1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/crc32.h>
17 #include <linux/pagemap.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/compiler.h>
20 #include "nodelist.h"
21 
22 /*
23  * Check the data CRC of the node.
24  *
25  * Returns: 0 if the data CRC is correct;
26  * 	    1 - if incorrect;
27  *	    error code if an error occurred.
28  */
check_node_data(struct jffs2_sb_info * c,struct jffs2_tmp_dnode_info * tn)29 static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
30 {
31 	struct jffs2_raw_node_ref *ref = tn->fn->raw;
32 	int err = 0, pointed = 0;
33 	struct jffs2_eraseblock *jeb;
34 	unsigned char *buffer;
35 	uint32_t crc, ofs, len;
36 	size_t retlen;
37 
38 	BUG_ON(tn->csize == 0);
39 
40 	/* Calculate how many bytes were already checked */
41 	ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
42 	len = tn->csize;
43 
44 	if (jffs2_is_writebuffered(c)) {
45 		int adj = ofs % c->wbuf_pagesize;
46 		if (likely(adj))
47 			adj = c->wbuf_pagesize - adj;
48 
49 		if (adj >= tn->csize) {
50 			dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
51 				      ref_offset(ref), tn->csize, ofs);
52 			goto adj_acc;
53 		}
54 
55 		ofs += adj;
56 		len -= adj;
57 	}
58 
59 	dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
60 		ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
61 
62 #ifndef __ECOS
63 	/* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
64 	 * adding and jffs2_flash_read_end() interface. */
65 	if (c->mtd->point) {
66 		err = c->mtd->point(c->mtd, ofs, len, &retlen,
67 				    (void **)&buffer, NULL);
68 		if (!err && retlen < len) {
69 			JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
70 			c->mtd->unpoint(c->mtd, ofs, retlen);
71 		} else if (err)
72 			JFFS2_WARNING("MTD point failed: error code %d.\n", err);
73 		else
74 			pointed = 1; /* succefully pointed to device */
75 	}
76 #endif
77 
78 	if (!pointed) {
79 		buffer = kmalloc(len, GFP_KERNEL);
80 		if (unlikely(!buffer))
81 			return -ENOMEM;
82 
83 		/* TODO: this is very frequent pattern, make it a separate
84 		 * routine */
85 		err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
86 		if (err) {
87 			JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
88 			goto free_out;
89 		}
90 
91 		if (retlen != len) {
92 			JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
93 			err = -EIO;
94 			goto free_out;
95 		}
96 	}
97 
98 	/* Continue calculating CRC */
99 	crc = crc32(tn->partial_crc, buffer, len);
100 	if(!pointed)
101 		kfree(buffer);
102 #ifndef __ECOS
103 	else
104 		c->mtd->unpoint(c->mtd, ofs, len);
105 #endif
106 
107 	if (crc != tn->data_crc) {
108 		JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
109 			     ref_offset(ref), tn->data_crc, crc);
110 		return 1;
111 	}
112 
113 adj_acc:
114 	jeb = &c->blocks[ref->flash_offset / c->sector_size];
115 	len = ref_totlen(c, jeb, ref);
116 	/* If it should be REF_NORMAL, it'll get marked as such when
117 	   we build the fragtree, shortly. No need to worry about GC
118 	   moving it while it's marked REF_PRISTINE -- GC won't happen
119 	   till we've finished checking every inode anyway. */
120 	ref->flash_offset |= REF_PRISTINE;
121 	/*
122 	 * Mark the node as having been checked and fix the
123 	 * accounting accordingly.
124 	 */
125 	spin_lock(&c->erase_completion_lock);
126 	jeb->used_size += len;
127 	jeb->unchecked_size -= len;
128 	c->used_size += len;
129 	c->unchecked_size -= len;
130 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
131 	spin_unlock(&c->erase_completion_lock);
132 
133 	return 0;
134 
135 free_out:
136 	if(!pointed)
137 		kfree(buffer);
138 #ifndef __ECOS
139 	else
140 		c->mtd->unpoint(c->mtd, ofs, len);
141 #endif
142 	return err;
143 }
144 
145 /*
146  * Helper function for jffs2_add_older_frag_to_fragtree().
