);
1005 		if (!tp)
1006 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1007 
1008 		tnode_free_flush();
1009 		if (!tp)
1010 			break;
1011 		tn = tp;
1012 	}
1013 
1014 	/* Handle last (top) tnode */
1015 	if (IS_TNODE(tn))
1016 		tn = (struct tnode *)resize(t, (struct tnode *)tn);
1017 
1018 	rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1019 	tnode_free_flush();
1020 }
1021 
1022 /* only used from updater-side */
1023 
fib_insert_node(struct trie * t,u32 key,int plen)1024 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1025 {
1026 	int pos, newpos;
1027 	struct tnode *tp = NULL, *tn = NULL;
1028 	struct rt_trie_node *n;
1029 	struct leaf *l;
1030 	int missbit;
1031 	struct list_head *fa_head = NULL;
1032 	struct leaf_info *li;
1033 	t_key cindex;
1034 
1035 	pos = 0;
1036 	n = t->trie;
1037 
1038 	/* If we point to NULL, stop. Either the tree is empty and we should
1039 	 * just put a new leaf in if, or we have reached an empty child slot,
1040 	 * and we should just put our new leaf in that.
1041 	 * If we point to a T_TNODE, check if it matches our key. Note that
1042 	 * a T_TNODE might be skipping any number of bits - its 'pos' need
1043 	 * not be the parent's 'pos'+'bits'!
1044 	 *
1045 	 * If it does match the current key, get pos/bits from it, extract
1046 	 * the index from our key, push the T_TNODE and walk the tree.
1047 	 *
1048 	 * If it doesn't, we have to replace it with a new T_TNODE.
1049 	 *
1050 	 * If we point to a T_LEAF, it might or might not have the same key
1051 	 * as we do. If it does, just change the value, update the T_LEAF's
1052 	 * value, and return it.
1053 	 * If it doesn't, we need to replace it with a T_TNODE.
1054 	 */
1055 
1056 	while (n != NULL &&  NODE_TYPE(n) == T_TNODE) {
1057 		tn = (struct tnode *) n;
1058 
1059 		check_tnode(tn);
1060 
1061 		if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1062 			tp = tn;
1063 			pos = tn->pos + tn->bits;
1064 			n = tnode_get_child(tn,
1065 					    tkey_extract_bits(key,
1066 							      tn->pos,
1067 							      tn->bits));
1068 
1069 			BUG_ON(n && node_parent(n) != tn);
1070 		} else
1071 			break;
1072 	}
1073 
1074 	/*
1075 	 * n  ----> NULL, LEAF or TNODE
1076 	 *
1077 	 * tp is n's (parent) ----> NULL or TNODE
1078 	 */
1079 
1080 	BUG_ON(tp && IS_LEAF(tp));
1081 
1082 	/* Case 1: n is a leaf. Compare prefixes */
1083 
1084 	if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1085 		l = (struct leaf *) n;
1086 		li = leaf_info_new(plen);
1087 
1088 		if (!li)
1089 			return NULL;
1090 
1091 		fa_head = &li->falh;
1092 		insert_leaf_info(&l->list, li);
1093 		goto done;
1094 	}
1095 	l = leaf_new();
1096 
1097 	if (!l)
1098 		return NULL;
1099 
1100 	l->key = key;
1101 	li = leaf_info_new(plen);
1102 
1103 	if (!li) {
1104 		free_leaf(l);
1105 		return NULL;
1106 	}
1107 
1108 	fa_head = &li->falh;
1109 	insert_leaf_info(&l->list, li);
1110 
1111 	if (t->trie && n == NULL) {
1112 		/* Case 2: n is NULL, and will just insert a new leaf */
1113 
1114 		node_set_parent((struct rt_trie_node *)l, tp);
1115 
1116 		cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 		put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1118 	} else {
1119 		/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1120 		/*
1121 		 *  Add a new tnode here
1122 		 *  first tnode need some special handling
1123 		 */
1124 
1125 		if (tp)
1126 			pos = tp->pos+tp->bits;
1127 		else
1128 			pos = 0;
1129 
1130 		if (n) {
1131 			newpos = tkey_mismatch(key, pos, n->key);
1132 			tn = tnode_new(n->key, newpos, 1);
1133 		} else {
1134 			newpos = 0;
1135 			tn = tnode_new(key, newpos, 1); /* First tnode */
1136 		}
1137 
1138 		if (!tn) {
1139 			free_leaf_info(li);
1140 			free_leaf(l);
1141 			return NULL;
1142 		}
1143 
1144 		node_set_parent((struct rt_trie_node *)tn, tp);
1145 
1146 		missbit = tkey_extract_bits(key, newpos, 1);
1147 		put_child(t, tn, missbit, (struct rt_trie_node *)l);
1148 		put_child(t, tn, 1-missbit, n);
1149 
1150 		if (tp) {
1151 			cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1152 			put_child(t, (struct tnode *)tp, cindex,
1153 				  (struct rt_trie_node *)tn);
1154 		} else {
1155 			rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1156 			tp = tn;
1157 		}
1158 	}
1159 
1160 	if (tp && tp->pos + tp->bits > 32)
1161 		pr_warning("fib_trie"
1162 			   " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 			   tp, tp->pos, tp->bits, key, plen);
1164 
1165 	/* Rebalance the trie */
1166 
1167 	trie_rebalance(t, tp);
1168 done:
1169 	return fa_head;
1170 }
1171 
1172 /*
1173  * Caller must hold RTNL.
1174  */
fib_table_insert(struct fib_table * tb,struct fib_config * cfg)1175 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1176 {
1177 	struct trie *t = (struct trie *) tb->tb_data;
1178 	struct fib_alias *fa, *new_fa;
1179 	struct list_head *fa_head = NULL;
1180 	struct fib_info *fi;
1181 	int plen = cfg->fc_dst_len;
1182 	u8 tos = cfg->fc_tos;
1183 	u32 key, mask;
1184 	int err;
1185 	struct leaf *l;
1186 
1187 	if (plen > 32)
1188 		return -EINVAL;
1189 
1190 	key = ntohl(cfg->fc_dst);
1191 
1192 	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1193 
1194 	mask = ntohl(inet_make_mask(plen));
1195 
1196 	if (key & ~mask)
1197 		return -EINVAL;
1198 
1199 	key = key & mask;
1200 
1201 	fi = fib_create_info(cfg);
1202 	if (IS_ERR(fi)) {
1203 		err = PTR_ERR(fi);
1204 		goto err;
1205 	}
1206 
1207 	l = fib_find_node(t, key);
1208 	fa = NULL;
1209 
1210 	if (l) {
1211 		fa_head = get_fa_head(l, plen);
1212 		fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1213 	}
1214 
1215 	/* Now fa, if non-NULL, points to the first fib alias
1216 	 * with the same keys [prefix,tos,priority], if such key already
1217 	 * exists or to the node before which we will insert new one.
