1 /*
2  * kernel/time/timer_stats.c
3  *
4  * Collect timer usage statistics.
5  *
6  * Copyright(C) 2006, Red Hat, Inc., Ingo Molnar
7  * Copyright(C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *
9  * timer_stats is based on timer_top, a similar functionality which was part of
10  * Con Kolivas dyntick patch set. It was developed by Daniel Petrini at the
11  * Instituto Nokia de Tecnologia - INdT - Manaus. timer_top's design was based
12  * on dynamic allocation of the statistics entries and linear search based
13  * lookup combined with a global lock, rather than the static array, hash
14  * and per-CPU locking which is used by timer_stats. It was written for the
15  * pre hrtimer kernel code and therefore did not take hrtimers into account.
16  * Nevertheless it provided the base for the timer_stats implementation and
17  * was a helpful source of inspiration. Kudos to Daniel and the Nokia folks
18  * for this effort.
19  *
20  * timer_top.c is
21  *	Copyright (C) 2005 Instituto Nokia de Tecnologia - INdT - Manaus
22  *	Written by Daniel Petrini <d.pensator@gmail.com>
23  *	timer_top.c was released under the GNU General Public License version 2
24  *
25  * We export the addresses and counting of timer functions being called,
26  * the pid and cmdline from the owner process if applicable.
27  *
28  * Start/stop data collection:
29  * # echo [1|0] >/proc/timer_stats
30  *
31  * Display the information collected so far:
32  * # cat /proc/timer_stats
33  *
34  * This program is free software; you can redistribute it and/or modify
35  * it under the terms of the GNU General Public License version 2 as
36  * published by the Free Software Foundation.
37  */
38 
39 #include <linux/proc_fs.h>
40 #include <linux/module.h>
41 #include <linux/spinlock.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/kallsyms.h>
45 
46 #include <asm/uaccess.h>
47 
48 /*
49  * This is our basic unit of interest: a timer expiry event identified
50  * by the timer, its start/expire functions and the PID of the task that
51  * started the timer. We count the number of times an event happens:
52  */
53 struct entry {
54 	/*
55 	 * Hash list:
56 	 */
57 	struct entry		*next;
58 
59 	/*
60 	 * Hash keys:
61 	 */
62 	void			*timer;
63 	void			*start_func;
64 	void			*expire_func;
65 	pid_t			pid;
66 
67 	/*
68 	 * Number of timeout events:
69 	 */
70 	unsigned long		count;
71 	unsigned int		timer_flag;
72 
73 	/*
74 	 * We save the command-line string to preserve
75 	 * this information past task exit:
76 	 */
77 	char			comm[TASK_COMM_LEN + 1];
78 
79 } ____cacheline_aligned_in_smp;
80 
81 /*
82  * Spinlock protecting the tables - not taken during lookup:
83  */
84 static DEFINE_SPINLOCK(table_lock);
85 
86 /*
87  * Per-CPU lookup locks for fast hash lookup:
88  */
89 static DEFINE_PER_CPU(raw_spinlock_t, tstats_lookup_lock);
90 
91 /*
92  * Mutex to serialize state changes with show-stats activities:
93  */
94 static DEFINE_MUTEX(show_mutex);
95 
96 /*
97  * Collection status, active/inactive:
98  */
99 int __read_mostly timer_stats_active;
100 
101 /*
102  * Beginning/end timestamps of measurement:
103  */
104 static ktime_t time_start, time_stop;
105 
106 /*
107  * tstat entry structs only get allocated while collection is
108  * active and never freed during that time - this simplifies
109  * things quite a bit.
110  *
111  * They get freed when a new collection period is started.