147  *
148  * Checks the node if we are in the checking stage.
149  */
check_tn_node(struct jffs2_sb_info * c,struct jffs2_tmp_dnode_info * tn)150 static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
151 {
152 	int ret;
153 
154 	BUG_ON(ref_obsolete(tn->fn->raw));
155 
156 	/* We only check the data CRC of unchecked nodes */
157 	if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
158 		return 0;
159 
160 	dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
161 		      tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
162 
163 	ret = check_node_data(c, tn);
164 	if (unlikely(ret < 0)) {
165 		JFFS2_ERROR("check_node_data() returned error: %d.\n",
166 			ret);
167 	} else if (unlikely(ret > 0)) {
168 		dbg_readinode("CRC error, mark it obsolete.\n");
169 		jffs2_mark_node_obsolete(c, tn->fn->raw);
170 	}
171 
172 	return ret;
173 }
174 
jffs2_lookup_tn(struct rb_root * tn_root,uint32_t offset)175 static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
176 {
177 	struct rb_node *next;
178 	struct jffs2_tmp_dnode_info *tn = NULL;
179 
180 	dbg_readinode("root %p, offset %d\n", tn_root, offset);
181 
182 	next = tn_root->rb_node;
183 
184 	while (next) {
185 		tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);
186 
187 		if (tn->fn->ofs < offset)
188 			next = tn->rb.rb_right;
189 		else if (tn->fn->ofs >= offset)
190 			next = tn->rb.rb_left;
191 		else
192 			break;
193 	}
194 
195 	return tn;
196 }
197 
198 
jffs2_kill_tn(struct jffs2_sb_info * c,struct jffs2_tmp_dnode_info * tn)199 static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
200 {
201 	jffs2_mark_node_obsolete(c, tn->fn->raw);
202 	jffs2_free_full_dnode(tn->fn);
203 	jffs2_free_tmp_dnode_info(tn);
204 }
205 /*
206  * This function is used when we read an inode. Data nodes arrive in
207  * arbitrary order -- they may be older or newer than the nodes which
208  * are already in the tree. Where overlaps occur, the older node can
209  * be discarded as long as the newer passes the CRC check. We don't
210  * bother to keep track of holes in this rbtree, and neither do we deal
211  * with frags -- we can have multiple entries starting at the same
212  * offset, and the one with the smallest length will come first in the
213  * ordering.
214  *
215  * Returns 0 if the node was handled (including marking it obsolete)
216  *	 < 0 an if error occurred
217  */
jffs2_add_tn_to_tree(struct jffs2_sb_info * c,struct jffs2_readinode_info * rii,struct jffs2_tmp_dnode_info * tn)218 static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
219 				struct jffs2_readinode_info *rii,
220 				struct jffs2_tmp_dnode_info *tn)
221 {
222 	uint32_t fn_end = tn->fn->ofs + tn->fn->size;
223 	struct jffs2_tmp_dnode_info *this, *ptn;
224 
225 	dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));
226 
227 	/* If a node has zero dsize, we only have to keep if it if it might be the
228 	   node with highest version -- i.e. the one which will end up as f->metadata.
229 	   Note that such nodes won't be REF_UNCHECKED since there are no data to
230 	   check anyway. */
231 	if (!tn->fn->size) {
232 		if (rii->mdata_tn) {
233 			if (rii->mdata_tn->version < tn->version) {
234 				/* We had a candidate mdata node already */
235 				dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
236 				jffs2_kill_tn(c, rii->mdata_tn);
237 			} else {
238 				dbg_readinode("kill new mdata with ver %d (older than existing %d\n",
239 					      tn->version, rii->mdata_tn->version);
240 				jffs2_kill_tn(c, tn);
241 				return 0;
242 			}
243 		}
244 		rii->mdata_tn = tn;
245 		dbg_readinode("keep new mdata with ver %d\n", tn->version);
246 		return 0;
247 	}
248 
249 	/* Find the earliest node which _may_ be relevant to this one */
250 	this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
251 	if (this) {
252 		/* If the node is coincident with another at a lower address,
253 		   back up until the other node is found. It may be relevant */
254 		while (this->overlapped) {
255 			ptn = tn_prev(this);
256 			if (!ptn) {
257 				/*
258 				 * We killed a node which set the overlapped
259 				 * flags during the scan. Fix it up.
