1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
3
4 /*
5 * Cpumasks provide a bitmap suitable for representing the
6 * set of CPU's in a system, one bit position per CPU number. In general,
7 * only nr_cpu_ids (<= NR_CPUS) bits are valid.
8 */
9 #include <linux/kernel.h>
10 #include <linux/threads.h>
11 #include <linux/bitmap.h>
12
13 typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
14
15 /**
16 * cpumask_bits - get the bits in a cpumask
17 * @maskp: the struct cpumask *
18 *
19 * You should only assume nr_cpu_ids bits of this mask are valid. This is
20 * a macro so it's const-correct.
21 */
22 #define cpumask_bits(maskp) ((maskp)->bits)
23
24 #if NR_CPUS == 1
25 #define nr_cpu_ids 1
26 #else
27 extern int nr_cpu_ids;
28 #endif
29
30 #ifdef CONFIG_CPUMASK_OFFSTACK
31 /* Assuming NR_CPUS is huge, a runtime limit is more efficient. Also,
32 * not all bits may be allocated. */
33 #define nr_cpumask_bits nr_cpu_ids
34 #else
35 #define nr_cpumask_bits NR_CPUS
36 #endif
37
38 /*
39 * The following particular system cpumasks and operations manage
40 * possible, present, active and online cpus.
41 *
42 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
43 * cpu_present_mask - has bit 'cpu' set iff cpu is populated
44 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
45 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration
46 *
47 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
48 *
49 * The cpu_possible_mask is fixed at boot time, as the set of CPU id's
50 * that it is possible might ever be plugged in at anytime during the
51 * life of that system boot. The cpu_present_mask is dynamic(*),
52 * representing which CPUs are currently plugged in. And
53 * cpu_online_mask is the dynamic subset of cpu_present_mask,
54 * indicating those CPUs available for scheduling.
55 *
56 * If HOTPLUG is enabled, then cpu_possible_mask is forced to have
57 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
58 * ACPI reports present at boot.
59 *
60 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
61 * depending on what ACPI reports as currently plugged in, otherwise
62 * cpu_present_mask is just a copy of cpu_possible_mask.
63 *
64 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
65 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
66 *
67 * Subtleties:
68 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
69 * assumption that their single CPU is online. The UP
70 * cpu_{online,possible,present}_masks are placebos. Changing them
71 * will have no useful affect on the following num_*_cpus()
72 * and cpu_*() macros in the UP case. This ugliness is a UP
73 * optimization - don't waste any instructions or memory references
74 * asking if you're online or how many CPUs there are if there is
75 * only one CPU.
76 */
77
78 extern const struct cpumask *const cpu_possible_mask;
79 extern const struct cpumask *const cpu_online_mask;
80 extern const struct cpumask *const cpu_present_mask;
81 extern const struct cpumask *const cpu_active_mask;
82
83 #if NR_CPUS > 1
84 #define num_online_cpus() cpumask_weight(cpu_online_mask)
85 #define num_possible_cpus() cpumask_weight(cpu_possible_mask)
86 #define num_present_cpus() cpumask_weight(cpu_present_mask)
87 #define num_active_cpus() cpumask_weight(cpu_active_mask)
88 #define cpu_online(cpu) cpumask_test_cpu((cpu), cpu_online_mask)
89 #define cpu_possible(cpu) cpumask_test_cpu((cpu), cpu_possible_mask)
90 #define cpu_present(cpu) cpumask_test_cpu((cpu), cpu_present_mask)
91 #define cpu_active(cpu) cpumask_test_cpu((cpu), cpu_active_mask)
92 #else
93 #define num_online_cpus() 1U
94 #define num_possible_cpus() 1U
95 #define num_present_cpus() 1U
96 #define num_active_cpus() 1U
97 #define cpu_online(cpu) ((cpu) == 0)
98 #define cpu_possible(cpu) ((cpu) == 0)
99 #define cpu_present(cpu) ((cpu) == 0)