1218 	 *
1219 	 * If fa is NULL, we will need to allocate a new one and
1220 	 * insert to the head of f.
1221 	 *
1222 	 * If f is NULL, no fib node matched the destination key
1223 	 * and we need to allocate a new one of those as well.
1224 	 */
1225 
1226 	if (fa && fa->fa_tos == tos &&
1227 	    fa->fa_info->fib_priority == fi->fib_priority) {
1228 		struct fib_alias *fa_first, *fa_match;
1229 
1230 		err = -EEXIST;
1231 		if (cfg->fc_nlflags & NLM_F_EXCL)
1232 			goto out;
1233 
1234 		/* We have 2 goals:
1235 		 * 1. Find exact match for type, scope, fib_info to avoid
1236 		 * duplicate routes
1237 		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1238 		 */
1239 		fa_match = NULL;
1240 		fa_first = fa;
1241 		fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 		list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 			if (fa->fa_tos != tos)
1244 				break;
1245 			if (fa->fa_info->fib_priority != fi->fib_priority)
1246 				break;
1247 			if (fa->fa_type == cfg->fc_type &&
1248 			    fa->fa_info == fi) {
1249 				fa_match = fa;
1250 				break;
1251 			}
1252 		}
1253 
1254 		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1255 			struct fib_info *fi_drop;
1256 			u8 state;
1257 
1258 			fa = fa_first;
1259 			if (fa_match) {
1260 				if (fa == fa_match)
1261 					err = 0;
1262 				goto out;
1263 			}
1264 			err = -ENOBUFS;
1265 			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1266 			if (new_fa == NULL)
1267 				goto out;
1268 
1269 			fi_drop = fa->fa_info;
1270 			new_fa->fa_tos = fa->fa_tos;
1271 			new_fa->fa_info = fi;
1272 			new_fa->fa_type = cfg->fc_type;
1273 			state = fa->fa_state;
1274 			new_fa->fa_state = state & ~FA_S_ACCESSED;
1275 
1276 			list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1277 			alias_free_mem_rcu(fa);
1278 
1279 			fib_release_info(fi_drop);
1280 			if (state & FA_S_ACCESSED)
1281 				rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1282 			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1283 				tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1284 
1285 			goto succeeded;
1286 		}
1287 		/* Error if we find a perfect match which
1288 		 * uses the same scope, type, and nexthop
1289 		 * information.
1290 		 */
1291 		if (fa_match)
1292 			goto out;
1293 
1294 		if (!(cfg->fc_nlflags & NLM_F_APPEND))
1295 			fa = fa_first;
1296 	}
1297 	err = -ENOENT;
1298 	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1299 		goto out;
1300 
1301 	err = -ENOBUFS;
1302 	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1303 	if (new_fa == NULL)
1304 		goto out;
1305 
1306 	new_fa->fa_info = fi;
1307 	new_fa->fa_tos = tos;
1308 	new_fa->fa_type = cfg->fc_type;
1309 	new_fa->fa_state = 0;
1310 	/*
1311 	 * Insert new entry to the list.
1312 	 */
1313 
1314 	if (!fa_head) {
1315 		fa_head = fib_insert_node(t, key, plen);
1316 		if (unlikely(!fa_head)) {
1317 			err = -ENOMEM;
1318 			goto out_free_new_fa;
1319 		}
1320 	}
1321 
1322 	list_add_tail_rcu(&new_fa->fa_list,
1323 			  (fa ? &fa->fa_list : fa_head));
1324 
1325 	rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1326 	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1327 		  &cfg->fc_nlinfo, 0);
1328 succeeded:
1329 	return 0;
1330 
1331 out_free_new_fa:
1332 	kmem_cache_free(fn_alias_kmem, new_fa);
1333 out:
1334 	fib_release_info(fi);
1335 err:
1336 	return err;
1337 }
1338 
1339 /* should be called with rcu_read_lock */
check_leaf(struct fib_table * tb,struct trie * t,struct leaf * l,t_key key,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1340 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1341 		      t_key key,  const struct flowi4 *flp,
1342 		      struct fib_result *res, int fib_flags)
1343 {
1344 	struct leaf_info *li;
1345 	struct hlist_head *hhead = &l->list;
1346 	struct hlist_node *node;
1347 
1348 	hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1349 		struct fib_alias *fa;
1350 		int plen = li->plen;
1351 		__be32 mask = inet_make_mask(plen);
1352 
1353 		if (l->key != (key & ntohl(mask)))
1354 			continue;
1355 
1356 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1357 			struct fib_info *fi = fa->fa_info;
1358 			int nhsel, err;
1359 
1360 			if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1361 				continue;
1362 			if (fa->fa_info->fib_scope < flp->flowi4_scope)
1363 				continue;
1364 			fib_alias_accessed(fa);
1365 			err = fib_props[fa->fa_type].error;
1366 			if (err) {
1367 #ifdef CONFIG_IP_FIB_TRIE_STATS
1368 				t->stats.semantic_match_passed++;
1369 #endif
1370 				return err;
1371 			}
1372 			if (fi->fib_flags & RTNH_F_DEAD)
1373 				continue;
1374 			for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1375 				const struct fib_nh *nh = &fi->fib_nh[nhsel];
1376 
1377 				if (nh->nh_flags & RTNH_F_DEAD)
1378 					continue;
1379 				if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1380 					continue;
1381 
1382 #ifdef CONFIG_IP_FIB_TRIE_STATS
1383 				t->stats.semantic_match_passed++;
1384 #endif
1385 				res->prefixlen = plen;
1386 				res->nh_sel = nhsel;
1387 				res->type = fa->fa_type;
1388 				res->scope = fa->fa_info->fib_scope;
1389 				res->fi = fi;
1390 				res->table = tb;
1391 				res->fa_head = &li->falh;
1392 				if (!(fib_flags & FIB_LOOKUP_NOREF))
1393 					atomic_inc(&res->fi->fib_clntref);
1394 				return 0;
1395 			}
1396 		}
1397 
1398 #ifdef CONFIG_IP_FIB_TRIE_STATS
1399 		t->stats.semantic_match_miss++;
1400 #endif
1401 	}
1402 
1403 	return 1;
1404 }
1405 
fib_table_lookup(struct fib_table * tb,const struct flowi4 * flp,struct fib_result * res,int fib_flags)1406 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1407 		     struct fib_result *res, int fib_flags)
1408 {
1409 	struct trie *t = (struct trie *) tb->tb_data;
1410 	int ret;
1411 	struct rt_trie_node *n;
1412 	struct tnode *pn;
1413 	unsigned int pos, bits;
1414 	t_key key = ntohl(flp->daddr);
1415 	unsigned int chopped_off;
1416 	t_key cindex = 0;
1417 	unsigned int current_prefix_length = KEYLENGTH;
1418 	struct tnode *cn;
1419 	t_key pref_mismatch;
1420 
1421 	rcu_read_lock();
1422 
1423 	n = rcu_dereference(t->trie);
1424 	if (!n)
1425 		goto failed;
1426 
1427 #ifdef CONFIG_IP_FIB_TRIE_STATS
1428 	t->stats.gets++;
1429 #endif
1430 
1431 	/* Just a leaf? */
1432 	if (IS_LEAF(n)) {
1433 		ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1434 		goto found;
1435 	}
1436 
1437 	pn = (struct tnode *) n;
1438 	chopped_off = 0;
1439 
1440 	while (pn) {
1441 		pos = pn->pos;
1442 		bits = pn->bits;
1443 
1444 		if (!chopped_off)
1445 			cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1446 						   pos, bits);
1447 
1448 		n = tnode_get_child_rcu(pn, cindex);
1449 
1450 		if (n == NULL) {
1451 #ifdef CONFIG_IP_FIB_TRIE_STATS
1452 			t->stats.null_node_hit++;
1453 #endif
1454 			goto backtrace;
1455 		}
1456 
1457 		if (IS_LEAF(n)) {
1458 			ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1459 			if (ret > 0)
1460 				goto backtrace;
1461 			goto found;
1462 		}
1463 
1464 		cn = (struct tnode *)n;
1465 
1466 		/*
1467 		 * It's a tnode, and we can do some extra checks here if we
1468 		 * like, to avoid descending into a dead-end branch.