260 				 */
261 				this->overlapped = 0;
262 				break;
263 			}
264 			this = ptn;
265 		}
266 		dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
267 	}
268 
269 	while (this) {
270 		if (this->fn->ofs > fn_end)
271 			break;
272 		dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
273 			      this->version, this->fn->ofs, this->fn->size);
274 
275 		if (this->version == tn->version) {
276 			/* Version number collision means REF_PRISTINE GC. Accept either of them
277 			   as long as the CRC is correct. Check the one we have already...  */
278 			if (!check_tn_node(c, this)) {
279 				/* The one we already had was OK. Keep it and throw away the new one */
280 				dbg_readinode("Like old node. Throw away new\n");
281 				jffs2_kill_tn(c, tn);
282 				return 0;
283 			} else {
284 				/* Who cares if the new one is good; keep it for now anyway. */
285 				dbg_readinode("Like new node. Throw away old\n");
286 				rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
287 				jffs2_kill_tn(c, this);
288 				/* Same overlapping from in front and behind */
289 				return 0;
290 			}
291 		}
292 		if (this->version < tn->version &&
293 		    this->fn->ofs >= tn->fn->ofs &&
294 		    this->fn->ofs + this->fn->size <= fn_end) {
295 			/* New node entirely overlaps 'this' */
296 			if (check_tn_node(c, tn)) {
297 				dbg_readinode("new node bad CRC\n");
298 				jffs2_kill_tn(c, tn);
299 				return 0;
300 			}
301 			/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
302 			while (this && this->fn->ofs + this->fn->size <= fn_end) {
303 				struct jffs2_tmp_dnode_info *next = tn_next(this);
304 				if (this->version < tn->version) {
305 					tn_erase(this, &rii->tn_root);
306 					dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
307 						      this->version, this->fn->ofs,
308 						      this->fn->ofs+this->fn->size);
309 					jffs2_kill_tn(c, this);
310 				}
311 				this = next;
312 			}
313 			dbg_readinode("Done killing overlapped nodes\n");
314 			continue;
315 		}
316 		if (this->version > tn->version &&
317 		    this->fn->ofs <= tn->fn->ofs &&
318 		    this->fn->ofs+this->fn->size >= fn_end) {
319 			/* New node entirely overlapped by 'this' */
320 			if (!check_tn_node(c, this)) {
321 				dbg_readinode("Good CRC on old node. Kill new\n");
322 				jffs2_kill_tn(c, tn);
323 				return 0;
324 			}
325 			/* ... but 'this' was bad. Replace it... */
326 			dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
327 			tn_erase(this, &rii->tn_root);
328 			jffs2_kill_tn(c, this);
329 			break;
330 		}
331 
332 		this = tn_next(this);
333 	}
334 
335 	/* We neither completely obsoleted nor were completely
336 	   obsoleted by an earlier node. Insert into the tree */
337 	{
338 		struct rb_node *parent;
339 		struct rb_node **link = &rii->tn_root.rb_node;
340 		struct jffs2_tmp_dnode_info *insert_point = NULL;
341 
342 		while (*link) {
343 			parent = *link;
344 			insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
345 			if (tn->fn->ofs > insert_point->fn->ofs)
346 				link = &insert_point->rb.rb_right;
347 			else if (tn->fn->ofs < insert_point->fn->ofs ||
348 				 tn->fn->size < insert_point->fn->size)
349 				link = &insert_point->rb.rb_left;
350 			else
351 				link = &insert_point->rb.rb_right;
352 		}
353 		rb_link_node(&tn->rb, &insert_point->rb, link);
354 		rb_insert_color(&tn->rb, &rii->tn_root);
355 	}
356 
357 	/* If there's anything behind that overlaps us, note it */
358 	this = tn_prev(tn);
359 	if (this) {
360 		while (1) {
361 			if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
362 				dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
363 					      this, this->version, this->fn->ofs,
364 					      this->fn->ofs+this->fn->size);
365 				tn->overlapped = 1;
366 				break;
367 			}
368 			if (!this->overlapped)
369 				break;
370 
371 			ptn = tn_prev(this);
372 			if (!ptn) {
373 				/*
374 				 * We killed a node which set the overlapped
375 				 * flags during the scan. Fix it up.
