1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/module.h>
50 
51 /*
52  * Management arrays for POSIX timers.	 Timers are kept in slab memory
53  * Timer ids are allocated by an external routine that keeps track of the
54  * id and the timer.  The external interface is:
55  *
56  * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
57  * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
58  *                                                    related it to <ptr>
59  * void idr_remove(struct idr *idp, int id);          to release <id>
60  * void idr_init(struct idr *idp);                    to initialize <idp>
61  *                                                    which we supply.
62  * The idr_get_new *may* call slab for more memory so it must not be
63  * called under a spin lock.  Likewise idr_remore may release memory
64  * (but it may be ok to do this under a lock...).
65  * idr_find is just a memory look up and is quite fast.  A -1 return
66  * indicates that the requested id does not exist.
67  */
68 
69 /*
70  * Lets keep our timers in a slab cache :-)
71  */
72 static struct kmem_cache *posix_timers_cache;
73 static struct idr posix_timers_id;
74 static DEFINE_SPINLOCK(idr_lock);
75 
76 /*
77  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78  * SIGEV values.  Here we put out an error if this assumption fails.
79  */
80 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83 #endif
84 
85 /*
86  * parisc wants ENOTSUP instead of EOPNOTSUPP
87  */
88 #ifndef ENOTSUP
89 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
90 #else
91 # define ENANOSLEEP_NOTSUP ENOTSUP
92 #endif
93 
94 /*
95  * The timer ID is turned into a timer address by idr_find().
96  * Verifying a valid ID consists of:
97  *
98  * a) checking that idr_find() returns other than -1.
99  * b) checking that the timer id matches the one in the timer itself.
100  * c) that the timer owner is in the callers thread group.
101  */
102 
103 /*
104  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
105  *	    to implement others.  This structure defines the various
106  *	    clocks.
107  *
108  * RESOLUTION: Clock resolution is used to round up timer and interval
109  *	    times, NOT to report clock times, which are reported with as
110  *	    much resolution as the system can muster.  In some cases this
111  *	    resolution may depend on the underlying clock hardware and
112  *	    may not be quantifiable until run time, and only then is the
113  *	    necessary code is written.	The standard says we should say
114  *	    something about this issue in the documentation...
115  *
116  * FUNCTIONS: The CLOCKs structure defines possible functions to
117  *	    handle various clock functions.
118  *
119  *	    The standard POSIX timer management code assumes the
120  *	    following: 1.) The k_itimer struct (sched.h) is used for
121  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
122  *	    it_pid fields are not modified by timer code.
123  *
124  * Permissions: It is assumed that the clock_settime() function defined
125  *	    for each clock will take care of permission checks.	 Some
126  *	    clocks may be set able by any user (i.e. local process
127  *	    clocks) others not.	 Currently the only set able clock we
128  *	    have is CLOCK_REALTIME and its high res counter part, both of
129  *	    which we beg off on and pass to do_sys_settimeofday().
130  */
131 
132 static struct k_clock posix_clocks[MAX_CLOCKS];
133 
134 /*
135  * These ones are defined below.