100 #define cpu_active(cpu) ((cpu) == 0)
101 #endif
102
103 /* verify cpu argument to cpumask_* operators */
cpumask_check(unsigned int cpu)104 static inline unsigned int cpumask_check(unsigned int cpu)
105 {
106 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
107 WARN_ON_ONCE(cpu >= nr_cpumask_bits);
108 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
109 return cpu;
110 }
111
112 #if NR_CPUS == 1
113 /* Uniprocessor. Assume all masks are "1". */
cpumask_first(const struct cpumask * srcp)114 static inline unsigned int cpumask_first(const struct cpumask *srcp)
115 {
116 return 0;
117 }
118
119 /* Valid inputs for n are -1 and 0. */
cpumask_next(int n,const struct cpumask * srcp)120 static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
121 {
122 return n+1;
123 }
124
cpumask_next_zero(int n,const struct cpumask * srcp)125 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
126 {
127 return n+1;
128 }
129
cpumask_next_and(int n,const struct cpumask * srcp,const struct cpumask * andp)130 static inline unsigned int cpumask_next_and(int n,
131 const struct cpumask *srcp,
132 const struct cpumask *andp)
133 {
134 return n+1;
135 }
136
137 /* cpu must be a valid cpu, ie 0, so there's no other choice. */
cpumask_any_but(const struct cpumask * mask,unsigned int cpu)138 static inline unsigned int cpumask_any_but(const struct cpumask *mask,
139 unsigned int cpu)
140 {
141 return 1;
142 }
143
144 #define for_each_cpu(cpu, mask) \
145 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
146 #define for_each_cpu_not(cpu, mask) \
147 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
148 #define for_each_cpu_and(cpu, mask, and) \
149 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask, (void)and)
150 #else
151 /**
152 * cpumask_first - get the first cpu in a cpumask
153 * @srcp: the cpumask pointer
154 *
155 * Returns >= nr_cpu_ids if no cpus set.
156 */
cpumask_first(const struct cpumask * srcp)157 static inline unsigned int cpumask_first(const struct cpumask *srcp)
158 {
159 return find_first_bit(cpumask_bits(srcp), nr_cpumask_bits);
160 }
161
162 /**
163 * cpumask_next - get the next cpu in a cpumask
164 * @n: the cpu prior to the place to search (ie. return will be > @n)
165 * @srcp: the cpumask pointer
166 *
167 * Returns >= nr_cpu_ids if no further cpus set.
168 */
cpumask_next(int n,const struct cpumask * srcp)169 static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
170 {
171 /* -1 is a legal arg here. */
172 if (n != -1)
173 cpumask_check(n);
174 return find_next_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1);
175 }
176
177 /**
178 * cpumask_next_zero - get the next unset cpu in a cpumask
179 * @n: the cpu prior to the place to search (ie. return will be > @n)
180 * @srcp: the cpumask pointer
181 *
182 * Returns >= nr_cpu_ids if no further cpus unset.
183 */
cpumask_next_zero(int n,const struct cpumask * srcp)184 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
185 {
186 /* -1 is a legal arg here. */
187 if (n != -1)
188 cpumask_check(n);
189 return find_next_zero_bit(cpumask_bits(srcp), nr_cpumask_bits, n+1);
190 }
191
192 int cpumask_next_and(int n, const struct cpumask *, const struct cpumask *);
193 int cpumask_any_but(const struct cpumask *mask, unsigned int cpu);
194
195 /**
196 * for_each_cpu - iterate over every cpu in a mask
197 * @cpu: the (optionally unsigned) integer iterator
198 * @mask: the cpumask pointer
199 *
200 * After the loop, cpu is >= nr_cpu_ids.
201 */
202 #define for_each_cpu(cpu, mask) \
203 for ((cpu) = -1; \
204 (cpu) = cpumask_next((cpu), (mask)), \
205 (cpu) < nr_cpu_ids;)
206
207 /**
208 * for_each_cpu_not - iterate over every cpu in a complemented mask
209 * @cpu: the (optionally unsigned) integer iterator
210 * @mask: the cpumask pointer
211 *
212 * After the loop, cpu is >= nr_cpu_ids.
