1 /*
2  * User-mode machine state access
3  *
4  * Copyright (C) 2007 Red Hat, Inc.  All rights reserved.
5  *
6  * This copyrighted material is made available to anyone wishing to use,
7  * modify, copy, or redistribute it subject to the terms and conditions
8  * of the GNU General Public License v.2.
9  *
10  * Red Hat Author: Roland McGrath.
11  */
12 
13 #ifndef _LINUX_REGSET_H
14 #define _LINUX_REGSET_H	1
15 
16 #include <linux/compiler.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 struct task_struct;
20 struct user_regset;
21 
22 
23 /**
24  * user_regset_active_fn - type of @active function in &struct user_regset
25  * @target:	thread being examined
26  * @regset:	regset being examined
27  *
28  * Return -%ENODEV if not available on the hardware found.
29  * Return %0 if no interesting state in this thread.
30  * Return >%0 number of @size units of interesting state.
31  * Any get call fetching state beyond that number will
32  * see the default initialization state for this data,
33  * so a caller that knows what the default state is need
34  * not copy it all out.
35  * This call is optional; the pointer is %NULL if there
36  * is no inexpensive check to yield a value < @n.
37  */
38 typedef int user_regset_active_fn(struct task_struct *target,
39 				  const struct user_regset *regset);
40 
41 /**
42  * user_regset_get_fn - type of @get function in &struct user_regset
43  * @target:	thread being examined
44  * @regset:	regset being examined
45  * @pos:	offset into the regset data to access, in bytes
46  * @count:	amount of data to copy, in bytes
47  * @kbuf:	if not %NULL, a kernel-space pointer to copy into
48  * @ubuf:	if @kbuf is %NULL, a user-space pointer to copy into
49  *
50  * Fetch register values.  Return %0 on success; -%EIO or -%ENODEV
51  * are usual failure returns.  The @pos and @count values are in
52  * bytes, but must be properly aligned.  If @kbuf is non-null, that
53  * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
54  * ubuf gives a userland pointer to access directly, and an -%EFAULT
55  * return value is possible.
56  */
57 typedef int user_regset_get_fn(struct task_struct *target,
58 			       const struct user_regset *regset,
59 			       unsigned int pos, unsigned int count,
60 			       void *kbuf, void __user *ubuf);
61 
62 /**
63  * user_regset_set_fn - type of @set function in &struct user_regset
64  * @target:	thread being examined
65  * @regset:	regset being examined
66  * @pos:	offset into the regset data to access, in bytes
67  * @count:	amount of data to copy, in bytes
68  * @kbuf:	if not %NULL, a kernel-space pointer to copy from
69  * @ubuf:	if @kbuf is %NULL, a user-space pointer to copy from
70  *
71  * Store register values.  Return %0 on success; -%EIO or -%ENODEV
72  * are usual failure returns.  The @pos and @count values are in
73  * bytes, but must be properly aligned.  If @kbuf is non-null, that
74  * buffer is used and @ubuf is ignored.  If @kbuf is %NULL, then
75  * ubuf gives a userland pointer to access directly, and an -%EFAULT
76  * return value is possible.
77  */
78 typedef int user_regset_set_fn(struct task_struct *target,
79 			       const struct user_regset *regset,
80 			       unsigned int pos, unsigned int count,
81 			       const void *kbuf, const void __user *ubuf);
82 
83 /**
84  * user_regset_writeback_fn - type of @writeback function in &struct user_regset
85  * @target:	thread being examined
86  * @regset:	regset being examined
87  * @immediate:	zero if writeback at completion of next context switch is OK
88  *
89  * This call is optional; usually the pointer is %NULL.  When
90  * provided, there is some user memory associated with this regset's
91  * hardware, such as memory backing cached register data on register
92  * window machines; the regset's data controls what user memory is
93  * used (e.g. via the stack pointer value).