136  */
137 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
138 			 struct timespec __user *rmtp);
139 static int common_timer_create(struct k_itimer *new_timer);
140 static void common_timer_get(struct k_itimer *, struct itimerspec *);
141 static int common_timer_set(struct k_itimer *, int,
142 			    struct itimerspec *, struct itimerspec *);
143 static int common_timer_del(struct k_itimer *timer);
144 
145 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
146 
147 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
148 
149 #define lock_timer(tid, flags)						   \
150 ({	struct k_itimer *__timr;					   \
151 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
152 	__timr;								   \
153 })
154 
unlock_timer(struct k_itimer * timr,unsigned long flags)155 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
156 {
157 	spin_unlock_irqrestore(&timr->it_lock, flags);
158 }
159 
160 /* Get clock_realtime */
posix_clock_realtime_get(clockid_t which_clock,struct timespec * tp)161 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
162 {
163 	ktime_get_real_ts(tp);
164 	return 0;
165 }
166 
167 /* Set clock_realtime */
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec * tp)168 static int posix_clock_realtime_set(const clockid_t which_clock,
169 				    const struct timespec *tp)
170 {
171 	return do_sys_settimeofday(tp, NULL);
172 }
173 
posix_clock_realtime_adj(const clockid_t which_clock,struct timex * t)174 static int posix_clock_realtime_adj(const clockid_t which_clock,
175 				    struct timex *t)
176 {
177 	return do_adjtimex(t);
178 }
179 
180 /*
181  * Get monotonic time for posix timers
182  */
posix_ktime_get_ts(clockid_t which_clock,struct timespec * tp)183 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
184 {
185 	ktime_get_ts(tp);
186 	return 0;
187 }
188 
189 /*
190  * Get monotonic-raw time for posix timers
191  */
posix_get_monotonic_raw(clockid_t which_clock,struct timespec * tp)192 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
193 {
194 	getrawmonotonic(tp);
195 	return 0;
196 }
197 
198 
posix_get_realtime_coarse(clockid_t which_clock,struct timespec * tp)199 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
200 {
201 	*tp = current_kernel_time();
202 	return 0;
203 }
204 
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec * tp)205 static int posix_get_monotonic_coarse(clockid_t which_clock,
206 						struct timespec *tp)
207 {
208 	*tp = get_monotonic_coarse();
209 	return 0;
210 }
211 
posix_get_coarse_res(const clockid_t which_clock,struct timespec * tp)212 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
213 {
214 	*tp = ktime_to_timespec(KTIME_LOW_RES);
215 	return 0;
216 }
217 
posix_get_boottime(const clockid_t which_clock,struct timespec * tp)218 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
219 {
220 	get_monotonic_boottime(tp);
221 	return 0;
222 }
223 
224 
225 /*
226  * Initialize everything, well, just everything in Posix clocks/timers ;)
227  */
init_posix_timers(void)228 static __init int init_posix_timers(void)
229 {
230 	struct k_clock clock_realtime = {
231 		.clock_getres	= hrtimer_get_res,
232 		.clock_get	= posix_clock_realtime_get,
233 		.clock_set	= posix_clock_realtime_set,
234 		.clock_adj	= posix_clock_realtime_adj,
235 		.nsleep		= common_nsleep,
236 		.nsleep_restart	= hrtimer_nanosleep_restart,
237 		.timer_create	= common_timer_create,
238 		.timer_set	= common_timer_set,
239 		.timer_get	= common_timer_get,
240 		.timer_del	= common_timer_del,
241 	};
242 	struct k_clock clock_monotonic = {
243 		.clock_getres	= hrtimer_get_res,
244 		.clock_get	= posix_ktime_get_ts,
245 		.nsleep		= common_nsleep,
246 		.nsleep_restart	= hrtimer_nanosleep_restart,
247 		.timer_create	= common_timer_create,
248 		.timer_set	= common_timer_set,
249 		.timer_get	= common_timer_get,
250 		.timer_del	= common_timer_del,
251 	};
252 	struct k_clock clock_monotonic_raw = {
253 		.clock_getres	= hrtimer_get_res,
254 		.clock_get	= posix_get_monotonic_raw,
255 	};
256 	struct k_clock clock_realtime_coarse = {
257 		.clock_getres	= posix_get_coarse_res,
258 		.clock_get	= posix_get_realtime_coarse,
259 	};
260 	struct k_clock clock_monotonic_coarse = {
261 		.clock_getres	= posix_get_coarse_res,
262 		.clock_get	= posix_get_monotonic_coarse,
263 	};
264 	struct k_clock clock_boottime = {
265 		.clock_getres	= hrtimer_get_res,
266 		.clock_get	= posix_get_boottime,
267 		.nsleep		= common_nsleep,
268 		.nsleep_restart	= hrtimer_nanosleep_restart,
269 		.timer_create	= common_timer_create,
270 		.timer_set	= common_timer_set,
271 		.timer_get	= common_timer_get,
272 		.timer_del	= common_timer_del,
273 	};
274 
275 	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
276 	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
277 	posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
278 	posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
279 	posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
280 	posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
281 
282 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
283 					sizeof (struct k_itimer), 0, SLAB_PANIC,
284 					NULL);
285 	idr_init(&posix_timers_id);
286 	return 0;
287 }
288 
289 __initcall(init_posix_timers);
290 
schedule_next_timer(struct k_itimer * timr)291 static void schedule_next_timer(struct k_itimer *timr)
292 {
293 	struct hrtimer *timer = &timr->it.real.timer;
294 
295 	if (timr->it.real.interval.tv64 == 0)
296 		return;
297 
298 	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
299 						timer->base->get_time(),
300 						timr->it.real.interval);
301 
302 	timr->it_overrun_last = timr->it_overrun;
303 	timr->it_overrun = -1;
304 	++timr->it_requeue_pending;
305 	hrtimer_restart(timer);
306 }
307 
308 /*
309  * This function is exported for use by the signal deliver code.  It is
310  * called just prior to the info block being released and passes that
311  * block to us.  It's function is to update the overrun entry AND to
312  * restart the timer.  It should only be called if the timer is to be
313  * restarted (i.e. we have flagged this in the sys_private entry of the
314  * info block).