376 				 */
377 				this->overlapped = 0;
378 				break;
379 			}
380 			this = ptn;
381 		}
382 	}
383 
384 	/* If the new node overlaps anything ahead, note it */
385 	this = tn_next(tn);
386 	while (this && this->fn->ofs < fn_end) {
387 		this->overlapped = 1;
388 		dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
389 			      this->version, this->fn->ofs,
390 			      this->fn->ofs+this->fn->size);
391 		this = tn_next(this);
392 	}
393 	return 0;
394 }
395 
396 /* Trivial function to remove the last node in the tree. Which by definition
397    has no right-hand -- so can be removed just by making its only child (if
398    any) take its place under its parent. */
eat_last(struct rb_root * root,struct rb_node * node)399 static void eat_last(struct rb_root *root, struct rb_node *node)
400 {
401 	struct rb_node *parent = rb_parent(node);
402 	struct rb_node **link;
403 
404 	/* LAST! */
405 	BUG_ON(node->rb_right);
406 
407 	if (!parent)
408 		link = &root->rb_node;
409 	else if (node == parent->rb_left)
410 		link = &parent->rb_left;
411 	else
412 		link = &parent->rb_right;
413 
414 	*link = node->rb_left;
415 	/* Colour doesn't matter now. Only the parent pointer. */
416 	if (node->rb_left)
417 		node->rb_left->rb_parent_color = node->rb_parent_color;
418 }
419 
420 /* We put this in reverse order, so we can just use eat_last */
ver_insert(struct rb_root * ver_root,struct jffs2_tmp_dnode_info * tn)421 static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
422 {
423 	struct rb_node **link = &ver_root->rb_node;
424 	struct rb_node *parent = NULL;
425 	struct jffs2_tmp_dnode_info *this_tn;
426 
427 	while (*link) {
428 		parent = *link;
429 		this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
430 
431 		if (tn->version > this_tn->version)
432 			link = &parent->rb_left;
433 		else
434 			link = &parent->rb_right;
435 	}
436 	dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
437 	rb_link_node(&tn->rb, parent, link);
438 	rb_insert_color(&tn->rb, ver_root);
439 }
440 
441 /* Build final, normal fragtree from tn tree. It doesn't matter which order
442    we add nodes to the real fragtree, as long as they don't overlap. And
443    having thrown away the majority of overlapped nodes as we went, there
444    really shouldn't be many sets of nodes which do overlap. If we start at
445    the end, we can use the overlap markers -- we can just eat nodes which
446    aren't overlapped, and when we encounter nodes which _do_ overlap we
447    sort them all into a temporary tree in version order before replaying them. */
jffs2_build_inode_fragtree(struct jffs2_sb_info * c,struct jffs2_inode_info * f,struct jffs2_readinode_info * rii)448 static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
449 				      struct jffs2_inode_info *f,
450 				      struct jffs2_readinode_info *rii)
451 {
452 	struct jffs2_tmp_dnode_info *pen, *last, *this;
453 	struct rb_root ver_root = RB_ROOT;
454 	uint32_t high_ver = 0;
455 
456 	if (rii->mdata_tn) {
457 		dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
458 		high_ver = rii->mdata_tn->version;
459 		rii->latest_ref = rii->mdata_tn->fn->raw;
460 	}
461 #ifdef JFFS2_DBG_READINODE_MESSAGES
462 	this = tn_last(&rii->tn_root);
463 	while (this) {
464 		dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
465 			      this->fn->ofs+this->fn->size, this->overlapped);
466 		this = tn_prev(this);
467 	}
468 #endif
469 	pen = tn_last(&rii->tn_root);
470 	while ((last = pen)) {
471 		pen = tn_prev(last);
472 
473 		eat_last(&rii->tn_root, &last->rb);
474 		ver_insert(&ver_root, last);
475 
476 		if (unlikely(last->overlapped)) {
477 			if (pen)
478 				continue;
479 			/*
480 			 * We killed a node which set the overlapped
481 			 * flags during the scan. Fix it up.