1469 		 * This tnode is in the parent's child array at index
1470 		 * key[p_pos..p_pos+p_bits] but potentially with some bits
1471 		 * chopped off, so in reality the index may be just a
1472 		 * subprefix, padded with zero at the end.
1473 		 * We can also take a look at any skipped bits in this
1474 		 * tnode - everything up to p_pos is supposed to be ok,
1475 		 * and the non-chopped bits of the index (se previous
1476 		 * paragraph) are also guaranteed ok, but the rest is
1477 		 * considered unknown.
1478 		 *
1479 		 * The skipped bits are key[pos+bits..cn->pos].
1480 		 */
1481 
1482 		/* If current_prefix_length < pos+bits, we are already doing
1483 		 * actual prefix  matching, which means everything from
1484 		 * pos+(bits-chopped_off) onward must be zero along some
1485 		 * branch of this subtree - otherwise there is *no* valid
1486 		 * prefix present. Here we can only check the skipped
1487 		 * bits. Remember, since we have already indexed into the
1488 		 * parent's child array, we know that the bits we chopped of
1489 		 * *are* zero.
1490 		 */
1491 
1492 		/* NOTA BENE: Checking only skipped bits
1493 		   for the new node here */
1494 
1495 		if (current_prefix_length < pos+bits) {
1496 			if (tkey_extract_bits(cn->key, current_prefix_length,
1497 						cn->pos - current_prefix_length)
1498 			    || !(cn->child[0]))
1499 				goto backtrace;
1500 		}
1501 
1502 		/*
1503 		 * If chopped_off=0, the index is fully validated and we
1504 		 * only need to look at the skipped bits for this, the new,
1505 		 * tnode. What we actually want to do is to find out if
1506 		 * these skipped bits match our key perfectly, or if we will
1507 		 * have to count on finding a matching prefix further down,
1508 		 * because if we do, we would like to have some way of
1509 		 * verifying the existence of such a prefix at this point.
1510 		 */
1511 
1512 		/* The only thing we can do at this point is to verify that
1513 		 * any such matching prefix can indeed be a prefix to our
1514 		 * key, and if the bits in the node we are inspecting that
1515 		 * do not match our key are not ZERO, this cannot be true.
1516 		 * Thus, find out where there is a mismatch (before cn->pos)
1517 		 * and verify that all the mismatching bits are zero in the
1518 		 * new tnode's key.
1519 		 */
1520 
1521 		/*
1522 		 * Note: We aren't very concerned about the piece of
1523 		 * the key that precede pn->pos+pn->bits, since these
1524 		 * have already been checked. The bits after cn->pos
1525 		 * aren't checked since these are by definition
1526 		 * "unknown" at this point. Thus, what we want to see
1527 		 * is if we are about to enter the "prefix matching"
1528 		 * state, and in that case verify that the skipped
1529 		 * bits that will prevail throughout this subtree are
1530 		 * zero, as they have to be if we are to find a
1531 		 * matching prefix.
1532 		 */
1533 
1534 		pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1535 
1536 		/*
1537 		 * In short: If skipped bits in this node do not match
1538 		 * the search key, enter the "prefix matching"
1539 		 * state.directly.
1540 		 */
1541 		if (pref_mismatch) {
1542 			int mp = KEYLENGTH - fls(pref_mismatch);
1543 
1544 			if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1545 				goto backtrace;
1546 
1547 			if (current_prefix_length >= cn->pos)
1548 				current_prefix_length = mp;
1549 		}
1550 
1551 		pn = (struct tnode *)n; /* Descend */
1552 		chopped_off = 0;
1553 		continue;
1554 
1555 backtrace:
1556 		chopped_off++;
1557 
1558 		/* As zero don't change the child key (cindex) */
1559 		while ((chopped_off <= pn->bits)
1560 		       && !(cindex & (1<<(chopped_off-1))))
1561 			chopped_off++;
1562 
1563 		/* Decrease current_... with bits chopped off */
1564 		if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1565 			current_prefix_length = pn->pos + pn->bits
1566 				- chopped_off;
1567 
1568 		/*
1569 		 * Either we do the actual chop off according or if we have
1570 		 * chopped off all bits in this tnode walk up to our parent.
1571 		 */
1572 
1573 		if (chopped_off <= pn->bits) {
1574 			cindex &= ~(1 << (chopped_off-1));
1575 		} else {
1576 			struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1577 			if (!parent)
1578 				goto failed;
1579 
1580 			/* Get Child's index */
1581 			cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1582 			pn = parent;
1583 			chopped_off = 0;
1584 
1585 #ifdef CONFIG_IP_FIB_TRIE_STATS
1586 			t->stats.backtrack++;
1587 #endif
1588 			goto backtrace;
1589 		}
1590 	}
1591 failed:
1592 	ret = 1;
1593 found:
1594 	rcu_read_unlock();
1595 	return ret;
1596 }
1597 
1598 /*
1599  * Remove the leaf and return parent.