213 */
214 #define for_each_cpu_not(cpu, mask) \
215 for ((cpu) = -1; \
216 (cpu) = cpumask_next_zero((cpu), (mask)), \
217 (cpu) < nr_cpu_ids;)
218
219 /**
220 * for_each_cpu_and - iterate over every cpu in both masks
221 * @cpu: the (optionally unsigned) integer iterator
222 * @mask: the first cpumask pointer
223 * @and: the second cpumask pointer
224 *
225 * This saves a temporary CPU mask in many places. It is equivalent to:
226 * struct cpumask tmp;
227 * cpumask_and(&tmp, &mask, &and);
228 * for_each_cpu(cpu, &tmp)
229 * ...
230 *
231 * After the loop, cpu is >= nr_cpu_ids.
232 */
233 #define for_each_cpu_and(cpu, mask, and) \
234 for ((cpu) = -1; \
235 (cpu) = cpumask_next_and((cpu), (mask), (and)), \
236 (cpu) < nr_cpu_ids;)
237 #endif /* SMP */
238
239 #define CPU_BITS_NONE \
240 { \
241 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
242 }
243
244 #define CPU_BITS_CPU0 \
245 { \
246 [0] = 1UL \
247 }
248
249 /**
250 * cpumask_set_cpu - set a cpu in a cpumask
251 * @cpu: cpu number (< nr_cpu_ids)
252 * @dstp: the cpumask pointer
253 */
cpumask_set_cpu(unsigned int cpu,struct cpumask * dstp)254 static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
255 {
256 set_bit(cpumask_check(cpu), cpumask_bits(dstp));
257 }
258
259 /**
260 * cpumask_clear_cpu - clear a cpu in a cpumask
261 * @cpu: cpu number (< nr_cpu_ids)
262 * @dstp: the cpumask pointer
263 */
cpumask_clear_cpu(int cpu,struct cpumask * dstp)264 static inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
265 {
266 clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
267 }
268
269 /**
270 * cpumask_test_cpu - test for a cpu in a cpumask
271 * @cpu: cpu number (< nr_cpu_ids)
272 * @cpumask: the cpumask pointer
273 *
274 * No static inline type checking - see Subtlety (1) above.
275 */
276 #define cpumask_test_cpu(cpu, cpumask) \
277 test_bit(cpumask_check(cpu), cpumask_bits((cpumask)))
278
279 /**
280 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
281 * @cpu: cpu number (< nr_cpu_ids)
282 * @cpumask: the cpumask pointer
283 *
284 * test_and_set_bit wrapper for cpumasks.
285 */
cpumask_test_and_set_cpu(int cpu,struct cpumask * cpumask)286 static inline int cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
287 {
288 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
289 }
290
291 /**
292 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
293 * @cpu: cpu number (< nr_cpu_ids)
294 * @cpumask: the cpumask pointer
295 *
296 * test_and_clear_bit wrapper for cpumasks.