482 			 */
483 			last->overlapped = 0;
484 		}
485 
486 		/* Now we have a bunch of nodes in reverse version
487 		   order, in the tree at ver_root. Most of the time,
488 		   there'll actually be only one node in the 'tree',
489 		   in fact. */
490 		this = tn_last(&ver_root);
491 
492 		while (this) {
493 			struct jffs2_tmp_dnode_info *vers_next;
494 			int ret;
495 			vers_next = tn_prev(this);
496 			eat_last(&ver_root, &this->rb);
497 			if (check_tn_node(c, this)) {
498 				dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
499 					     this->version, this->fn->ofs,
500 					     this->fn->ofs+this->fn->size);
501 				jffs2_kill_tn(c, this);
502 			} else {
503 				if (this->version > high_ver) {
504 					/* Note that this is different from the other
505 					   highest_version, because this one is only
506 					   counting _valid_ nodes which could give the
507 					   latest inode metadata */
508 					high_ver = this->version;
509 					rii->latest_ref = this->fn->raw;
510 				}
511 				dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
512 					     this, this->version, this->fn->ofs,
513 					     this->fn->ofs+this->fn->size, this->overlapped);
514 
515 				ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
516 				if (ret) {
517 					/* Free the nodes in vers_root; let the caller
518 					   deal with the rest */
519 					JFFS2_ERROR("Add node to tree failed %d\n", ret);
520 					while (1) {
521 						vers_next = tn_prev(this);
522 						if (check_tn_node(c, this))
523 							jffs2_mark_node_obsolete(c, this->fn->raw);
524 						jffs2_free_full_dnode(this->fn);
525 						jffs2_free_tmp_dnode_info(this);
526 						this = vers_next;
527 						if (!this)
528 							break;
529 						eat_last(&ver_root, &vers_next->rb);
530 					}
531 					return ret;
532 				}
533 				jffs2_free_tmp_dnode_info(this);
534 			}
535 			this = vers_next;
536 		}
537 	}
538 	return 0;
539 }
540 
jffs2_free_tmp_dnode_info_list(struct rb_root * list)541 static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
542 {
543 	struct rb_node *this;
544 	struct jffs2_tmp_dnode_info *tn;
545 
546 	this = list->rb_node;
547 
548 	/* Now at bottom of tree */
549 	while (this) {
550 		if (this->rb_left)
551 			this = this->rb_left;
552 		else if (this->rb_right)
553 			this = this->rb_right;
554 		else {
555 			tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb);
556 			jffs2_free_full_dnode(tn->fn);
557 			jffs2_free_tmp_dnode_info(tn);
558 
559 			this = rb_parent(this);
560 			if (!this)
561 				break;
562 
563 			if (this->rb_left == &tn->rb)
564 				this->rb_left = NULL;
565 			else if (this->rb_right == &tn->rb)
566 				this->rb_right = NULL;
567 			else BUG();
568 		}
569 	}
570 	*list = RB_ROOT;
571 }
572 
jffs2_free_full_dirent_list(struct jffs2_full_dirent * fd)573 static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
574 {
575 	struct jffs2_full_dirent *next;
576 
577 	while (fd) {
578 		next = fd->next;
579 		jffs2_free_full_dirent(fd);
580 		fd = next;
581 	}
582 }
583 
584 /* Returns first valid node after 'ref'. May return 'ref' */
jffs2_first_valid_node(struct jffs2_raw_node_ref * ref)585 static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
586 {
587 	while (ref && ref->next_in_ino) {
588 		if (!ref_obsolete(ref))
589 			return ref;
590 		dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
591 		ref = ref->next_in_ino;
592 	}
593 	return NULL;
594 }
595 
596 /*
597  * Helper function for jffs2_get_inode_nodes().
598  * It is called every time an directory entry node is found.
599  *
600  * Returns: 0 on success;
601  * 	    negative error code on failure.