112  */
113 #define MAX_ENTRIES_BITS	10
114 #define MAX_ENTRIES		(1UL << MAX_ENTRIES_BITS)
115 
116 static unsigned long nr_entries;
117 static struct entry entries[MAX_ENTRIES];
118 
119 static atomic_t overflow_count;
120 
121 /*
122  * The entries are in a hash-table, for fast lookup:
123  */
124 #define TSTAT_HASH_BITS		(MAX_ENTRIES_BITS - 1)
125 #define TSTAT_HASH_SIZE		(1UL << TSTAT_HASH_BITS)
126 #define TSTAT_HASH_MASK		(TSTAT_HASH_SIZE - 1)
127 
128 #define __tstat_hashfn(entry)						\
129 	(((unsigned long)(entry)->timer       ^				\
130 	  (unsigned long)(entry)->start_func  ^				\
131 	  (unsigned long)(entry)->expire_func ^				\
132 	  (unsigned long)(entry)->pid		) & TSTAT_HASH_MASK)
133 
134 #define tstat_hashentry(entry)	(tstat_hash_table + __tstat_hashfn(entry))
135 
136 static struct entry *tstat_hash_table[TSTAT_HASH_SIZE] __read_mostly;
137 
reset_entries(void)138 static void reset_entries(void)
139 {
140 	nr_entries = 0;
141 	memset(entries, 0, sizeof(entries));
142 	memset(tstat_hash_table, 0, sizeof(tstat_hash_table));
143 	atomic_set(&overflow_count, 0);
144 }
145 
alloc_entry(void)146 static struct entry *alloc_entry(void)
147 {
148 	if (nr_entries >= MAX_ENTRIES)
149 		return NULL;
150 
151 	return entries + nr_entries++;
152 }
153 
match_entries(struct entry * entry1,struct entry * entry2)154 static int match_entries(struct entry *entry1, struct entry *entry2)
155 {
156 	return entry1->timer       == entry2->timer	  &&
157 	       entry1->start_func  == entry2->start_func  &&
158 	       entry1->expire_func == entry2->expire_func &&
159 	       entry1->pid	   == entry2->pid;
160 }
161 
162 /*
163  * Look up whether an entry matching this item is present
164  * in the hash already. Must be called with irqs off and the
165  * lookup lock held:
166  */
tstat_lookup(struct entry * entry,char * comm)167 static struct entry *tstat_lookup(struct entry *entry, char *comm)
168 {
169 	struct entry **head, *curr, *prev;
170 
171 	head = tstat_hashentry(entry);
172 	curr = *head;
173 
174 	/*
175 	 * The fastpath is when the entry is already hashed,
176 	 * we do this with the lookup lock held, but with the
177 	 * table lock not held:
178 	 */
179 	while (curr) {
180 		if (match_entries(curr, entry))
181 			return curr;
182 
183 		curr = curr->next;
184 	}
185 	/*
186 	 * Slowpath: allocate, set up and link a new hash entry:
187 	 */
188 	prev = NULL;
189 	curr = *head;
190 
191 	spin_lock(&table_lock);
192 	/*
193 	 * Make sure we have not raced with another CPU:
194 	 */
195 	while (curr) {
196 		if (match_entries(curr, entry))
197 			goto out_unlock;
198 
199 		prev = curr;
200 		curr = curr->next;
201 	}
202 
203 	curr = alloc_entry();
204 	if (curr) {
205 		*curr = *entry;
206 		curr->count = 0;
207 		curr->next = NULL;
208 		memcpy(curr->comm, comm, TASK_COMM_LEN);
209 
210 		smp_mb(); /* Ensure that curr is initialized before insert */
211 
212 		if (prev)
213 			prev->next = curr;
214 		else
215 			*head = curr;
216 	}
217  out_unlock:
218 	spin_unlock(&table_lock);
219 
220 	return curr;
221 }
222 
223 /**
224  * timer_stats_update_stats - Update the statistics for a timer.
225  * @timer:	pointer to either a timer_list or a hrtimer
226  * @pid:	the pid of the task which set up the timer
227  * @startf:	pointer to the function which did the timer setup
228  * @timerf:	pointer to the timer callback function of the timer
229  * @comm:	name of the process which set up the timer
230  *
231  * When the timer is already registered, then the event counter is
232  * incremented. Otherwise the timer is registered in a free slot.
233  */
timer_stats_update_stats(void * timer,pid_t pid,void * startf,void * timerf,char * comm,unsigned int timer_flag)234 void timer_stats_update_stats(void *timer, pid_t pid, void *startf,
235 			      void *timerf, char *comm,
236 			      unsigned int timer_flag)
237 {
238 	/*
239 	 * It doesn't matter which lock we take:
240 	 */
241 	raw_spinlock_t *lock;
242 	struct entry *entry, input;
243 	unsigned long flags;
244 
245 	if (likely(!timer_stats_active))
246 		return;
247 
248 	lock = &per_cpu(tstats_lookup_lock, raw_smp_processor_id());
249 
250 	input.timer = timer;
251 	input.start_func = startf;
252 	input.expire_func = timerf;
253 	input.pid = pid;
254 	input.timer_flag = timer_flag;
255 
256 	raw_spin_lock_irqsave(lock, flags);
257 	if (!timer_stats_active)