315  *
316  * To protect against the timer going away while the interrupt is queued,
317  * we require that the it_requeue_pending flag be set.
318  */
do_schedule_next_timer(struct siginfo * info)319 void do_schedule_next_timer(struct siginfo *info)
320 {
321 	struct k_itimer *timr;
322 	unsigned long flags;
323 
324 	timr = lock_timer(info->si_tid, &flags);
325 
326 	if (timr && timr->it_requeue_pending == info->si_sys_private) {
327 		if (timr->it_clock < 0)
328 			posix_cpu_timer_schedule(timr);
329 		else
330 			schedule_next_timer(timr);
331 
332 		info->si_overrun += timr->it_overrun_last;
333 	}
334 
335 	if (timr)
336 		unlock_timer(timr, flags);
337 }
338 
posix_timer_event(struct k_itimer * timr,int si_private)339 int posix_timer_event(struct k_itimer *timr, int si_private)
340 {
341 	struct task_struct *task;
342 	int shared, ret = -1;
343 	/*
344 	 * FIXME: if ->sigq is queued we can race with
345 	 * dequeue_signal()->do_schedule_next_timer().
346 	 *
347 	 * If dequeue_signal() sees the "right" value of
348 	 * si_sys_private it calls do_schedule_next_timer().
349 	 * We re-queue ->sigq and drop ->it_lock().
350 	 * do_schedule_next_timer() locks the timer
351 	 * and re-schedules it while ->sigq is pending.
352 	 * Not really bad, but not that we want.
353 	 */
354 	timr->sigq->info.si_sys_private = si_private;
355 
356 	rcu_read_lock();
357 	task = pid_task(timr->it_pid, PIDTYPE_PID);
358 	if (task) {
359 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
360 		ret = send_sigqueue(timr->sigq, task, shared);
361 	}
362 	rcu_read_unlock();
363 	/* If we failed to send the signal the timer stops. */
364 	return ret > 0;
365 }
366 EXPORT_SYMBOL_GPL(posix_timer_event);
367 
368 /*
369  * This function gets called when a POSIX.1b interval timer expires.  It
370  * is used as a callback from the kernel internal timer.  The
371  * run_timer_list code ALWAYS calls with interrupts on.
372 
373  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
374  */
posix_timer_fn(struct hrtimer * timer)375 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
376 {
377 	struct k_itimer *timr;
378 	unsigned long flags;
379 	int si_private = 0;
380 	enum hrtimer_restart ret = HRTIMER_NORESTART;
381 
382 	timr = container_of(timer, struct k_itimer, it.real.timer);
383 	spin_lock_irqsave(&timr->it_lock, flags);
384 
385 	if (timr->it.real.interval.tv64 != 0)
386 		si_private = ++timr->it_requeue_pending;
387 
388 	if (posix_timer_event(timr, si_private)) {
389 		/*
390 		 * signal was not sent because of sig_ignor
391 		 * we will not get a call back to restart it AND
392 		 * it should be restarted.
393 		 */
394 		if (timr->it.real.interval.tv64 != 0) {
395 			ktime_t now = hrtimer_cb_get_time(timer);
396 
397 			/*
398 			 * FIXME: What we really want, is to stop this
399 			 * timer completely and restart it in case the
400 			 * SIG_IGN is removed. This is a non trivial
401 			 * change which involves sighand locking
402 			 * (sigh !), which we don't want to do late in
403 			 * the release cycle.