602  */
read_direntry(struct jffs2_sb_info * c,struct jffs2_raw_node_ref * ref,struct jffs2_raw_dirent * rd,size_t read,struct jffs2_readinode_info * rii)603 static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
604 				struct jffs2_raw_dirent *rd, size_t read,
605 				struct jffs2_readinode_info *rii)
606 {
607 	struct jffs2_full_dirent *fd;
608 	uint32_t crc;
609 
610 	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
611 	BUG_ON(ref_obsolete(ref));
612 
613 	crc = crc32(0, rd, sizeof(*rd) - 8);
614 	if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
615 		JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
616 			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
617 		jffs2_mark_node_obsolete(c, ref);
618 		return 0;
619 	}
620 
621 	/* If we've never checked the CRCs on this node, check them now */
622 	if (ref_flags(ref) == REF_UNCHECKED) {
623 		struct jffs2_eraseblock *jeb;
624 		int len;
625 
626 		/* Sanity check */
627 		if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
628 			JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
629 				    ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
630 			jffs2_mark_node_obsolete(c, ref);
631 			return 0;
632 		}
633 
634 		jeb = &c->blocks[ref->flash_offset / c->sector_size];
635 		len = ref_totlen(c, jeb, ref);
636 
637 		spin_lock(&c->erase_completion_lock);
638 		jeb->used_size += len;
639 		jeb->unchecked_size -= len;
640 		c->used_size += len;
641 		c->unchecked_size -= len;
642 		ref->flash_offset = ref_offset(ref) | dirent_node_state(rd);
643 		spin_unlock(&c->erase_completion_lock);
644 	}
645 
646 	fd = jffs2_alloc_full_dirent(rd->nsize + 1);
647 	if (unlikely(!fd))
648 		return -ENOMEM;
649 
650 	fd->raw = ref;
651 	fd->version = je32_to_cpu(rd->version);
652 	fd->ino = je32_to_cpu(rd->ino);
653 	fd->type = rd->type;
654 
655 	if (fd->version > rii->highest_version)
656 		rii->highest_version = fd->version;
657 
658 	/* Pick out the mctime of the latest dirent */
659 	if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
660 		rii->mctime_ver = fd->version;
661 		rii->latest_mctime = je32_to_cpu(rd->mctime);
662 	}
663 
664 	/*
665 	 * Copy as much of the name as possible from the raw
666 	 * dirent we've already read from the flash.
667 	 */
668 	if (read > sizeof(*rd))
669 		memcpy(&fd->name[0], &rd->name[0],
670 		       min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
671 
672 	/* Do we need to copy any more of the name directly from the flash? */
673 	if (rd->nsize + sizeof(*rd) > read) {
674 		/* FIXME: point() */
675 		int err;
676 		int already = read - sizeof(*rd);
677 
678 		err = jffs2_flash_read(c, (ref_offset(ref)) + read,
679 				rd->nsize - already, &read, &fd->name[already]);
680 		if (unlikely(read != rd->nsize - already) && likely(!err))
681 			return -EIO;
682 
683 		if (unlikely(err)) {
684 			JFFS2_ERROR("read remainder of name: error %d\n", err);
685 			jffs2_free_full_dirent(fd);
686 			return -EIO;
687 		}
688 	}
689 
690 	fd->nhash = full_name_hash(fd->name, rd->nsize);
691 	fd->next = NULL;
692 	fd->name[rd->nsize] = '\0';
693 
694 	/*
695 	 * Wheee. We now have a complete jffs2_full_dirent structure, with
696 	 * the name in it and everything. Link it into the list
697 	 */
698 	jffs2_add_fd_to_list(c, fd, &rii->fds);
699 
700 	return 0;
701 }
702 
703 /*
704  * Helper function for jffs2_get_inode_nodes().
705  * It is called every time an inode node is found.
706  *
707  * Returns: 0 on success (possibly after marking a bad node obsolete);
708  * 	    negative error code on failure.