297 */
cpumask_test_and_clear_cpu(int cpu,struct cpumask * cpumask)298 static inline int cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
299 {
300 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
301 }
302
303 /**
304 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
305 * @dstp: the cpumask pointer
306 */
cpumask_setall(struct cpumask * dstp)307 static inline void cpumask_setall(struct cpumask *dstp)
308 {
309 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
310 }
311
312 /**
313 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
314 * @dstp: the cpumask pointer
315 */
cpumask_clear(struct cpumask * dstp)316 static inline void cpumask_clear(struct cpumask *dstp)
317 {
318 bitmap_zero(cpumask_bits(dstp), nr_cpumask_bits);
319 }
320
321 /**
322 * cpumask_and - *dstp = *src1p & *src2p
323 * @dstp: the cpumask result
324 * @src1p: the first input
325 * @src2p: the second input
326 */
cpumask_and(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)327 static inline int cpumask_and(struct cpumask *dstp,
328 const struct cpumask *src1p,
329 const struct cpumask *src2p)
330 {
331 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
332 cpumask_bits(src2p), nr_cpumask_bits);
333 }
334
335 /**
336 * cpumask_or - *dstp = *src1p | *src2p
337 * @dstp: the cpumask result
338 * @src1p: the first input
339 * @src2p: the second input
340 */
cpumask_or(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)341 static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
342 const struct cpumask *src2p)
343 {
344 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
345 cpumask_bits(src2p), nr_cpumask_bits);
346 }
347
348 /**
349 * cpumask_xor - *dstp = *src1p ^ *src2p
350 * @dstp: the cpumask result
351 * @src1p: the first input
352 * @src2p: the second input
353 */
cpumask_xor(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)354 static inline void cpumask_xor(struct cpumask *dstp,
355 const struct cpumask *src1p,
356 const struct cpumask *src2p)
357 {
358 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
359 cpumask_bits(src2p), nr_cpumask_bits);
360 }
361
362 /**
363 * cpumask_andnot - *dstp = *src1p & ~*src2p
364 * @dstp: the cpumask result
365 * @src1p: the first input
366 * @src2p: the second input
367 */
cpumask_andnot(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)368 static inline int cpumask_andnot(struct cpumask *dstp,
369 const struct cpumask *src1p,
370 const struct cpumask *src2p)
371 {
372 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
373 cpumask_bits(src2p), nr_cpumask_bits);
374 }
375
376 /**
377 * cpumask_complement - *dstp = ~*srcp
378 * @dstp: the cpumask result
379 * @srcp: the input to invert
380 */
cpumask_complement(struct cpumask * dstp,const struct cpumask * srcp)381 static inline void cpumask_complement(struct cpumask *dstp,
382 const struct cpumask *srcp)
383 {
384 bitmap_complement(cpumask_bits(dstp), cpumask_bits(srcp),
385 nr_cpumask_bits);
386 }
387
388 /**
389 * cpumask_equal - *src1p == *src2p
390 * @src1p: the first input
391 * @src2p: the second input
392 */
cpumask_equal(const struct cpumask * src1p,const struct cpumask * src2p)393 static inline bool cpumask_equal(const struct cpumask *src1p,
394 const struct cpumask *src2p)
395 {
396 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
397 nr_cpumask_bits);
398 }
399
400 /**
401 * cpumask_intersects - (*src1p & *src2p) != 0
402 * @src1p: the first input
403 * @src2p: the second input
404 */
cpumask_intersects(const struct cpumask * src1p,const struct cpumask * src2p)405 static inline bool cpumask_intersects(const struct cpumask *src1p,
406 const struct cpumask *src2p)
407 {
408 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
409 nr_cpumask_bits);
410 }
411
412 /**
413 * cpumask_subset - (*src1p & ~*src2p) == 0
414 * @src1p: the first input
415 * @src2p: the second input
416 */
cpumask_subset(const struct cpumask * src1p,const struct cpumask * src2p)417 static inline int cpumask_subset(const struct cpumask *src1p,
418 const struct cpumask *src2p)
419 {
420 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
421 nr_cpumask_bits);
422 }
423
424 /**
425 * cpumask_empty - *srcp == 0
426 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
427 */
cpumask_empty(const struct cpumask * srcp)428 static inline bool cpumask_empty(const struct cpumask *srcp)
429 {
430 return bitmap_empty(cpumask_bits(srcp), nr_cpumask_bits);
431 }
432
433 /**
434 * cpumask_full - *srcp == 0xFFFFFFFF...
