1 #ifndef _LINUX_MMU_NOTIFIER_H
2 #define _LINUX_MMU_NOTIFIER_H
3 
4 #include <linux/list.h>
5 #include <linux/spinlock.h>
6 #include <linux/mm_types.h>
7 
8 struct mmu_notifier;
9 struct mmu_notifier_ops;
10 
11 #ifdef CONFIG_MMU_NOTIFIER
12 
13 /*
14  * The mmu notifier_mm structure is allocated and installed in
15  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
16  * critical section and it's released only when mm_count reaches zero
17  * in mmdrop().
18  */
19 struct mmu_notifier_mm {
20 	/* all mmu notifiers registerd in this mm are queued in this list */
21 	struct hlist_head list;
22 	/* to serialize the list modifications and hlist_unhashed */
23 	spinlock_t lock;
24 };
25 
26 struct mmu_notifier_ops {
27 	/*
28 	 * Called either by mmu_notifier_unregister or when the mm is
29 	 * being destroyed by exit_mmap, always before all pages are
30 	 * freed. This can run concurrently with other mmu notifier
31 	 * methods (the ones invoked outside the mm context) and it
32 	 * should tear down all secondary mmu mappings and freeze the
33 	 * secondary mmu. If this method isn't implemented you've to
34 	 * be sure that nothing could possibly write to the pages
35 	 * through the secondary mmu by the time the last thread with
36 	 * tsk->mm == mm exits.
37 	 *
38 	 * As side note: the pages freed after ->release returns could
39 	 * be immediately reallocated by the gart at an alias physical
40 	 * address with a different cache model, so if ->release isn't
41 	 * implemented because all _software_ driven memory accesses
42 	 * through the secondary mmu are terminated by the time the
43 	 * last thread of this mm quits, you've also to be sure that
44 	 * speculative _hardware_ operations can't allocate dirty
45 	 * cachelines in the cpu that could not be snooped and made
46 	 * coherent with the other read and write operations happening
47 	 * through the gart alias address, so leading to memory
48 	 * corruption.
49 	 */
50 	void (*release)(struct mmu_notifier *mn,
51 			struct mm_struct *mm);
52 
53 	/*
54 	 * clear_flush_young is called after the VM is
55 	 * test-and-clearing the young/accessed bitflag in the
56 	 * pte. This way the VM will provide proper aging to the
57 	 * accesses to the page through the secondary MMUs and not
58 	 * only to the ones through the Linux pte.
59 	 */
60 	int (*clear_flush_young)(struct mmu_notifier *mn,
61 				 struct mm_struct *mm,
62 				 unsigned long address);
63 
64 	/*
65 	 * test_young is called to check the young/accessed bitflag in
66 	 * the secondary pte. This is used to know if the page is
67 	 * frequently used without actually clearing the flag or tearing
68 	 * down the secondary mapping on the page.
69 	 */
70 	int (*test_young)(struct mmu_notifier *mn,
71 			  struct mm_struct *mm,
72 			  unsigned long address);
73 
74 	/*
75 	 * change_pte is called in cases that pte mapping to page is changed:
76 	 * for example, when ksm remaps pte to point to a new shared page.
77 	 */
78 	void (*change_pte)(struct mmu_notifier *mn,
79 			   struct mm_struct *mm,
80 			   unsigned long address,
81 			   pte_t pte);
82 
83 	/*
84 	 * Before this is invoked any secondary MMU is still ok to
85 	 * read/write to the page previously pointed to by the Linux
86 	 * pte because the page hasn't been freed yet and it won't be
87 	 * freed until this returns. If required set_page_dirty has to
88 	 * be called internally to this method.
89 	 */
90 	void (*invalidate_page)(struct mmu_notifier *mn,
91 				struct mm_struct *mm,
92 				unsigned long address);
93 
94 	/*
95 	 * invalidate_range_start() and invalidate_range_end() must be
96 	 * paired and are called only when the mmap_sem and/or the
97 	 * locks protecting the reverse maps are held. The subsystem
98 	 * must guarantee that no additional references are taken to
99 	 * the pages in the range established between the call to
100 	 * invalidate_range_start() and the matching call to
101 	 * invalidate_range_end().
102 	 *
103 	 * Invalidation of multiple concurrent ranges may be
104 	 * optionally permitted by the driver. Either way the
105 	 * establishment of sptes is forbidden in the range passed to
106 	 * invalidate_range_begin/end for the whole duration of the
107 	 * invalidate_range_begin/end critical section.
108 	 *
109 	 * invalidate_range_start() is called when all pages in the
110 	 * range are still mapped and have at least a refcount of one.
111 	 *
112 	 * invalidate_range_end() is called when all pages in the
113 	 * range have been unmapped and the pages have been freed by
114 	 * the VM.