709  */
read_dnode(struct jffs2_sb_info * c,struct jffs2_raw_node_ref * ref,struct jffs2_raw_inode * rd,int rdlen,struct jffs2_readinode_info * rii)710 static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
711 			     struct jffs2_raw_inode *rd, int rdlen,
712 			     struct jffs2_readinode_info *rii)
713 {
714 	struct jffs2_tmp_dnode_info *tn;
715 	uint32_t len, csize;
716 	int ret = 0;
717 	uint32_t crc;
718 
719 	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
720 	BUG_ON(ref_obsolete(ref));
721 
722 	crc = crc32(0, rd, sizeof(*rd) - 8);
723 	if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
724 		JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
725 			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
726 		jffs2_mark_node_obsolete(c, ref);
727 		return 0;
728 	}
729 
730 	tn = jffs2_alloc_tmp_dnode_info();
731 	if (!tn) {
732 		JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
733 		return -ENOMEM;
734 	}
735 
736 	tn->partial_crc = 0;
737 	csize = je32_to_cpu(rd->csize);
738 
739 	/* If we've never checked the CRCs on this node, check them now */
740 	if (ref_flags(ref) == REF_UNCHECKED) {
741 
742 		/* Sanity checks */
743 		if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
744 		    unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
745 			JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
746 			jffs2_dbg_dump_node(c, ref_offset(ref));
747 			jffs2_mark_node_obsolete(c, ref);
748 			goto free_out;
749 		}
750 
751 		if (jffs2_is_writebuffered(c) && csize != 0) {
752 			/* At this point we are supposed to check the data CRC
753 			 * of our unchecked node. But thus far, we do not
754 			 * know whether the node is valid or obsolete. To
755 			 * figure this out, we need to walk all the nodes of
756 			 * the inode and build the inode fragtree. We don't
757 			 * want to spend time checking data of nodes which may
758 			 * later be found to be obsolete. So we put off the full
759 			 * data CRC checking until we have read all the inode
760 			 * nodes and have started building the fragtree.
761 			 *
762 			 * The fragtree is being built starting with nodes
763 			 * having the highest version number, so we'll be able
764 			 * to detect whether a node is valid (i.e., it is not
765 			 * overlapped by a node with higher version) or not.
766 			 * And we'll be able to check only those nodes, which
767 			 * are not obsolete.
768 			 *
769 			 * Of course, this optimization only makes sense in case
770 			 * of NAND flashes (or other flashes with
771 			 * !jffs2_can_mark_obsolete()), since on NOR flashes
772 			 * nodes are marked obsolete physically.
773 			 *
774 			 * Since NAND flashes (or other flashes with
775 			 * jffs2_is_writebuffered(c)) are anyway read by
776 			 * fractions of c->wbuf_pagesize, and we have just read
777 			 * the node header, it is likely that the starting part
778 			 * of the node data is also read when we read the
779 			 * header. So we don't mind to check the CRC of the
780 			 * starting part of the data of the node now, and check
781 			 * the second part later (in jffs2_check_node_data()).
782 			 * Of course, we will not need to re-read and re-check
783 			 * the NAND page which we have just read. This is why we
784 			 * read the whole NAND page at jffs2_get_inode_nodes(),
785 			 * while we needed only the node header.
786 			 */
787 			unsigned char *buf;
788 
789 			/* 'buf' will point to the start of data */
790 			buf = (unsigned char *)rd + sizeof(*rd);
791 			/* len will be the read data length */
792 			len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
793 			tn->partial_crc = crc32(0, buf, len);
794 
795 			dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);
796 
797 			/* If we actually calculated the whole data CRC
798 			 * and it is wrong, drop the node. */
799 			if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
800 				JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
801 					ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
802 				jffs2_mark_node_obsolete(c, ref);
803 				goto free_out;
804 			}
805 
806 		} else if (csize == 0) {
807 			/*
808 			 * We checked the header CRC. If the node has no data, adjust
809 			 * the space accounting now. For other nodes this will be done
810 			 * later either when the node is marked obsolete or when its
811 			 * data is checked.