1600  */
trie_leaf_remove(struct trie * t,struct leaf * l)1601 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1602 {
1603 	struct tnode *tp = node_parent((struct rt_trie_node *) l);
1604 
1605 	pr_debug("entering trie_leaf_remove(%p)\n", l);
1606 
1607 	if (tp) {
1608 		t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1609 		put_child(t, (struct tnode *)tp, cindex, NULL);
1610 		trie_rebalance(t, tp);
1611 	} else
1612 		rcu_assign_pointer(t->trie, NULL);
1613 
1614 	free_leaf(l);
1615 }
1616 
1617 /*
1618  * Caller must hold RTNL.
1619  */
fib_table_delete(struct fib_table * tb,struct fib_config * cfg)1620 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1621 {
1622 	struct trie *t = (struct trie *) tb->tb_data;
1623 	u32 key, mask;
1624 	int plen = cfg->fc_dst_len;
1625 	u8 tos = cfg->fc_tos;
1626 	struct fib_alias *fa, *fa_to_delete;
1627 	struct list_head *fa_head;
1628 	struct leaf *l;
1629 	struct leaf_info *li;
1630 
1631 	if (plen > 32)
1632 		return -EINVAL;
1633 
1634 	key = ntohl(cfg->fc_dst);
1635 	mask = ntohl(inet_make_mask(plen));
1636 
1637 	if (key & ~mask)
1638 		return -EINVAL;
1639 
1640 	key = key & mask;
1641 	l = fib_find_node(t, key);
1642 
1643 	if (!l)
1644 		return -ESRCH;
1645 
1646 	fa_head = get_fa_head(l, plen);
1647 	fa = fib_find_alias(fa_head, tos, 0);
1648 
1649 	if (!fa)
1650 		return -ESRCH;
1651 
1652 	pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1653 
1654 	fa_to_delete = NULL;
1655 	fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1656 	list_for_each_entry_continue(fa, fa_head, fa_list) {
1657 		struct fib_info *fi = fa->fa_info;
1658 
1659 		if (fa->fa_tos != tos)
1660 			break;
1661 
1662 		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1663 		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1664 		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1665 		    (!cfg->fc_prefsrc ||
1666 		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1667 		    (!cfg->fc_protocol ||
1668 		     fi->fib_protocol == cfg->fc_protocol) &&
1669 		    fib_nh_match(cfg, fi) == 0) {
1670 			fa_to_delete = fa;
1671 			break;
1672 		}
1673 	}
1674 
1675 	if (!fa_to_delete)
1676 		return -ESRCH;
1677 
1678 	fa = fa_to_delete;
1679 	rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1680 		  &cfg->fc_nlinfo, 0);
1681 
1682 	l = fib_find_node(t, key);
1683 	li = find_leaf_info(l, plen);
1684 
1685 	list_del_rcu(&fa->fa_list);
1686 
1687 	if (list_empty(fa_head)) {
1688 		hlist_del_rcu(&li->hlist);
1689 		free_leaf_info(li);
1690 	}
1691 
1692 	if (hlist_empty(&l->list))
1693 		trie_leaf_remove(t, l);
1694 
1695 	if (fa->fa_state & FA_S_ACCESSED)
1696 		rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1697 
1698 	fib_release_info(fa->fa_info);
1699 	alias_free_mem_rcu(fa);
1700 	return 0;
1701 }
1702 
trie_flush_list(struct list_head * head)1703 static int trie_flush_list(struct list_head *head)
1704 {
1705 	struct fib_alias *fa, *fa_node;
1706 	int found = 0;
1707 
1708 	list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1709 		struct fib_info *fi = fa->fa_info;
1710 
1711 		if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1712 			list_del_rcu(&fa->fa_list);
1713 			fib_release_info(fa->fa_info);
1714 			alias_free_mem_rcu(fa);
1715 			found++;
1716 		}
1717 	}
1718 	return found;
1719 }
1720 
trie_flush_leaf(struct leaf * l)1721 static int trie_flush_leaf(struct leaf *l)
1722 {
1723 	int found = 0;
1724 	struct hlist_head *lih = &l->list;
1725 	struct hlist_node *node, *tmp;
1726 	struct leaf_info *li = NULL;
1727 
1728 	hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1729 		found += trie_flush_list(&li->falh);
1730 
1731 		if (list_empty(&li->falh)) {
1732 			hlist_del_rcu(&li->hlist);
1733 			free_leaf_info(li);
1734 		}
1735 	}
1736 	return found;
1737 }
1738 
1739 /*
1740  * Scan for the next right leaf starting at node p->child[idx]
1741  * Since we have back pointer, no recursion necessary.
1742  */
leaf_walk_rcu(struct tnode * p,struct rt_trie_node * c)1743 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1744 {
1745 	do {
1746 		t_key idx;
1747 
1748 		if (c)
1749 			idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1750 		else
1751 			idx = 0;
1752 
1753 		while (idx < 1u << p->bits) {
1754 			c = tnode_get_child_rcu(p, idx++);
1755 			if (!c)
1756 				continue;
1757 
1758 			if (IS_LEAF(c)) {
1759 				prefetch(p->child[idx]);
1760 				return (struct leaf *) c;
1761 			}
1762 
1763 			/* Rescan start scanning in new node */
1764 			p = (struct tnode *) c;
1765 			idx = 0;
1766 		}
1767 
1768 		/* Node empty, walk back up to parent */
1769 		c = (struct rt_trie_node *) p;
1770 	} while ((p = node_parent_rcu(c)) != NULL);
1771 
1772 	return NULL; /* Root of trie */
1773 }
1774 
trie_firstleaf(struct trie * t)1775 static struct leaf *trie_firstleaf(struct trie *t)
1776 {
1777 	struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1778 
1779 	if (!n)
1780 		return NULL;
1781 
1782 	if (IS_LEAF(n))          /* trie is just a leaf */
1783 		return (struct leaf *) n;
1784 
1785 	return leaf_walk_rcu(n, NULL);
1786 }
1787 
trie_nextleaf(struct leaf * l)1788 static struct leaf *trie_nextleaf(struct leaf *l)
1789 {
1790 	struct rt_trie_node *c = (struct rt_trie_node *) l;
1791 	struct tnode *p = node_parent_rcu(c);
1792 
1793 	if (!p)
1794 		return NULL;	/* trie with just one leaf */
1795 
1796 	return leaf_walk_rcu(p, c);
1797 }
1798 
trie_leafindex(struct trie * t,int index)1799 static struct leaf *trie_leafindex(struct trie *t, int index)
1800 {
1801 	struct leaf *l = trie_firstleaf(t);
1802 
1803 	while (l && index-- > 0)
1804 		l = trie_nextleaf(l);
1805 
1806 	return l;
1807 }
1808 
1809 
1810 /*
1811  * Caller must hold RTNL.