435 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
436 */
cpumask_full(const struct cpumask * srcp)437 static inline bool cpumask_full(const struct cpumask *srcp)
438 {
439 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
440 }
441
442 /**
443 * cpumask_weight - Count of bits in *srcp
444 * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
445 */
cpumask_weight(const struct cpumask * srcp)446 static inline unsigned int cpumask_weight(const struct cpumask *srcp)
447 {
448 return bitmap_weight(cpumask_bits(srcp), nr_cpumask_bits);
449 }
450
451 /**
452 * cpumask_shift_right - *dstp = *srcp >> n
453 * @dstp: the cpumask result
454 * @srcp: the input to shift
455 * @n: the number of bits to shift by
456 */
cpumask_shift_right(struct cpumask * dstp,const struct cpumask * srcp,int n)457 static inline void cpumask_shift_right(struct cpumask *dstp,
458 const struct cpumask *srcp, int n)
459 {
460 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
461 nr_cpumask_bits);
462 }
463
464 /**
465 * cpumask_shift_left - *dstp = *srcp << n
466 * @dstp: the cpumask result
467 * @srcp: the input to shift
468 * @n: the number of bits to shift by
469 */
cpumask_shift_left(struct cpumask * dstp,const struct cpumask * srcp,int n)470 static inline void cpumask_shift_left(struct cpumask *dstp,
471 const struct cpumask *srcp, int n)
472 {
473 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
474 nr_cpumask_bits);
475 }
476
477 /**
478 * cpumask_copy - *dstp = *srcp
479 * @dstp: the result
480 * @srcp: the input cpumask
481 */
cpumask_copy(struct cpumask * dstp,const struct cpumask * srcp)482 static inline void cpumask_copy(struct cpumask *dstp,
483 const struct cpumask *srcp)
484 {
485 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), nr_cpumask_bits);
486 }
487
488 /**
489 * cpumask_any - pick a "random" cpu from *srcp
490 * @srcp: the input cpumask
491 *
492 * Returns >= nr_cpu_ids if no cpus set.
493 */
494 #define cpumask_any(srcp) cpumask_first(srcp)
495
496 /**
497 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
498 * @src1p: the first input
499 * @src2p: the second input
500 *
501 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
502 */
503 #define cpumask_first_and(src1p, src2p) cpumask_next_and(-1, (src1p), (src2p))
504
505 /**
506 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
507 * @mask1: the first input cpumask
508 * @mask2: the second input cpumask
509 *
510 * Returns >= nr_cpu_ids if no cpus set.
511 */
512 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
513
514 /**
515 * cpumask_of - the cpumask containing just a given cpu
516 * @cpu: the cpu (<= nr_cpu_ids)
517 */
518 #define cpumask_of(cpu) (get_cpu_mask(cpu))
519
520 /**
521 * cpumask_scnprintf - print a cpumask into a string as comma-separated hex
522 * @buf: the buffer to sprintf into
523 * @len: the length of the buffer
524 * @srcp: the cpumask to print
525 *
526 * If len is zero, returns zero. Otherwise returns the length of the
527 * (nul-terminated) @buf string.
528 */
cpumask_scnprintf(char * buf,int len,const struct cpumask * srcp)529 static inline int cpumask_scnprintf(char *buf, int len,
530 const struct cpumask *srcp)
531 {
532 return bitmap_scnprintf(buf, len, cpumask_bits(srcp), nr_cpumask_bits);
533 }
534
535 /**
536 * cpumask_parse_user - extract a cpumask from a user string
537 * @buf: the buffer to extract from
538 * @len: the length of the buffer
539 * @dstp: the cpumask to set.
540 *
541 * Returns -errno, or 0 for success.
542 */
cpumask_parse_user(const char __user * buf,int len,struct cpumask * dstp)543 static inline int cpumask_parse_user(const char __user *buf, int len,
544 struct cpumask *dstp)
545 {
546 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
547 }
548
549 /**
550 * cpulist_scnprintf - print a cpumask into a string as comma-separated list
551 * @buf: the buffer to sprintf into
552 * @len: the length of the buffer
553 * @srcp: the cpumask to print
554 *
555 * If len is zero, returns zero. Otherwise returns the length of the
556 * (nul-terminated) @buf string.