404 			 *
405 			 * For now we just let timers with an interval
406 			 * less than a jiffie expire every jiffie to
407 			 * avoid softirq starvation in case of SIG_IGN
408 			 * and a very small interval, which would put
409 			 * the timer right back on the softirq pending
410 			 * list. By moving now ahead of time we trick
411 			 * hrtimer_forward() to expire the timer
412 			 * later, while we still maintain the overrun
413 			 * accuracy, but have some inconsistency in
414 			 * the timer_gettime() case. This is at least
415 			 * better than a starved softirq. A more
416 			 * complex fix which solves also another related
417 			 * inconsistency is already in the pipeline.
418 			 */
419 #ifdef CONFIG_HIGH_RES_TIMERS
420 			{
421 				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
422 
423 				if (timr->it.real.interval.tv64 < kj.tv64)
424 					now = ktime_add(now, kj);
425 			}
426 #endif
427 			timr->it_overrun += (unsigned int)
428 				hrtimer_forward(timer, now,
429 						timr->it.real.interval);
430 			ret = HRTIMER_RESTART;
431 			++timr->it_requeue_pending;
432 		}
433 	}
434 
435 	unlock_timer(timr, flags);
436 	return ret;
437 }
438 
good_sigevent(sigevent_t * event)439 static struct pid *good_sigevent(sigevent_t * event)
440 {
441 	struct task_struct *rtn = current->group_leader;
442 
443 	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
444 		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
445 		 !same_thread_group(rtn, current) ||
446 		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
447 		return NULL;
448 
449 	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
450 	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
451 		return NULL;
452 
453 	return task_pid(rtn);
454 }
455 
posix_timers_register_clock(const clockid_t clock_id,struct k_clock * new_clock)456 void posix_timers_register_clock(const clockid_t clock_id,
457 				 struct k_clock *new_clock)
458 {
459 	if ((unsigned) clock_id >= MAX_CLOCKS) {
460 		printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
461 		       clock_id);
462 		return;
463 	}
464 
465 	if (!new_clock->clock_get) {
466 		printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
467 		       clock_id);
468 		return;
469 	}
470 	if (!new_clock->clock_getres) {
471 		printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
472 		       clock_id);
473 		return;
474 	}
475 
476 	posix_clocks[clock_id] = *new_clock;
477 }
478 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
479 
alloc_posix_timer(void)480 static struct k_itimer * alloc_posix_timer(void)
481 {
482 	struct k_itimer *tmr;
483 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
484 	if (!tmr)
485 		return tmr;
486 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
487 		kmem_cache_free(posix_timers_cache, tmr);
488 		return NULL;
489 	}
490 	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
491 	return tmr;
492 }
493 
494 #define IT_ID_SET	1
495 #define IT_ID_NOT_SET	0
release_posix_timer(struct k_itimer * tmr,int it_id_set)496 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
497 {
498 	if (it_id_set) {
499 		unsigned long flags;
500 		spin_lock_irqsave(&idr_lock, flags);
501 		idr_remove(&posix_timers_id, tmr->it_id);
502 		spin_unlock_irqrestore(&idr_lock, flags);
503 	}
504 	put_pid(tmr->it_pid);
505 	sigqueue_free(tmr->sigq);
506 	kmem_cache_free(posix_timers_cache, tmr);
507 }
508 
clockid_to_kclock(const clockid_t id)509 static struct k_clock *clockid_to_kclock(const clockid_t id)
510 {
511 	if (id < 0)
512 		return (id & CLOCKFD_MASK) == CLOCKFD ?