1812  */
fib_table_flush(struct fib_table * tb)1813 int fib_table_flush(struct fib_table *tb)
1814 {
1815 	struct trie *t = (struct trie *) tb->tb_data;
1816 	struct leaf *l, *ll = NULL;
1817 	int found = 0;
1818 
1819 	for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1820 		found += trie_flush_leaf(l);
1821 
1822 		if (ll && hlist_empty(&ll->list))
1823 			trie_leaf_remove(t, ll);
1824 		ll = l;
1825 	}
1826 
1827 	if (ll && hlist_empty(&ll->list))
1828 		trie_leaf_remove(t, ll);
1829 
1830 	pr_debug("trie_flush found=%d\n", found);
1831 	return found;
1832 }
1833 
fib_free_table(struct fib_table * tb)1834 void fib_free_table(struct fib_table *tb)
1835 {
1836 	kfree(tb);
1837 }
1838 
fn_trie_dump_fa(t_key key,int plen,struct list_head * fah,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)1839 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1840 			   struct fib_table *tb,
1841 			   struct sk_buff *skb, struct netlink_callback *cb)
1842 {
1843 	int i, s_i;
1844 	struct fib_alias *fa;
1845 	__be32 xkey = htonl(key);
1846 
1847 	s_i = cb->args[5];
1848 	i = 0;
1849 
1850 	/* rcu_read_lock is hold by caller */
1851 
1852 	list_for_each_entry_rcu(fa, fah, fa_list) {
1853 		if (i < s_i) {
1854 			i++;
1855 			continue;
1856 		}
1857 
1858 		if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1859 				  cb->nlh->nlmsg_seq,
1860 				  RTM_NEWROUTE,
1861 				  tb->tb_id,
1862 				  fa->fa_type,
1863 				  xkey,
1864 				  plen,
1865 				  fa->fa_tos,
1866 				  fa->fa_info, NLM_F_MULTI) < 0) {
1867 			cb->args[5] = i;
1868 			return -1;
1869 		}
1870 		i++;
1871 	}
1872 	cb->args[5] = i;
1873 	return skb->len;
1874 }
1875 
fn_trie_dump_leaf(struct leaf * l,struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)1876 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1877 			struct sk_buff *skb, struct netlink_callback *cb)
1878 {
1879 	struct leaf_info *li;
1880 	struct hlist_node *node;
1881 	int i, s_i;
1882 
1883 	s_i = cb->args[4];
1884 	i = 0;
1885 
1886 	/* rcu_read_lock is hold by caller */
1887 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1888 		if (i < s_i) {
1889 			i++;
1890 			continue;
1891 		}
1892 
1893 		if (i > s_i)
1894 			cb->args[5] = 0;
1895 
1896 		if (list_empty(&li->falh))
1897 			continue;
1898 
1899 		if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1900 			cb->args[4] = i;
1901 			return -1;
1902 		}
1903 		i++;
1904 	}
1905 
1906 	cb->args[4] = i;
1907 	return skb->len;
1908 }
1909 
fib_table_dump(struct fib_table * tb,struct sk_buff * skb,struct netlink_callback * cb)1910 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1911 		   struct netlink_callback *cb)
1912 {
1913 	struct leaf *l;
1914 	struct trie *t = (struct trie *) tb->tb_data;
1915 	t_key key = cb->args[2];
1916 	int count = cb->args[3];
1917 
1918 	rcu_read_lock();
1919 	/* Dump starting at last key.
1920 	 * Note: 0.0.0.0/0 (ie default) is first key.
1921 	 */
1922 	if (count == 0)
1923 		l = trie_firstleaf(t);
1924 	else {
1925 		/* Normally, continue from last key, but if that is missing
1926 		 * fallback to using slow rescan
1927 		 */
1928 		l = fib_find_node(t, key);
1929 		if (!l)
1930 			l = trie_leafindex(t, count);
1931 	}
1932 
1933 	while (l) {
1934 		cb->args[2] = l->key;
1935 		if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1936 			cb->args[3] = count;
1937 			rcu_read_unlock();
1938 			return -1;
1939 		}
1940 
1941 		++count;
1942 		l = trie_nextleaf(l);
1943 		memset(&cb->args[4], 0,
1944 		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1945 	}
1946 	cb->args[3] = count;
1947 	rcu_read_unlock();
1948 
1949 	return skb->len;
1950 }
1951 
fib_trie_init(void)1952 void __init fib_trie_init(void)
1953 {
1954 	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1955 					  sizeof(struct fib_alias),
1956 					  0, SLAB_PANIC, NULL);
1957 
1958 	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1959 					   max(sizeof(struct leaf),
1960 					       sizeof(struct leaf_info)),
1961 					   0, SLAB_PANIC, NULL);
1962 }
1963 
1964 
fib_trie_table(u32 id)1965 struct fib_table *fib_trie_table(u32 id)
1966 {
1967 	struct fib_table *tb;
1968 	struct trie *t;
1969 
1970 	tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1971 		     GFP_KERNEL);
1972 	if (tb == NULL)
1973 		return NULL;
1974 
1975 	tb->tb_id = id;
1976 	tb->tb_default = -1;
1977 
1978 	t = (struct trie *) tb->tb_data;
1979 	memset(t, 0, sizeof(*t));
1980 
1981 	return tb;
1982 }
1983 
1984 #ifdef CONFIG_PROC_FS
1985 /* Depth first Trie walk iterator */
1986 struct fib_trie_iter {
1987 	struct seq_net_private p;
1988 	struct fib_table *tb;
1989 	struct tnode *tnode;
1990 	unsigned int index;
1991 	unsigned int depth;
1992 };
1993 
fib_trie_get_next(struct fib_trie_iter * iter)1994 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
1995 {
1996 	struct tnode *tn = iter->tnode;
1997 	unsigned int cindex = iter->index;
1998 	struct tnode *p;
1999 
2000 	/* A single entry routing table */
2001 	if (!tn)
2002 		return NULL;
2003 
2004 	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2005 		 iter->tnode, iter->index, iter->depth);
2006 rescan:
2007 	while (cindex < (1<<tn->bits)) {
2008 		struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2009 
2010 		if (n) {
2011 			if (IS_LEAF(n)) {
2012 				iter->tnode = tn;
2013 				iter->index = cindex + 1;
2014 			} else {
2015 				/* push down one level */
2016 				iter->tnode = (struct tnode *) n;
2017 				iter->index = 0;
2018 				++iter->depth;
2019 			}
2020 			return n;
2021 		}
2022 
2023 		++cindex;
2024 	}
2025 
2026 	/* Current node exhausted, pop back up */
2027 	p = node_parent_rcu((struct rt_trie_node *)tn);
2028 	if (p) {
2029 		cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2030 		tn = p;
2031 		--iter->depth;
2032 		goto rescan;