94  *
95  * Write register data back to user memory.  If the @immediate flag
96  * is nonzero, it must be written to the user memory so uaccess or
97  * access_process_vm() can see it when this call returns; if zero,
98  * then it must be written back by the time the task completes a
99  * context switch (as synchronized with wait_task_inactive()).
100  * Return %0 on success or if there was nothing to do, -%EFAULT for
101  * a memory problem (bad stack pointer or whatever), or -%EIO for a
102  * hardware problem.
103  */
104 typedef int user_regset_writeback_fn(struct task_struct *target,
105 				     const struct user_regset *regset,
106 				     int immediate);
107 
108 /**
109  * struct user_regset - accessible thread CPU state
110  * @n:			Number of slots (registers).
111  * @size:		Size in bytes of a slot (register).
112  * @align:		Required alignment, in bytes.
113  * @bias:		Bias from natural indexing.
114  * @core_note_type:	ELF note @n_type value used in core dumps.
115  * @get:		Function to fetch values.
116  * @set:		Function to store values.
117  * @active:		Function to report if regset is active, or %NULL.
118  * @writeback:		Function to write data back to user memory, or %NULL.
119  *
120  * This data structure describes a machine resource we call a register set.
121  * This is part of the state of an individual thread, not necessarily
122  * actual CPU registers per se.  A register set consists of a number of
123  * similar slots, given by @n.  Each slot is @size bytes, and aligned to
124  * @align bytes (which is at least @size).
125  *
126  * These functions must be called only on the current thread or on a
127  * thread that is in %TASK_STOPPED or %TASK_TRACED state, that we are
128  * guaranteed will not be woken up and return to user mode, and that we
129  * have called wait_task_inactive() on.  (The target thread always might
130  * wake up for SIGKILL while these functions are working, in which case
131  * that thread's user_regset state might be scrambled.)
132  *
133  * The @pos argument must be aligned according to @align; the @count
134  * argument must be a multiple of @size.  These functions are not
135  * responsible for checking for invalid arguments.
136  *
137  * When there is a natural value to use as an index, @bias gives the
138  * difference between the natural index and the slot index for the
139  * register set.  For example, x86 GDT segment descriptors form a regset;
140  * the segment selector produces a natural index, but only a subset of
141  * that index space is available as a regset (the TLS slots); subtracting
142  * @bias from a segment selector index value computes the regset slot.
143  *
144  * If nonzero, @core_note_type gives the n_type field (NT_* value)
145  * of the core file note in which this regset's data appears.
146  * NT_PRSTATUS is a special case in that the regset data starts at
147  * offsetof(struct elf_prstatus, pr_reg) into the note data; that is
148  * part of the per-machine ELF formats userland knows about.  In
149  * other cases, the core file note contains exactly the whole regset
150  * (@n * @size) and nothing else.  The core file note is normally
151  * omitted when there is an @active function and it returns zero.
152  */
153 struct user_regset {
154 	user_regset_get_fn		*get;
155 	user_regset_set_fn		*set;
156 	user_regset_active_fn		*active;
157 	user_regset_writeback_fn	*writeback;
158 	unsigned int			n;
159 	unsigned int 			size;
160 	unsigned int 			align;
161 	unsigned int 			bias;
162 	unsigned int 			core_note_type;
163 };
164 
165 /**
166  * struct user_regset_view - available regsets
167  * @name:	Identifier, e.g. UTS_MACHINE string.
168  * @regsets:	Array of @n regsets available in this view.
169  * @n:		Number of elements in @regsets.
170  * @e_machine:	ELF header @e_machine %EM_* value written in core dumps.
171  * @e_flags:	ELF header @e_flags value written in core dumps.
172  * @ei_osabi:	ELF header @e_ident[%EI_OSABI] value written in core dumps.