258 		goto out_unlock;
259 
260 	entry = tstat_lookup(&input, comm);
261 	if (likely(entry))
262 		entry->count++;
263 	else
264 		atomic_inc(&overflow_count);
265 
266  out_unlock:
267 	raw_spin_unlock_irqrestore(lock, flags);
268 }
269 
print_name_offset(struct seq_file * m,unsigned long addr)270 static void print_name_offset(struct seq_file *m, unsigned long addr)
271 {
272 	char symname[KSYM_NAME_LEN];
273 
274 	if (lookup_symbol_name(addr, symname) < 0)
275 		seq_printf(m, "<%p>", (void *)addr);
276 	else
277 		seq_printf(m, "%s", symname);
278 }
279 
tstats_show(struct seq_file * m,void * v)280 static int tstats_show(struct seq_file *m, void *v)
281 {
282 	struct timespec period;
283 	struct entry *entry;
284 	unsigned long ms;
285 	long events = 0;
286 	ktime_t time;
287 	int i;
288 
289 	mutex_lock(&show_mutex);
290 	/*
291 	 * If still active then calculate up to now:
292 	 */
293 	if (timer_stats_active)
294 		time_stop = ktime_get();
295 
296 	time = ktime_sub(time_stop, time_start);
297 
298 	period = ktime_to_timespec(time);
299 	ms = period.tv_nsec / 1000000;
300 
301 	seq_puts(m, "Timer Stats Version: v0.2\n");
302 	seq_printf(m, "Sample period: %ld.%03ld s\n", period.tv_sec, ms);
303 	if (atomic_read(&overflow_count))
304 		seq_printf(m, "Overflow: %d entries\n",
305 			atomic_read(&overflow_count));
306 
307 	for (i = 0; i < nr_entries; i++) {
308 		entry = entries + i;
309  		if (entry->timer_flag & TIMER_STATS_FLAG_DEFERRABLE) {
310 			seq_printf(m, "%4luD, %5d %-16s ",
311 				entry->count, entry->pid, entry->comm);
312 		} else {
313 			seq_printf(m, " %4lu, %5d %-16s ",
314 				entry->count, entry->pid, entry->comm);
315 		}
316 
317 		print_name_offset(m, (unsigned long)entry->start_func);
318 		seq_puts(m, " (");
319 		print_name_offset(m, (unsigned long)entry->expire_func);
320 		seq_puts(m, ")\n");
321 
322 		events += entry->count;
323 	}
324 
325 	ms += period.tv_sec * 1000;
326 	if (!ms)
327 		ms = 1;
328 
329 	if (events && period.tv_sec)
330 		seq_printf(m, "%ld total events, %ld.%03ld events/sec\n",
331 			   events, events * 1000 / ms,
332 			   (events * 1000000 / ms) % 1000);
333 	else
334 		seq_printf(m, "%ld total events\n", events);
335 
336 	mutex_unlock(&show_mutex);
337 
338 	return 0;
339 }
340 
341 /*
342  * After a state change, make sure all concurrent lookup/update
343  * activities have stopped:
344  */
sync_access(void)345 static void sync_access(void)
346 {
347 	unsigned long flags;
348 	int cpu;
349 
350 	for_each_online_cpu(cpu) {
351 		raw_spinlock_t *lock = &per_cpu(tstats_lookup_lock, cpu);
352 
353 		raw_spin_lock_irqsave(lock, flags);
354 		/* nothing */
355 		raw_spin_unlock_irqrestore(lock, flags);
356 	}
357 }
358 
tstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)359 static ssize_t tstats_write(struct file *file, const char __user *buf,
360 			    size_t count, loff_t *offs)
361 {
362 	char ctl[2];
363 
364 	if (count != 2 || *offs)
365 		return -EINVAL;
366 
367 	if (copy_from_user(ctl, buf, count))
368 		return -EFAULT;
369 
370 	mutex_lock(&show_mutex);
371 	switch (ctl[0]) {
372 	case '0':
373 		if (timer_stats_active) {
374 			timer_stats_active = 0;
375 			time_stop = ktime_get();
376 			sync_access();
377 		}
378 		break;
379 	case '1':
380 		if (!timer_stats_active) {
381 			reset_entries();
382 			time_start = ktime_get();
383 			smp_mb();
384 			timer_stats_active = 1;
385 		}
386 		break;
387 	default:
388 		count = -EINVAL;
389 	}
390 	mutex_unlock(&show_mutex);
391 
392 	return count;
393 }
394 
tstats_open(struct inode * inode,struct file * filp)395 static int tstats_open(struct inode *inode, struct file *filp)
396 {
397 	return single_open(filp, tstats_show, NULL);
398 }
399 
400 static const struct file_operations tstats_fops = {
401 	.open		= tstats_open,
402 	.read		= seq_read,
403 	.write		= tstats_write,
404 	.llseek		= seq_lseek,
405 	.release	= single_release,
406 };
407 
init_timer_stats(void)408 void __init init_timer_stats(void)
409 {
410 	int cpu;
411 
412 	for_each_possible_cpu(cpu)
413 		raw_spin_lock_init(&per_cpu(tstats_lookup_lock, cpu));
414 }
415 
init_tstats_procfs(void)416 static int __init init_tstats_procfs(void)
417 {
418 	struct proc_dir_entry *pe;
419 
420 	pe = proc_create("timer_stats", 0644, NULL, &tstats_fops);
421 	if (!pe)
422 		return -ENOMEM;
423 	return 0;
424 }
425 __initcall(init_tstats_procfs);
426