2033 	}
2034 
2035 	/* got root? */
2036 	return NULL;
2037 }
2038 
fib_trie_get_first(struct fib_trie_iter * iter,struct trie * t)2039 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2040 				       struct trie *t)
2041 {
2042 	struct rt_trie_node *n;
2043 
2044 	if (!t)
2045 		return NULL;
2046 
2047 	n = rcu_dereference(t->trie);
2048 	if (!n)
2049 		return NULL;
2050 
2051 	if (IS_TNODE(n)) {
2052 		iter->tnode = (struct tnode *) n;
2053 		iter->index = 0;
2054 		iter->depth = 1;
2055 	} else {
2056 		iter->tnode = NULL;
2057 		iter->index = 0;
2058 		iter->depth = 0;
2059 	}
2060 
2061 	return n;
2062 }
2063 
trie_collect_stats(struct trie * t,struct trie_stat * s)2064 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2065 {
2066 	struct rt_trie_node *n;
2067 	struct fib_trie_iter iter;
2068 
2069 	memset(s, 0, sizeof(*s));
2070 
2071 	rcu_read_lock();
2072 	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2073 		if (IS_LEAF(n)) {
2074 			struct leaf *l = (struct leaf *)n;
2075 			struct leaf_info *li;
2076 			struct hlist_node *tmp;
2077 
2078 			s->leaves++;
2079 			s->totdepth += iter.depth;
2080 			if (iter.depth > s->maxdepth)
2081 				s->maxdepth = iter.depth;
2082 
2083 			hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2084 				++s->prefixes;
2085 		} else {
2086 			const struct tnode *tn = (const struct tnode *) n;
2087 			int i;
2088 
2089 			s->tnodes++;
2090 			if (tn->bits < MAX_STAT_DEPTH)
2091 				s->nodesizes[tn->bits]++;
2092 
2093 			for (i = 0; i < (1<<tn->bits); i++)
2094 				if (!tn->child[i])
2095 					s->nullpointers++;
2096 		}
2097 	}
2098 	rcu_read_unlock();
2099 }
2100 
2101 /*
2102  *	This outputs /proc/net/fib_triestats
2103  */
trie_show_stats(struct seq_file * seq,struct trie_stat * stat)2104 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2105 {
2106 	unsigned int i, max, pointers, bytes, avdepth;
2107 
2108 	if (stat->leaves)
2109 		avdepth = stat->totdepth*100 / stat->leaves;
2110 	else
2111 		avdepth = 0;
2112 
2113 	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2114 		   avdepth / 100, avdepth % 100);
2115 	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2116 
2117 	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2118 	bytes = sizeof(struct leaf) * stat->leaves;
2119 
2120 	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2121 	bytes += sizeof(struct leaf_info) * stat->prefixes;
2122 
2123 	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2124 	bytes += sizeof(struct tnode) * stat->tnodes;
2125 
2126 	max = MAX_STAT_DEPTH;
2127 	while (max > 0 && stat->nodesizes[max-1] == 0)
2128 		max--;
2129 
2130 	pointers = 0;
2131 	for (i = 1; i <= max; i++)
2132 		if (stat->nodesizes[i] != 0) {
2133 			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2134 			pointers += (1<<i) * stat->nodesizes[i];
2135 		}
2136 	seq_putc(seq, '\n');
2137 	seq_printf(seq, "\tPointers: %u\n", pointers);
2138 
2139 	bytes += sizeof(struct rt_trie_node *) * pointers;
2140 	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2141 	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2142 }
2143 
2144 #ifdef CONFIG_IP_FIB_TRIE_STATS
trie_show_usage(struct seq_file * seq,const struct trie_use_stats * stats)2145 static void trie_show_usage(struct seq_file *seq,
2146 			    const struct trie_use_stats *stats)
2147 {
2148 	seq_printf(seq, "\nCounters:\n---------\n");
2149 	seq_printf(seq, "gets = %u\n", stats->gets);
2150 	seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2151 	seq_printf(seq, "semantic match passed = %u\n",
2152 		   stats->semantic_match_passed);
2153 	seq_printf(seq, "semantic match miss = %u\n",
2154 		   stats->semantic_match_miss);
2155 	seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2156 	seq_printf(seq, "skipped node resize = %u\n\n",
2157 		   stats->resize_node_skipped);
2158 }
2159 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2160 
fib_table_print(struct seq_file * seq,struct fib_table * tb)2161 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2162 {
2163 	if (tb->tb_id == RT_TABLE_LOCAL)
2164 		seq_puts(seq, "Local:\n");
2165 	else if (tb->tb_id == RT_TABLE_MAIN)
2166 		seq_puts(seq, "Main:\n");
2167 	else
2168 		seq_printf(seq, "Id %d:\n", tb->tb_id);
2169 }
2170 
2171 
fib_triestat_seq_show(struct seq_file * seq,void * v)2172 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2173 {
2174 	struct net *net = (struct net *)seq->private;
2175 	unsigned int h;
2176 
2177 	seq_printf(seq,
2178 		   "Basic info: size of leaf:"
2179 		   " %Zd bytes, size of tnode: %Zd bytes.\n",
2180 		   sizeof(struct leaf), sizeof(struct tnode));
2181 
2182 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2183 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2184 		struct hlist_node *node;
2185 		struct fib_table *tb;
2186 
2187 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2188 			struct trie *t = (struct trie *) tb->tb_data;
2189 			struct trie_stat stat;
2190 
2191 			if (!t)
2192 				continue;
2193 
2194 			fib_table_print(seq, tb);
2195 
2196 			trie_collect_stats(t, &stat);
2197 			trie_show_stats(seq, &stat);
2198 #ifdef CONFIG_IP_FIB_TRIE_STATS
2199 			trie_show_usage(seq, &t->stats);
2200 #endif
2201 		}
2202 	}
2203 
2204 	return 0;
2205 }
2206 
fib_triestat_seq_open(struct inode * inode,struct file * file)2207 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2208 {
2209 	return single_open_net(inode, file, fib_triestat_seq_show);
2210 }
2211 
2212 static const struct file_operations fib_triestat_fops = {
2213 	.owner	= THIS_MODULE,
2214 	.open	= fib_triestat_seq_open,
2215 	.read	= seq_read,
2216 	.llseek	= seq_lseek,
2217 	.release = single_release_net,
2218 };
2219 
fib_trie_get_idx(struct seq_file * seq,loff_t pos)2220 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2221 {