173  *
174  * A regset view is a collection of regsets (&struct user_regset,
175  * above).  This describes all the state of a thread that can be seen
176  * from a given architecture/ABI environment.  More than one view might
177  * refer to the same &struct user_regset, or more than one regset
178  * might refer to the same machine-specific state in the thread.  For
179  * example, a 32-bit thread's state could be examined from the 32-bit
180  * view or from the 64-bit view.  Either method reaches the same thread
181  * register state, doing appropriate widening or truncation.
182  */
183 struct user_regset_view {
184 	const char *name;
185 	const struct user_regset *regsets;
186 	unsigned int n;
187 	u32 e_flags;
188 	u16 e_machine;
189 	u8 ei_osabi;
190 };
191 
192 /*
193  * This is documented here rather than at the definition sites because its
194  * implementation is machine-dependent but its interface is universal.
195  */
196 /**
197  * task_user_regset_view - Return the process's native regset view.
198  * @tsk: a thread of the process in question
199  *
200  * Return the &struct user_regset_view that is native for the given process.
201  * For example, what it would access when it called ptrace().
202  * Throughout the life of the process, this only changes at exec.
203  */
204 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk);
205 
206 
207 /*
208  * These are helpers for writing regset get/set functions in arch code.
209  * Because @start_pos and @end_pos are always compile-time constants,
210  * these are inlined into very little code though they look large.
211  *
212  * Use one or more calls sequentially for each chunk of regset data stored
213  * contiguously in memory.  Call with constants for @start_pos and @end_pos,
214  * giving the range of byte positions in the regset that data corresponds
215  * to; @end_pos can be -1 if this chunk is at the end of the regset layout.
216  * Each call updates the arguments to point past its chunk.
217  */
218 
user_regset_copyout(unsigned int * pos,unsigned int * count,void ** kbuf,void __user ** ubuf,const void * data,const int start_pos,const int end_pos)219 static inline int user_regset_copyout(unsigned int *pos, unsigned int *count,
220 				      void **kbuf,
221 				      void __user **ubuf, const void *data,
222 				      const int start_pos, const int end_pos)
223 {
224 	if (*count == 0)
225 		return 0;
226 	BUG_ON(*pos < start_pos);
227 	if (end_pos < 0 || *pos < end_pos) {
228 		unsigned int copy = (end_pos < 0 ? *count
229 				     : min(*count, end_pos - *pos));
230 		data += *pos - start_pos;
231 		if (*kbuf) {
232 			memcpy(*kbuf, data, copy);
233 			*kbuf += copy;
234 		} else if (__copy_to_user(*ubuf, data, copy))
235 			return -EFAULT;
236 		else
237 			*ubuf += copy;
238 		*pos += copy;
239 		*count -= copy;
240 	}
241 	return 0;
242 }
243 
user_regset_copyin(unsigned int * pos,unsigned int * count,const void ** kbuf,const void __user ** ubuf,void * data,const int start_pos,const int end_pos)244 static inline int user_regset_copyin(unsigned int *pos, unsigned int *count,
245 				     const void **kbuf,
246 				     const void __user **ubuf, void *data,
247 				     const int start_pos, const int end_pos)
248 {
249 	if (*count == 0)
250 		return 0;
251 	BUG_ON(*pos < start_pos);
252 	if (end_pos < 0 || *pos < end_pos) {
253 		unsigned int copy = (end_pos < 0 ? *count
254 				     : min(*count, end_pos - *pos));
255 		data += *pos - start_pos;
256 		if (*kbuf) {
257 			memcpy(data, *kbuf, copy);
258 			*kbuf += copy;
259 		} else if (__copy_from_user(data, *ubuf, copy))
260 			return -EFAULT;
261 		else
262 			*ubuf += copy;
263 		*pos += copy;
264 		*count -= copy;
265 	}
266 	return 0;
267 }
268 
269 /*
270  * These two parallel the two above, but for portions of a regset layout
271  * that always read as all-zero or for which writes are ignored.