513 			&clock_posix_dynamic : &clock_posix_cpu;
514 
515 	if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
516 		return NULL;
517 	return &posix_clocks[id];
518 }
519 
common_timer_create(struct k_itimer * new_timer)520 static int common_timer_create(struct k_itimer *new_timer)
521 {
522 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
523 	return 0;
524 }
525 
526 /* Create a POSIX.1b interval timer. */
527 
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)528 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
529 		struct sigevent __user *, timer_event_spec,
530 		timer_t __user *, created_timer_id)
531 {
532 	struct k_clock *kc = clockid_to_kclock(which_clock);
533 	struct k_itimer *new_timer;
534 	int error, new_timer_id;
535 	sigevent_t event;
536 	int it_id_set = IT_ID_NOT_SET;
537 
538 	if (!kc)
539 		return -EINVAL;
540 	if (!kc->timer_create)
541 		return -EOPNOTSUPP;
542 
543 	new_timer = alloc_posix_timer();
544 	if (unlikely(!new_timer))
545 		return -EAGAIN;
546 
547 	spin_lock_init(&new_timer->it_lock);
548  retry:
549 	if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
550 		error = -EAGAIN;
551 		goto out;
552 	}
553 	spin_lock_irq(&idr_lock);
554 	error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
555 	spin_unlock_irq(&idr_lock);
556 	if (error) {
557 		if (error == -EAGAIN)
558 			goto retry;
559 		/*
560 		 * Weird looking, but we return EAGAIN if the IDR is
561 		 * full (proper POSIX return value for this)
562 		 */
563 		error = -EAGAIN;
564 		goto out;
565 	}
566 
567 	it_id_set = IT_ID_SET;
568 	new_timer->it_id = (timer_t) new_timer_id;
569 	new_timer->it_clock = which_clock;
570 	new_timer->it_overrun = -1;
571 
572 	if (timer_event_spec) {
573 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
574 			error = -EFAULT;
575 			goto out;
576 		}
577 		rcu_read_lock();
578 		new_timer->it_pid = get_pid(good_sigevent(&event));
579 		rcu_read_unlock();
580 		if (!new_timer->it_pid) {
581 			error = -EINVAL;
582 			goto out;
583 		}
584 	} else {
585 		event.sigev_notify = SIGEV_SIGNAL;
586 		event.sigev_signo = SIGALRM;
587 		event.sigev_value.sival_int = new_timer->it_id;
588 		new_timer->it_pid = get_pid(task_tgid(current));
589 	}
590 
591 	new_timer->it_sigev_notify     = event.sigev_notify;
592 	new_timer->sigq->info.si_signo = event.sigev_signo;
593 	new_timer->sigq->info.si_value = event.sigev_value;
594 	new_timer->sigq->info.si_tid   = new_timer->it_id;
595 	new_timer->sigq->info.si_code  = SI_TIMER;
596 
597 	if (copy_to_user(created_timer_id,
598 			 &new_timer_id, sizeof (new_timer_id))) {
599 		error = -EFAULT;
600 		goto out;
601 	}
602 
603 	error = kc->timer_create(new_timer);
604 	if (error)
605 		goto out;
606 
607 	spin_lock_irq(&current->sighand->siglock);
608 	new_timer->it_signal = current->signal;
609 	list_add(&new_timer->list, &current->signal->posix_timers);
610 	spin_unlock_irq(&current->sighand->siglock);
611 
612 	return 0;
613 	/*
614 	 * In the case of the timer belonging to another task, after
615 	 * the task is unlocked, the timer is owned by the other task
616 	 * and may cease to exist at any time.  Don't use or modify
617 	 * new_timer after the unlock call.
618 	 */
619 out:
620 	release_posix_timer(new_timer, it_id_set);
621 	return error;
622 }
623 
624 /*
625  * Locking issues: We need to protect the result of the id look up until
626  * we get the timer locked down so it is not deleted under us.  The
627  * removal is done under the idr spinlock so we use that here to bridge
628  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
629  * be release with out holding the timer lock.
630  */
__lock_timer(timer_t timer_id,unsigned long * flags)631 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
632 {
633 	struct k_itimer *timr;
634 	/*
635 	 * Watch out here.  We do a irqsave on the idr_lock and pass the
636 	 * flags part over to the timer lock.  Must not let interrupts in
637 	 * while we are moving the lock.
638 	 */
639 	spin_lock_irqsave(&idr_lock, *flags);
640 	timr = idr_find(&posix_timers_id, (int)timer_id);
641 	if (timr) {
642 		spin_lock(&timr->it_lock);
643 		if (timr->it_signal == current->signal) {
644 			spin_unlock(&idr_lock);
645 			return timr;
646 		}
647 		spin_unlock(&timr->it_lock);
648 	}
649 	spin_unlock_irqrestore(&idr_lock, *flags);
650 
651 	return NULL;
652 }
653 
654 /*
655  * Get the time remaining on a POSIX.1b interval timer.  This function
656  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
657  * mess with irq.