2222 	struct fib_trie_iter *iter = seq->private;
2223 	struct net *net = seq_file_net(seq);
2224 	loff_t idx = 0;
2225 	unsigned int h;
2226 
2227 	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2228 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2229 		struct hlist_node *node;
2230 		struct fib_table *tb;
2231 
2232 		hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2233 			struct rt_trie_node *n;
2234 
2235 			for (n = fib_trie_get_first(iter,
2236 						    (struct trie *) tb->tb_data);
2237 			     n; n = fib_trie_get_next(iter))
2238 				if (pos == idx++) {
2239 					iter->tb = tb;
2240 					return n;
2241 				}
2242 		}
2243 	}
2244 
2245 	return NULL;
2246 }
2247 
fib_trie_seq_start(struct seq_file * seq,loff_t * pos)2248 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2249 	__acquires(RCU)
2250 {
2251 	rcu_read_lock();
2252 	return fib_trie_get_idx(seq, *pos);
2253 }
2254 
fib_trie_seq_next(struct seq_file * seq,void * v,loff_t * pos)2255 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2256 {
2257 	struct fib_trie_iter *iter = seq->private;
2258 	struct net *net = seq_file_net(seq);
2259 	struct fib_table *tb = iter->tb;
2260 	struct hlist_node *tb_node;
2261 	unsigned int h;
2262 	struct rt_trie_node *n;
2263 
2264 	++*pos;
2265 	/* next node in same table */
2266 	n = fib_trie_get_next(iter);
2267 	if (n)
2268 		return n;
2269 
2270 	/* walk rest of this hash chain */
2271 	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2272 	while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2273 		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2274 		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2275 		if (n)
2276 			goto found;
2277 	}
2278 
2279 	/* new hash chain */
2280 	while (++h < FIB_TABLE_HASHSZ) {
2281 		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2282 		hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2283 			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2284 			if (n)
2285 				goto found;
2286 		}
2287 	}
2288 	return NULL;
2289 
2290 found:
2291 	iter->tb = tb;
2292 	return n;
2293 }
2294 
fib_trie_seq_stop(struct seq_file * seq,void * v)2295 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2296 	__releases(RCU)
2297 {
2298 	rcu_read_unlock();
2299 }
2300 
seq_indent(struct seq_file * seq,int n)2301 static void seq_indent(struct seq_file *seq, int n)
2302 {
2303 	while (n-- > 0)
2304 		seq_puts(seq, "   ");
2305 }
2306 
rtn_scope(char * buf,size_t len,enum rt_scope_t s)2307 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2308 {
2309 	switch (s) {
2310 	case RT_SCOPE_UNIVERSE: return "universe";
2311 	case RT_SCOPE_SITE:	return "site";
2312 	case RT_SCOPE_LINK:	return "link";
2313 	case RT_SCOPE_HOST:	return "host";
2314 	case RT_SCOPE_NOWHERE:	return "nowhere";
2315 	default:
2316 		snprintf(buf, len, "scope=%d", s);
2317 		return buf;
2318 	}
2319 }
2320 
2321 static const char *const rtn_type_names[__RTN_MAX] = {
2322 	[RTN_UNSPEC] = "UNSPEC",
2323 	[RTN_UNICAST] = "UNICAST",
2324 	[RTN_LOCAL] = "LOCAL",
2325 	[RTN_BROADCAST] = "BROADCAST",
2326 	[RTN_ANYCAST] = "ANYCAST",
2327 	[RTN_MULTICAST] = "MULTICAST",
2328 	[RTN_BLACKHOLE] = "BLACKHOLE",
2329 	[RTN_UNREACHABLE] = "UNREACHABLE",
2330 	[RTN_PROHIBIT] = "PROHIBIT",
2331 	[RTN_THROW] = "THROW",
2332 	[RTN_NAT] = "NAT",
2333 	[RTN_XRESOLVE] = "XRESOLVE",
2334 };
2335 
rtn_type(char * buf,size_t len,unsigned int t)2336 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2337 {
2338 	if (t < __RTN_MAX && rtn_type_names[t])
2339 		return rtn_type_names[t];
2340 	snprintf(buf, len, "type %u", t);
2341 	return buf;
2342 }
2343 
2344 /* Pretty print the trie */
fib_trie_seq_show(struct seq_file * seq,void * v)2345 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2346 {
2347 	const struct fib_trie_iter *iter = seq->private;
2348 	struct rt_trie_node *n = v;
2349 
2350 	if (!node_parent_rcu(n))
2351 		fib_table_print(seq, iter->tb);
2352 
2353 	if (IS_TNODE(n)) {
2354 		struct tnode *tn = (struct tnode *) n;
2355 		__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2356 
2357 		seq_indent(seq, iter->depth-1);
2358 		seq_printf(seq, "  +-- %pI4/%d %d %d %d\n",
2359 			   &prf, tn->pos, tn->bits, tn->full_children,
2360 			   tn->empty_children);
2361 
2362 	} else {
2363 		struct leaf *l = (struct leaf *) n;
2364 		struct leaf_info *li;
2365 		struct hlist_node *node;
2366 		__be32 val = htonl(l->key);
2367 
2368 		seq_indent(seq, iter->depth);
2369 		seq_printf(seq, "  |-- %pI4\n", &val);
2370 
2371 		hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2372 			struct fib_alias *fa;
2373 
2374 			list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2375 				char buf1[32], buf2[32];
2376 
2377 				seq_indent(seq, iter->depth+1);
2378 				seq_printf(seq, "  /%d %s %s", li->plen,
2379 					   rtn_scope(buf1, sizeof(buf1),
2380 						     fa->fa_info->fib_scope),
2381 					   rtn_type(buf2, sizeof(buf2),
2382 						    fa->fa_type));
2383 				if (fa->fa_tos)
2384 					seq_printf(seq, " tos=%d", fa->fa_tos);
2385 				seq_putc(seq, '\n');
2386 			}
2387 		}
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 static const struct seq_operations fib_trie_seq_ops = {
2394 	.start  = fib_trie_seq_start,
2395 	.next   = fib_trie_seq_next,
2396 	.stop   = fib_trie_seq_stop,
2397 	.show   = fib_trie_seq_show,
2398 };
2399 
fib_trie_seq_open(struct inode * inode,struct file * file)2400 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2401 {
2402 	return seq_open_net(inode, file, &fib_trie_seq_ops,
2403 			    sizeof(struct fib_trie_iter));
2404 }
2405 
2406 static const struct file_operations fib_trie_fops = {
2407 	.owner  = THIS_MODULE,
2408 	.open   = fib_trie_seq_open,
2409 	.read   = seq_read,
2410 	.llseek = seq_lseek,
2411 	.release = seq_release_net,
2412 };
2413 