557 */
cpulist_scnprintf(char * buf,int len,const struct cpumask * srcp)558 static inline int cpulist_scnprintf(char *buf, int len,
559 const struct cpumask *srcp)
560 {
561 return bitmap_scnlistprintf(buf, len, cpumask_bits(srcp),
562 nr_cpumask_bits);
563 }
564
565 /**
566 * cpulist_parse_user - extract a cpumask from a user string of ranges
567 * @buf: the buffer to extract from
568 * @len: the length of the buffer
569 * @dstp: the cpumask to set.
570 *
571 * Returns -errno, or 0 for success.
572 */
cpulist_parse(const char * buf,struct cpumask * dstp)573 static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
574 {
575 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
576 }
577
578 /**
579 * cpumask_size - size to allocate for a 'struct cpumask' in bytes
580 *
581 * This will eventually be a runtime variable, depending on nr_cpu_ids.
582 */
cpumask_size(void)583 static inline size_t cpumask_size(void)
584 {
585 /* FIXME: Once all cpumask assignments are eliminated, this
586 * can be nr_cpumask_bits */
587 return BITS_TO_LONGS(NR_CPUS) * sizeof(long);
588 }
589
590 /*
591 * cpumask_var_t: struct cpumask for stack usage.
592 *
593 * Oh, the wicked games we play! In order to make kernel coding a
594 * little more difficult, we typedef cpumask_var_t to an array or a
595 * pointer: doing &mask on an array is a noop, so it still works.
596 *
597 * ie.
598 * cpumask_var_t tmpmask;
599 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
600 * return -ENOMEM;
601 *
602 * ... use 'tmpmask' like a normal struct cpumask * ...
603 *
604 * free_cpumask_var(tmpmask);
605 */
606 #ifdef CONFIG_CPUMASK_OFFSTACK
607 typedef struct cpumask *cpumask_var_t;
608
609 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
610 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
611 bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
612 bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags);
613 void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
614 void free_cpumask_var(cpumask_var_t mask);
615 void free_bootmem_cpumask_var(cpumask_var_t mask);
616
617 #else
618 typedef struct cpumask cpumask_var_t[1];
619
alloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)620 static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
621 {
622 return true;
623 }
624
alloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)625 static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
626 int node)
627 {
628 return true;
629 }
630
zalloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)631 static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
632 {
633 cpumask_clear(*mask);
634 return true;
635 }
636
zalloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)637 static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
638 int node)
639 {
640 cpumask_clear(*mask);
641 return true;
642 }
643
alloc_bootmem_cpumask_var(cpumask_var_t * mask)644 static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
645 {
646 }
647
free_cpumask_var(cpumask_var_t mask)648 static inline void free_cpumask_var(cpumask_var_t mask)
649 {
650 }
651
free_bootmem_cpumask_var(cpumask_var_t mask)652 static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
653 {
654 }
655 #endif /* CONFIG_CPUMASK_OFFSTACK */
656
657 /* It's common to want to use cpu_all_mask in struct member initializers,
658 * so it has to refer to an address rather than a pointer. */
659 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
660 #define cpu_all_mask to_cpumask(cpu_all_bits)
661
662 /* First bits of cpu_bit_bitmap are in fact unset. */
663 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
664
665 #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
666 #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
667 #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
668
669 /* Wrappers for arch boot code to manipulate normally-constant masks */
670 void set_cpu_possible(unsigned int cpu, bool possible);
671 void set_cpu_present(unsigned int cpu, bool present);
672 void set_cpu_online(unsigned int cpu, bool online);
673 void set_cpu_active(unsigned int cpu, bool active);
674 void init_cpu_present(const struct cpumask *src);
675 void init_cpu_possible(const struct cpumask *src);
676 void init_cpu_online(const struct cpumask *src);
677
678 /**
679 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask *
680 * @bitmap: the bitmap
681 *
682 * There are a few places where cpumask_var_t isn't appropriate and
683 * static cpumasks must be used (eg. very early boot), yet we don't
684 * expose the definition of 'struct cpumask'.