658  *
659  * We have a couple of messes to clean up here.  First there is the case
660  * of a timer that has a requeue pending.  These timers should appear to
661  * be in the timer list with an expiry as if we were to requeue them
662  * now.
663  *
664  * The second issue is the SIGEV_NONE timer which may be active but is
665  * not really ever put in the timer list (to save system resources).
666  * This timer may be expired, and if so, we will do it here.  Otherwise
667  * it is the same as a requeue pending timer WRT to what we should
668  * report.
669  */
670 static void
common_timer_get(struct k_itimer * timr,struct itimerspec * cur_setting)671 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
672 {
673 	ktime_t now, remaining, iv;
674 	struct hrtimer *timer = &timr->it.real.timer;
675 
676 	memset(cur_setting, 0, sizeof(struct itimerspec));
677 
678 	iv = timr->it.real.interval;
679 
680 	/* interval timer ? */
681 	if (iv.tv64)
682 		cur_setting->it_interval = ktime_to_timespec(iv);
683 	else if (!hrtimer_active(timer) &&
684 		 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
685 		return;
686 
687 	now = timer->base->get_time();
688 
689 	/*
690 	 * When a requeue is pending or this is a SIGEV_NONE
691 	 * timer move the expiry time forward by intervals, so
692 	 * expiry is > now.
693 	 */
694 	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
695 	    (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
696 		timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
697 
698 	remaining = ktime_sub(hrtimer_get_expires(timer), now);
699 	/* Return 0 only, when the timer is expired and not pending */
700 	if (remaining.tv64 <= 0) {
701 		/*
702 		 * A single shot SIGEV_NONE timer must return 0, when
703 		 * it is expired !
704 		 */
705 		if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
706 			cur_setting->it_value.tv_nsec = 1;
707 	} else
708 		cur_setting->it_value = ktime_to_timespec(remaining);
709 }
710 
711 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct itimerspec __user *,setting)712 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
713 		struct itimerspec __user *, setting)
714 {
715 	struct itimerspec cur_setting;
716 	struct k_itimer *timr;
717 	struct k_clock *kc;
718 	unsigned long flags;
719 	int ret = 0;
720 
721 	timr = lock_timer(timer_id, &flags);
722 	if (!timr)
723 		return -EINVAL;
724 
725 	kc = clockid_to_kclock(timr->it_clock);
726 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
727 		ret = -EINVAL;
728 	else
729 		kc->timer_get(timr, &cur_setting);
730 
731 	unlock_timer(timr, flags);
732 
733 	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
734 		return -EFAULT;
735 
736 	return ret;
737 }
738 
739 /*
740  * Get the number of overruns of a POSIX.1b interval timer.  This is to
741  * be the overrun of the timer last delivered.  At the same time we are
742  * accumulating overruns on the next timer.  The overrun is frozen when
743  * the signal is delivered, either at the notify time (if the info block
744  * is not queued) or at the actual delivery time (as we are informed by
745  * the call back to do_schedule_next_timer().  So all we need to do is
746  * to pick up the frozen overrun.