2414 struct fib_route_iter {
2415 	struct seq_net_private p;
2416 	struct trie *main_trie;
2417 	loff_t	pos;
2418 	t_key	key;
2419 };
2420 
fib_route_get_idx(struct fib_route_iter * iter,loff_t pos)2421 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2422 {
2423 	struct leaf *l = NULL;
2424 	struct trie *t = iter->main_trie;
2425 
2426 	/* use cache location of last found key */
2427 	if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2428 		pos -= iter->pos;
2429 	else {
2430 		iter->pos = 0;
2431 		l = trie_firstleaf(t);
2432 	}
2433 
2434 	while (l && pos-- > 0) {
2435 		iter->pos++;
2436 		l = trie_nextleaf(l);
2437 	}
2438 
2439 	if (l)
2440 		iter->key = pos;	/* remember it */
2441 	else
2442 		iter->pos = 0;		/* forget it */
2443 
2444 	return l;
2445 }
2446 
fib_route_seq_start(struct seq_file * seq,loff_t * pos)2447 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2448 	__acquires(RCU)
2449 {
2450 	struct fib_route_iter *iter = seq->private;
2451 	struct fib_table *tb;
2452 
2453 	rcu_read_lock();
2454 	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2455 	if (!tb)
2456 		return NULL;
2457 
2458 	iter->main_trie = (struct trie *) tb->tb_data;
2459 	if (*pos == 0)
2460 		return SEQ_START_TOKEN;
2461 	else
2462 		return fib_route_get_idx(iter, *pos - 1);
2463 }
2464 
fib_route_seq_next(struct seq_file * seq,void * v,loff_t * pos)2465 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2466 {
2467 	struct fib_route_iter *iter = seq->private;
2468 	struct leaf *l = v;
2469 
2470 	++*pos;
2471 	if (v == SEQ_START_TOKEN) {
2472 		iter->pos = 0;
2473 		l = trie_firstleaf(iter->main_trie);
2474 	} else {
2475 		iter->pos++;
2476 		l = trie_nextleaf(l);
2477 	}
2478 
2479 	if (l)
2480 		iter->key = l->key;
2481 	else
2482 		iter->pos = 0;
2483 	return l;
2484 }
2485 
fib_route_seq_stop(struct seq_file * seq,void * v)2486 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2487 	__releases(RCU)
2488 {
2489 	rcu_read_unlock();
2490 }
2491 
fib_flag_trans(int type,__be32 mask,const struct fib_info * fi)2492 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2493 {
2494 	unsigned int flags = 0;
2495 
2496 	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2497 		flags = RTF_REJECT;
2498 	if (fi && fi->fib_nh->nh_gw)
2499 		flags |= RTF_GATEWAY;
2500 	if (mask == htonl(0xFFFFFFFF))
2501 		flags |= RTF_HOST;
2502 	flags |= RTF_UP;
2503 	return flags;
2504 }
2505 
2506 /*
2507  *	This outputs /proc/net/route.
2508  *	The format of the file is not supposed to be changed
2509  *	and needs to be same as fib_hash output to avoid breaking
2510  *	legacy utilities
2511  */
fib_route_seq_show(struct seq_file * seq,void * v)2512 static int fib_route_seq_show(struct seq_file *seq, void *v)
2513 {
2514 	struct leaf *l = v;
2515 	struct leaf_info *li;
2516 	struct hlist_node *node;
2517 
2518 	if (v == SEQ_START_TOKEN) {
2519 		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2520 			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2521 			   "\tWindow\tIRTT");
2522 		return 0;
2523 	}
2524 
2525 	hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2526 		struct fib_alias *fa;
2527 		__be32 mask, prefix;
2528 
2529 		mask = inet_make_mask(li->plen);
2530 		prefix = htonl(l->key);
2531 
2532 		list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2533 			const struct fib_info *fi = fa->fa_info;
2534 			unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2535 			int len;
2536 
2537 			if (fa->fa_type == RTN_BROADCAST
2538 			    || fa->fa_type == RTN_MULTICAST)
2539 				continue;
2540 
2541 			if (fi)
2542 				seq_printf(seq,
2543 					 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2544 					 "%d\t%08X\t%d\t%u\t%u%n",
2545 					 fi->fib_dev ? fi->fib_dev->name : "*",
2546 					 prefix,
2547 					 fi->fib_nh->nh_gw, flags, 0, 0,
2548 					 fi->fib_priority,
2549 					 mask,
2550 					 (fi->fib_advmss ?
2551 					  fi->fib_advmss + 40 : 0),
2552 					 fi->fib_window,
2553 					 fi->fib_rtt >> 3, &len);
2554 			else
2555 				seq_printf(seq,
2556 					 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2557 					 "%d\t%08X\t%d\t%u\t%u%n",
2558 					 prefix, 0, flags, 0, 0, 0,
2559 					 mask, 0, 0, 0, &len);
2560 
2561 			seq_printf(seq, "%*s\n", 127 - len, "");
2562 		}
2563 	}
2564 
2565 	return 0;
2566 }
2567 
2568 static const struct seq_operations fib_route_seq_ops = {
2569 	.start  = fib_route_seq_start,
2570 	.next   = fib_route_seq_next,
2571 	.stop   = fib_route_seq_stop,
2572 	.show   = fib_route_seq_show,
2573 };
2574 
fib_route_seq_open(struct inode * inode,struct file * file)2575 static int fib_route_seq_open(struct inode *inode, struct file *file)
2576 {
2577 	return seq_open_net(inode, file, &fib_route_seq_ops,
2578 			    sizeof(struct fib_route_iter));
2579 }
2580 
2581 static const struct file_operations fib_route_fops = {
2582 	.owner  = THIS_MODULE,
2583 	.open   = fib_route_seq_open,
2584 	.read   = seq_read,
2585 	.llseek = seq_lseek,
2586 	.release = seq_release_net,
2587 };
2588 
fib_proc_init(struct net * net)2589 int __net_init fib_proc_init(struct net *net)
2590 {
2591 	if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2592 		goto out1;
2593 
2594 	if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2595 				  &fib_triestat_fops))
2596 		goto out2;
2597 
2598 	if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2599 		goto out3;
2600 
2601 	return 0;
2602 
2603 out3:
2604 	proc_net_remove(net, "fib_triestat");
2605 out2:
2606 	proc_net_remove(net, "fib_trie");
2607 out1:
2608 	return -ENOMEM;
2609 }
2610 
fib_proc_exit(struct net * net)2611 void __net_exit fib_proc_exit(struct net *net)
2612 {
2613 	proc_net_remove(net, "fib_trie");
2614 	proc_net_remove(net, "fib_triestat");
2615 	proc_net_remove(net, "route");
2616 }
2617 
2618 #endif /* CONFIG_PROC_FS */
2619