115 	 *
116 	 * The VM will remove the page table entries and potentially
117 	 * the page between invalidate_range_start() and
118 	 * invalidate_range_end(). If the page must not be freed
119 	 * because of pending I/O or other circumstances then the
120 	 * invalidate_range_start() callback (or the initial mapping
121 	 * by the driver) must make sure that the refcount is kept
122 	 * elevated.
123 	 *
124 	 * If the driver increases the refcount when the pages are
125 	 * initially mapped into an address space then either
126 	 * invalidate_range_start() or invalidate_range_end() may
127 	 * decrease the refcount. If the refcount is decreased on
128 	 * invalidate_range_start() then the VM can free pages as page
129 	 * table entries are removed.  If the refcount is only
130 	 * droppped on invalidate_range_end() then the driver itself
131 	 * will drop the last refcount but it must take care to flush
132 	 * any secondary tlb before doing the final free on the
133 	 * page. Pages will no longer be referenced by the linux
134 	 * address space but may still be referenced by sptes until
135 	 * the last refcount is dropped.
136 	 */
137 	void (*invalidate_range_start)(struct mmu_notifier *mn,
138 				       struct mm_struct *mm,
139 				       unsigned long start, unsigned long end);
140 	void (*invalidate_range_end)(struct mmu_notifier *mn,
141 				     struct mm_struct *mm,
142 				     unsigned long start, unsigned long end);
143 };
144 
145 /*
146  * The notifier chains are protected by mmap_sem and/or the reverse map
147  * semaphores. Notifier chains are only changed when all reverse maps and
148  * the mmap_sem locks are taken.
149  *
150  * Therefore notifier chains can only be traversed when either
151  *
152  * 1. mmap_sem is held.
153  * 2. One of the reverse map locks is held (i_mmap_lock or anon_vma->lock).
154  * 3. No other concurrent thread can access the list (release)
155  */
156 struct mmu_notifier {
157 	struct hlist_node hlist;
158 	const struct mmu_notifier_ops *ops;
159 };
160 
mm_has_notifiers(struct mm_struct * mm)161 static inline int mm_has_notifiers(struct mm_struct *mm)
162 {
163 	return unlikely(mm->mmu_notifier_mm);
164 }
165 
166 extern int mmu_notifier_register(struct mmu_notifier *mn,
167 				 struct mm_struct *mm);
168 extern int __mmu_notifier_register(struct mmu_notifier *mn,
169 				   struct mm_struct *mm);
170 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
171 				    struct mm_struct *mm);
172 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
173 extern void __mmu_notifier_release(struct mm_struct *mm);
174 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
175 					  unsigned long address);
176 extern int __mmu_notifier_test_young(struct mm_struct *mm,
177 				     unsigned long address);
178 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
179 				      unsigned long address, pte_t pte);
180 extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
181 					  unsigned long address);
182 extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
183 				  unsigned long start, unsigned long end);
184 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
185 				  unsigned long start, unsigned long end);
186 
mmu_notifier_release(struct mm_struct * mm)187 static inline void mmu_notifier_release(struct mm_struct *mm)
188 {
189 	if (mm_has_notifiers(mm))
190 		__mmu_notifier_release(mm);
191 }
192 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long address)193 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
194 					  unsigned long address)
195 {
196 	if (mm_has_notifiers(mm))
197 		return __mmu_notifier_clear_flush_young(mm, address);
198 	return 0;
199 }
200 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)201 static inline int mmu_notifier_test_young(struct mm_struct *mm,
202 					  unsigned long address)
203 {
204 	if (mm_has_notifiers(mm))
205 		return __mmu_notifier_test_young(mm, address);
206 	return 0;
207 }
208 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)209 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
210 					   unsigned long address, pte_t pte)
211 {
212 	if (mm_has_notifiers(mm))
213 		__mmu_notifier_change_pte(mm, address, pte);
214 }
215 
mmu_notifier_invalidate_page(struct mm_struct * mm,unsigned long address)216 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
217 					  unsigned long address)
218 {
219 	if (mm_has_notifiers(mm))
220 		__mmu_notifier_invalidate_page(mm, address);
221 }
222 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)223 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
224 				  unsigned long start, unsigned long end)
225 {
226 	if (mm_has_notifiers(mm))
227 		__mmu_notifier_invalidate_range_start(mm, start, end);
228 }
229 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)230 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
231 				  unsigned long start, unsigned long end)
232 {
233 	if (mm_has_notifiers(mm))
234 		__mmu_notifier_invalidate_range_end(mm, start, end);
235 }
236 
mmu_notifier_mm_init(struct mm_struct * mm)237 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
238 {
239 	mm->mmu_notifier_mm = NULL;
240 }
241 
mmu_notifier_mm_destroy(struct mm_struct * mm)242 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
243 {
244 	if (mm_has_notifiers(mm))
245 		__mmu_notifier_mm_destroy(mm);
246 }
247 
248 /*
249  * These two macros will sometime replace ptep_clear_flush.