747  */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)748 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
749 {
750 	struct k_itimer *timr;
751 	int overrun;
752 	unsigned long flags;
753 
754 	timr = lock_timer(timer_id, &flags);
755 	if (!timr)
756 		return -EINVAL;
757 
758 	overrun = timr->it_overrun_last;
759 	unlock_timer(timr, flags);
760 
761 	return overrun;
762 }
763 
764 /* Set a POSIX.1b interval timer. */
765 /* timr->it_lock is taken. */
766 static int
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec * new_setting,struct itimerspec * old_setting)767 common_timer_set(struct k_itimer *timr, int flags,
768 		 struct itimerspec *new_setting, struct itimerspec *old_setting)
769 {
770 	struct hrtimer *timer = &timr->it.real.timer;
771 	enum hrtimer_mode mode;
772 
773 	if (old_setting)
774 		common_timer_get(timr, old_setting);
775 
776 	/* disable the timer */
777 	timr->it.real.interval.tv64 = 0;
778 	/*
779 	 * careful here.  If smp we could be in the "fire" routine which will
780 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
781 	 */
782 	if (hrtimer_try_to_cancel(timer) < 0)
783 		return TIMER_RETRY;
784 
785 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
786 		~REQUEUE_PENDING;
787 	timr->it_overrun_last = 0;
788 
789 	/* switch off the timer when it_value is zero */
790 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
791 		return 0;
792 
793 	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
794 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
795 	timr->it.real.timer.function = posix_timer_fn;
796 
797 	hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
798 
799 	/* Convert interval */
800 	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
801 
802 	/* SIGEV_NONE timers are not queued ! See common_timer_get */
803 	if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
804 		/* Setup correct expiry time for relative timers */
805 		if (mode == HRTIMER_MODE_REL) {
806 			hrtimer_add_expires(timer, timer->base->get_time());
807 		}
808 		return 0;
809 	}
810 
811 	hrtimer_start_expires(timer, mode);
812 	return 0;
813 }
814 
815 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct itimerspec __user *,new_setting,struct itimerspec __user *,old_setting)816 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
817 		const struct itimerspec __user *, new_setting,
818 		struct itimerspec __user *, old_setting)
819 {
820 	struct k_itimer *timr;
821 	struct itimerspec new_spec, old_spec;
822 	int error = 0;
823 	unsigned long flag;
824 	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
825 	struct k_clock *kc;
826 
827 	if (!new_setting)
828 		return -EINVAL;
829 
830 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
831 		return -EFAULT;
832 
833 	if (!timespec_valid(&new_spec.it_interval) ||
834 	    !timespec_valid(&new_spec.it_value))
835 		return -EINVAL;
836 retry:
837 	timr = lock_timer(timer_id, &flag);
838 	if (!timr)
839 		return -EINVAL;
840 
841 	kc = clockid_to_kclock(timr->it_clock);
842 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
843 		error = -EINVAL;
844 	else
845 		error = kc->timer_set(timr, flags, &new_spec, rtn);
846 
847 	unlock_timer(timr, flag);
848 	if (error == TIMER_RETRY) {
849 		rtn = NULL;	// We already got the old time...
850 		goto retry;
851 	}
852 
853 	if (old_setting && !error &&
854 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
855 		error = -EFAULT;
856 
857 	return error;
858 }
859 
common_timer_del(struct k_itimer * timer)860 static int common_timer_del(struct k_itimer *timer)
861 {
862 	timer->it.real.interval.tv64 = 0;
863 
864 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
865 		return TIMER_RETRY;
866 	return 0;
867 }
868 
timer_delete_hook(struct k_itimer * timer)869 static inline int timer_delete_hook(struct k_itimer *timer)
870 {
871 	struct k_clock *kc = clockid_to_kclock(timer->it_clock);
872 
873 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
874 		return -EINVAL;
875 	return kc->timer_del(timer);
876 }
877 
878 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)879 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
880 {
881 	struct k_itimer *timer;
882 	unsigned long flags;
883 
884 retry_delete:
885 	timer = lock_timer(timer_id, &flags);
886 	if (!timer)
887 		return -EINVAL;
888 
889 	if (timer_delete_hook(timer) == TIMER_RETRY) {
890 		unlock_timer(timer, flags);
891 		goto retry_delete;
892 	}
893 
894 	spin_lock(&current->sighand->siglock);
895 	list_del(&timer->list);
896 	spin_unlock(&current->sighand->siglock);
897 	/*
898 	 * This keeps any tasks waiting on the spin lock from thinking
899 	 * they got something (see the lock code above).
900 	 */
901 	timer->it_signal = NULL;
902 
903 	unlock_timer(timer, flags);
904 	release_posix_timer(timer, IT_ID_SET);
905 	return 0;
906 }
907 
908 /*
909  * return timer owned by the process, used by exit_itimers
910  */
itimer_delete(struct k_itimer * timer)911 static void itimer_delete(struct k_itimer *timer)
912 {
913 	unsigned long flags;
914 
915 retry_delete:
916 	spin_lock_irqsave(&timer->it_lock, flags);
917 
918 	if (timer_delete_hook(timer) == TIMER_RETRY) {
919 		unlock_timer(timer, flags);
920 		goto retry_delete;
921 	}
922 	list_del(&timer->list);
923 	/*
924 	 * This keeps any tasks waiting on the spin lock from thinking
925 	 * they got something (see the lock code above).