272  */
user_regset_copyout_zero(unsigned int * pos,unsigned int * count,void ** kbuf,void __user ** ubuf,const int start_pos,const int end_pos)273 static inline int user_regset_copyout_zero(unsigned int *pos,
274 					   unsigned int *count,
275 					   void **kbuf, void __user **ubuf,
276 					   const int start_pos,
277 					   const int end_pos)
278 {
279 	if (*count == 0)
280 		return 0;
281 	BUG_ON(*pos < start_pos);
282 	if (end_pos < 0 || *pos < end_pos) {
283 		unsigned int copy = (end_pos < 0 ? *count
284 				     : min(*count, end_pos - *pos));
285 		if (*kbuf) {
286 			memset(*kbuf, 0, copy);
287 			*kbuf += copy;
288 		} else if (__clear_user(*ubuf, copy))
289 			return -EFAULT;
290 		else
291 			*ubuf += copy;
292 		*pos += copy;
293 		*count -= copy;
294 	}
295 	return 0;
296 }
297 
user_regset_copyin_ignore(unsigned int * pos,unsigned int * count,const void ** kbuf,const void __user ** ubuf,const int start_pos,const int end_pos)298 static inline int user_regset_copyin_ignore(unsigned int *pos,
299 					    unsigned int *count,
300 					    const void **kbuf,
301 					    const void __user **ubuf,
302 					    const int start_pos,
303 					    const int end_pos)
304 {
305 	if (*count == 0)
306 		return 0;
307 	BUG_ON(*pos < start_pos);
308 	if (end_pos < 0 || *pos < end_pos) {
309 		unsigned int copy = (end_pos < 0 ? *count
310 				     : min(*count, end_pos - *pos));
311 		if (*kbuf)
312 			*kbuf += copy;
313 		else
314 			*ubuf += copy;
315 		*pos += copy;
316 		*count -= copy;
317 	}
318 	return 0;
319 }
320 
321 /**
322  * copy_regset_to_user - fetch a thread's user_regset data into user memory
323  * @target:	thread to be examined
324  * @view:	&struct user_regset_view describing user thread machine state
325  * @setno:	index in @view->regsets
326  * @offset:	offset into the regset data, in bytes
327  * @size:	amount of data to copy, in bytes
328  * @data:	user-mode pointer to copy into
329  */
copy_regset_to_user(struct task_struct * target,const struct user_regset_view * view,unsigned int setno,unsigned int offset,unsigned int size,void __user * data)330 static inline int copy_regset_to_user(struct task_struct *target,
331 				      const struct user_regset_view *view,
332 				      unsigned int setno,
333 				      unsigned int offset, unsigned int size,
334 				      void __user *data)
335 {
336 	const struct user_regset *regset = &view->regsets[setno];
337 
338 	if (!access_ok(VERIFY_WRITE, data, size))
339 		return -EIO;
340 
341 	return regset->get(target, regset, offset, size, NULL, data);
342 }
343 
344 /**
345  * copy_regset_from_user - store into thread's user_regset data from user memory
346  * @target:	thread to be examined
347  * @view:	&struct user_regset_view describing user thread machine state
348  * @setno:	index in @view->regsets
349  * @offset:	offset into the regset data, in bytes
350  * @size:	amount of data to copy, in bytes
351  * @data:	user-mode pointer to copy from
352  */
copy_regset_from_user(struct task_struct * target,const struct user_regset_view * view,unsigned int setno,unsigned int offset,unsigned int size,const void __user * data)353 static inline int copy_regset_from_user(struct task_struct *target,
354 					const struct user_regset_view *view,
355 					unsigned int setno,
356 					unsigned int offset, unsigned int size,
357 					const void __user *data)
358 {
359 	const struct user_regset *regset = &view->regsets[setno];
360 
361 	if (!access_ok(VERIFY_READ, data, size))
362 		return -EIO;
363 
364 	return regset->set(target, regset, offset, size, NULL, data);
365 }
366 
367 
368 #endif	/* <linux/regset.h> */
369