250  * ptep_clear_flush is implemented as macro itself, so this also is
251  * implemented as a macro until ptep_clear_flush will converted to an
252  * inline function, to diminish the risk of compilation failure. The
253  * invalidate_page method over time can be moved outside the PT lock
254  * and these two macros can be later removed.
255  */
256 #define ptep_clear_flush_notify(__vma, __address, __ptep)		\
257 ({									\
258 	pte_t __pte;							\
259 	struct vm_area_struct *___vma = __vma;				\
260 	unsigned long ___address = __address;				\
261 	__pte = ptep_clear_flush(___vma, ___address, __ptep);		\
262 	mmu_notifier_invalidate_page(___vma->vm_mm, ___address);	\
263 	__pte;								\
264 })
265 
266 #define pmdp_clear_flush_notify(__vma, __address, __pmdp)		\
267 ({									\
268 	pmd_t __pmd;							\
269 	struct vm_area_struct *___vma = __vma;				\
270 	unsigned long ___address = __address;				\
271 	VM_BUG_ON(__address & ~HPAGE_PMD_MASK);				\
272 	mmu_notifier_invalidate_range_start(___vma->vm_mm, ___address,	\
273 					    (__address)+HPAGE_PMD_SIZE);\
274 	__pmd = pmdp_clear_flush(___vma, ___address, __pmdp);		\
275 	mmu_notifier_invalidate_range_end(___vma->vm_mm, ___address,	\
276 					  (__address)+HPAGE_PMD_SIZE);	\
277 	__pmd;								\
278 })
279 
280 #define pmdp_splitting_flush_notify(__vma, __address, __pmdp)		\
281 ({									\
282 	struct vm_area_struct *___vma = __vma;				\
283 	unsigned long ___address = __address;				\
284 	VM_BUG_ON(__address & ~HPAGE_PMD_MASK);				\
285 	mmu_notifier_invalidate_range_start(___vma->vm_mm, ___address,	\
286 					    (__address)+HPAGE_PMD_SIZE);\
287 	pmdp_splitting_flush(___vma, ___address, __pmdp);		\
288 	mmu_notifier_invalidate_range_end(___vma->vm_mm, ___address,	\
289 					  (__address)+HPAGE_PMD_SIZE);	\
290 })
291 
292 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
293 ({									\
294 	int __young;							\
295 	struct vm_area_struct *___vma = __vma;				\
296 	unsigned long ___address = __address;				\
297 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
298 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
299 						  ___address);		\
300 	__young;							\
301 })
302 
303 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
304 ({									\
305 	int __young;							\
306 	struct vm_area_struct *___vma = __vma;				\
307 	unsigned long ___address = __address;				\
308 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
309 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
310 						  ___address);		\
311 	__young;							\
312 })
313 
314 #define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
315 ({									\
316 	struct mm_struct *___mm = __mm;					\
317 	unsigned long ___address = __address;				\
318 	pte_t ___pte = __pte;						\
319 									\
320 	set_pte_at(___mm, ___address, __ptep, ___pte);			\
321 	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
322 })
323 
324 #else /* CONFIG_MMU_NOTIFIER */
325 
mmu_notifier_release(struct mm_struct * mm)326 static inline void mmu_notifier_release(struct mm_struct *mm)
327 {
328 }
329 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long address)330 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
331 					  unsigned long address)
332 {
333 	return 0;
334 }
335 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)336 static inline int mmu_notifier_test_young(struct mm_struct *mm,
337 					  unsigned long address)
338 {
339 	return 0;
340 }
341 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)342 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
343 					   unsigned long address, pte_t pte)
344 {
345 }
346 
mmu_notifier_invalidate_page(struct mm_struct * mm,unsigned long address)347 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
348 					  unsigned long address)
349 {
350 }
351 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)352 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
353 				  unsigned long start, unsigned long end)
354 {
355 }
356 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)357 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
358 				  unsigned long start, unsigned long end)
359 {
360 }
361 
mmu_notifier_mm_init(struct mm_struct * mm)362 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
363 {
364 }
365 
mmu_notifier_mm_destroy(struct mm_struct * mm)366 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
367 {
368 }
369 
370 #define ptep_clear_flush_young_notify ptep_clear_flush_young
371 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
372 #define ptep_clear_flush_notify ptep_clear_flush
373 #define pmdp_clear_flush_notify pmdp_clear_flush
374 #define pmdp_splitting_flush_notify pmdp_splitting_flush
375 #define set_pte_at_notify set_pte_at
376 
377 #endif /* CONFIG_MMU_NOTIFIER */
378 
379 #endif /* _LINUX_MMU_NOTIFIER_H */
380