685 *
686 * This does the conversion, and can be used as a constant initializer.
687 */
688 #define to_cpumask(bitmap) \
689 ((struct cpumask *)(1 ? (bitmap) \
690 : (void *)sizeof(__check_is_bitmap(bitmap))))
691
__check_is_bitmap(const unsigned long * bitmap)692 static inline int __check_is_bitmap(const unsigned long *bitmap)
693 {
694 return 1;
695 }
696
697 /*
698 * Special-case data structure for "single bit set only" constant CPU masks.
699 *
700 * We pre-generate all the 64 (or 32) possible bit positions, with enough
701 * padding to the left and the right, and return the constant pointer
702 * appropriately offset.
703 */
704 extern const unsigned long
705 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
706
get_cpu_mask(unsigned int cpu)707 static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
708 {
709 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
710 p -= cpu / BITS_PER_LONG;
711 return to_cpumask(p);
712 }
713
714 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
715
716 #if NR_CPUS <= BITS_PER_LONG
717 #define CPU_BITS_ALL \
718 { \
719 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
720 }
721
722 #else /* NR_CPUS > BITS_PER_LONG */
723
724 #define CPU_BITS_ALL \
725 { \
726 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
727 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
728 }
729 #endif /* NR_CPUS > BITS_PER_LONG */
730
731 /*
732 *
733 * From here down, all obsolete. Use cpumask_ variants!
734 *
735 */
736 #ifndef CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS
737 /* These strip const, as traditionally they weren't const. */
738 #define cpu_possible_map (*(cpumask_t *)cpu_possible_mask)
739 #define cpu_online_map (*(cpumask_t *)cpu_online_mask)
740 #define cpu_present_map (*(cpumask_t *)cpu_present_mask)
741 #define cpu_active_map (*(cpumask_t *)cpu_active_mask)
742
743 #define cpumask_of_cpu(cpu) (*get_cpu_mask(cpu))
744
745 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
746
747 #if NR_CPUS <= BITS_PER_LONG
748
749 #define CPU_MASK_ALL \
750 (cpumask_t) { { \
751 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
752 } }
753
754 #else
755
756 #define CPU_MASK_ALL \
757 (cpumask_t) { { \
758 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
759 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
760 } }
761
762 #endif
763
764 #define CPU_MASK_NONE \
765 (cpumask_t) { { \
766 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
767 } }
768
769 #define CPU_MASK_CPU0 \
770 (cpumask_t) { { \
771 [0] = 1UL \
772 } }
773
774 #if NR_CPUS == 1
775 #define first_cpu(src) ({ (void)(src); 0; })
776 #define next_cpu(n, src) ({ (void)(src); 1; })
777 #define any_online_cpu(mask) 0
778 #define for_each_cpu_mask(cpu, mask) \
779 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
780 #else /* NR_CPUS > 1 */
781 int __first_cpu(const cpumask_t *srcp);
782 int __next_cpu(int n, const cpumask_t *srcp);
783 int __any_online_cpu(const cpumask_t *mask);
784
785 #define first_cpu(src) __first_cpu(&(src))
786 #define next_cpu(n, src) __next_cpu((n), &(src))
787 #define any_online_cpu(mask) __any_online_cpu(&(mask))
788 #define for_each_cpu_mask(cpu, mask) \
789 for ((cpu) = -1; \
790 (cpu) = next_cpu((cpu), (mask)), \
791 (cpu) < NR_CPUS; )
792 #endif /* SMP */
793
794 #if NR_CPUS <= 64
795
796 #define for_each_cpu_mask_nr(cpu, mask) for_each_cpu_mask(cpu, mask)
797
798 #else /* NR_CPUS > 64 */
799
800 int __next_cpu_nr(int n, const cpumask_t *srcp);
801 #define for_each_cpu_mask_nr(cpu, mask) \
802 for ((cpu) = -1; \
803 (cpu) = __next_cpu_nr((cpu), &(mask)), \
804 (cpu) < nr_cpu_ids; )
805
806 #endif /* NR_CPUS > 64 */
807
808 #define cpus_addr(src) ((src).bits)
809
810 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
__cpu_set(int cpu,volatile cpumask_t * dstp)811 static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
812 {
813 set_bit(cpu, dstp->bits);
814 }
815
816 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
__cpu_clear(int cpu,volatile cpumask_t * dstp)817 static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
818 {