926 	 */
927 	timer->it_signal = NULL;
928 
929 	unlock_timer(timer, flags);
930 	release_posix_timer(timer, IT_ID_SET);
931 }
932 
933 /*
934  * This is called by do_exit or de_thread, only when there are no more
935  * references to the shared signal_struct.
936  */
exit_itimers(struct signal_struct * sig)937 void exit_itimers(struct signal_struct *sig)
938 {
939 	struct k_itimer *tmr;
940 
941 	while (!list_empty(&sig->posix_timers)) {
942 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
943 		itimer_delete(tmr);
944 	}
945 }
946 
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct timespec __user *,tp)947 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
948 		const struct timespec __user *, tp)
949 {
950 	struct k_clock *kc = clockid_to_kclock(which_clock);
951 	struct timespec new_tp;
952 
953 	if (!kc || !kc->clock_set)
954 		return -EINVAL;
955 
956 	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
957 		return -EFAULT;
958 
959 	return kc->clock_set(which_clock, &new_tp);
960 }
961 
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct timespec __user *,tp)962 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
963 		struct timespec __user *,tp)
964 {
965 	struct k_clock *kc = clockid_to_kclock(which_clock);
966 	struct timespec kernel_tp;
967 	int error;
968 
969 	if (!kc)
970 		return -EINVAL;
971 
972 	error = kc->clock_get(which_clock, &kernel_tp);
973 
974 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
975 		error = -EFAULT;
976 
977 	return error;
978 }
979 
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct timex __user *,utx)980 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
981 		struct timex __user *, utx)
982 {
983 	struct k_clock *kc = clockid_to_kclock(which_clock);
984 	struct timex ktx;
985 	int err;
986 
987 	if (!kc)
988 		return -EINVAL;
989 	if (!kc->clock_adj)
990 		return -EOPNOTSUPP;
991 
992 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
993 		return -EFAULT;
994 
995 	err = kc->clock_adj(which_clock, &ktx);
996 
997 	if (!err && copy_to_user(utx, &ktx, sizeof(ktx)))
998 		return -EFAULT;
999 
1000 	return err;
1001 }
1002 
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct timespec __user *,tp)1003 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1004 		struct timespec __user *, tp)
1005 {
1006 	struct k_clock *kc = clockid_to_kclock(which_clock);
1007 	struct timespec rtn_tp;
1008 	int error;
1009 
1010 	if (!kc)
1011 		return -EINVAL;
1012 
1013 	error = kc->clock_getres(which_clock, &rtn_tp);
1014 
1015 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1016 		error = -EFAULT;
1017 
1018 	return error;
1019 }
1020 
1021 /*
1022  * nanosleep for monotonic and realtime clocks
1023  */
common_nsleep(const clockid_t which_clock,int flags,struct timespec * tsave,struct timespec __user * rmtp)1024 static int common_nsleep(const clockid_t which_clock, int flags,
1025 			 struct timespec *tsave, struct timespec __user *rmtp)
1026 {
1027 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1028 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1029 				 which_clock);
1030 }
1031 
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct timespec __user *,rqtp,struct timespec __user *,rmtp)1032 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1033 		const struct timespec __user *, rqtp,
1034 		struct timespec __user *, rmtp)
1035 {
1036 	struct k_clock *kc = clockid_to_kclock(which_clock);
1037 	struct timespec t;
1038 
1039 	if (!kc)
1040 		return -EINVAL;
1041 	if (!kc->nsleep)
1042 		return -ENANOSLEEP_NOTSUP;
1043 
1044 	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1045 		return -EFAULT;
1046 
1047 	if (!timespec_valid(&t))
1048 		return -EINVAL;
1049 
1050 	return kc->nsleep(which_clock, flags, &t, rmtp);
1051 }
1052 
1053 /*
1054  * This will restart clock_nanosleep. This is required only by
1055  * compat_clock_nanosleep_restart for now.
1056  */
clock_nanosleep_restart(struct restart_block * restart_block)1057 long clock_nanosleep_restart(struct restart_block *restart_block)
1058 {
1059 	clockid_t which_clock = restart_block->nanosleep.index;
1060 	struct k_clock *kc = clockid_to_kclock(which_clock);
1061 
1062 	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1063 		return -EINVAL;
1064 
1065 	return kc->nsleep_restart(restart_block);
1066 }
1067