819 clear_bit(cpu, dstp->bits);
820 }
821
822 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
__cpus_setall(cpumask_t * dstp,int nbits)823 static inline void __cpus_setall(cpumask_t *dstp, int nbits)
824 {
825 bitmap_fill(dstp->bits, nbits);
826 }
827
828 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
__cpus_clear(cpumask_t * dstp,int nbits)829 static inline void __cpus_clear(cpumask_t *dstp, int nbits)
830 {
831 bitmap_zero(dstp->bits, nbits);
832 }
833
834 /* No static inline type checking - see Subtlety (1) above. */
835 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
836
837 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
__cpu_test_and_set(int cpu,cpumask_t * addr)838 static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
839 {
840 return test_and_set_bit(cpu, addr->bits);
841 }
842
843 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
__cpus_and(cpumask_t * dstp,const cpumask_t * src1p,const cpumask_t * src2p,int nbits)844 static inline int __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
845 const cpumask_t *src2p, int nbits)
846 {
847 return bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
848 }
849
850 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
__cpus_or(cpumask_t * dstp,const cpumask_t * src1p,const cpumask_t * src2p,int nbits)851 static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
852 const cpumask_t *src2p, int nbits)
853 {
854 bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
855 }
856
857 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
__cpus_xor(cpumask_t * dstp,const cpumask_t * src1p,const cpumask_t * src2p,int nbits)858 static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
859 const cpumask_t *src2p, int nbits)
860 {
861 bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
862 }
863
864 #define cpus_andnot(dst, src1, src2) \
865 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
__cpus_andnot(cpumask_t * dstp,const cpumask_t * src1p,const cpumask_t * src2p,int nbits)866 static inline int __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
867 const cpumask_t *src2p, int nbits)
868 {
869 return bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
870 }
871
872 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
__cpus_equal(const cpumask_t * src1p,const cpumask_t * src2p,int nbits)873 static inline int __cpus_equal(const cpumask_t *src1p,
874 const cpumask_t *src2p, int nbits)
875 {
876 return bitmap_equal(src1p->bits, src2p->bits, nbits);
877 }
878
879 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
__cpus_intersects(const cpumask_t * src1p,const cpumask_t * src2p,int nbits)880 static inline int __cpus_intersects(const cpumask_t *src1p,
881 const cpumask_t *src2p, int nbits)
882 {
883 return bitmap_intersects(src1p->bits, src2p->bits, nbits);
884 }
885
886 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
__cpus_subset(const cpumask_t * src1p,const cpumask_t * src2p,int nbits)887 static inline int __cpus_subset(const cpumask_t *src1p,
888 const cpumask_t *src2p, int nbits)
889 {
890 return bitmap_subset(src1p->bits, src2p->bits, nbits);
891 }
892
893 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
__cpus_empty(const cpumask_t * srcp,int nbits)894 static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
895 {
896 return bitmap_empty(srcp->bits, nbits);
897 }
898
899 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
__cpus_weight(const cpumask_t * srcp,int nbits)900 static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
901 {
902 return bitmap_weight(srcp->bits, nbits);
903 }
904
905 #define cpus_shift_left(dst, src, n) \
906 __cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
__cpus_shift_left(cpumask_t * dstp,const cpumask_t * srcp,int n,int nbits)907 static inline void __cpus_shift_left(cpumask_t *dstp,
908 const cpumask_t *srcp, int n, int nbits)
909 {
910 bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
911 }
912 #endif /* !CONFIG_DISABLE_OBSOLETE_CPUMASK_FUNCTIONS */
913
914 #endif /* __LINUX_CPUMASK_H */
915