812 			 */
813 			struct jffs2_eraseblock *jeb;
814 
815 			dbg_readinode("the node has no data.\n");
816 			jeb = &c->blocks[ref->flash_offset / c->sector_size];
817 			len = ref_totlen(c, jeb, ref);
818 
819 			spin_lock(&c->erase_completion_lock);
820 			jeb->used_size += len;
821 			jeb->unchecked_size -= len;
822 			c->used_size += len;
823 			c->unchecked_size -= len;
824 			ref->flash_offset = ref_offset(ref) | REF_NORMAL;
825 			spin_unlock(&c->erase_completion_lock);
826 		}
827 	}
828 
829 	tn->fn = jffs2_alloc_full_dnode();
830 	if (!tn->fn) {
831 		JFFS2_ERROR("alloc fn failed\n");
832 		ret = -ENOMEM;
833 		goto free_out;
834 	}
835 
836 	tn->version = je32_to_cpu(rd->version);
837 	tn->fn->ofs = je32_to_cpu(rd->offset);
838 	tn->data_crc = je32_to_cpu(rd->data_crc);
839 	tn->csize = csize;
840 	tn->fn->raw = ref;
841 	tn->overlapped = 0;
842 
843 	if (tn->version > rii->highest_version)
844 		rii->highest_version = tn->version;
845 
846 	/* There was a bug where we wrote hole nodes out with
847 	   csize/dsize swapped. Deal with it */
848 	if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
849 		tn->fn->size = csize;
850 	else // normal case...
851 		tn->fn->size = je32_to_cpu(rd->dsize);
852 
853 	dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
854 		       ref_offset(ref), je32_to_cpu(rd->version),
855 		       je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);
856 
857 	ret = jffs2_add_tn_to_tree(c, rii, tn);
858 
859 	if (ret) {
860 		jffs2_free_full_dnode(tn->fn);
861 	free_out:
862 		jffs2_free_tmp_dnode_info(tn);
863 		return ret;
864 	}
865 #ifdef JFFS2_DBG_READINODE2_MESSAGES
866 	dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version));
867 	tn = tn_first(&rii->tn_root);
868 	while (tn) {
869 		dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n",
870 			       tn, tn->version, tn->fn->ofs,
871 			       tn->fn->ofs+tn->fn->size, tn->overlapped);
872 		tn = tn_next(tn);
873 	}
874 #endif
875 	return 0;
876 }
877 
878 /*
879  * Helper function for jffs2_get_inode_nodes().
880  * It is called every time an unknown node is found.
881  *
882  * Returns: 0 on success;
883  * 	    negative error code on failure.
884  */
read_unknown(struct jffs2_sb_info * c,struct jffs2_raw_node_ref * ref,struct jffs2_unknown_node * un)885 static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
886 {
887 	/* We don't mark unknown nodes as REF_UNCHECKED */
888 	if (ref_flags(ref) == REF_UNCHECKED) {
889 		JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
890 			    ref_offset(ref));
891 		JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
892 			    je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
893 			    je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
894 		jffs2_mark_node_obsolete(c, ref);
895 		return 0;
896 	}
897 
898 	un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
899 
900 	switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
901 
902 	case JFFS2_FEATURE_INCOMPAT:
903 		JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
904 			    je16_to_cpu(un->nodetype), ref_offset(ref));
905 		/* EEP */
906 		BUG();
907 		break;
908 
909 	case JFFS2_FEATURE_ROCOMPAT:
910 		JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
911 			    je16_to_cpu(un->nodetype), ref_offset(ref));
912 		BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
913 		break;
914 
915 	case JFFS2_FEATURE_RWCOMPAT_COPY:
916 		JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
917 			     je16_to_cpu(un->nodetype), ref_offset(ref));
918 		break;
919 
920 	case JFFS2_FEATURE_RWCOMPAT_DELETE:
921 		JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
922 			     je16_to_cpu(un->nodetype), ref_offset(ref));
923 		jffs2_mark_node_obsolete(c, ref);
924 		return 0;
925 	}
926 
927 	return 0;
928 }
929 
930 /*
931  * Helper function for jffs2_get_inode_nodes().
932  * The function detects whether more data should be read and reads it if yes.
933  *
934  * Returns: 0 on success;
935  * 	    negative error code on failure.
936  */
read_more(struct jffs2_sb_info * c,struct jffs2_raw_node_ref * ref,int needed_len,int * rdlen,unsigned char * buf)937 static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
938 		     int needed_len, int *rdlen, unsigned char *buf)
939 {
940 	int err, to_read = needed_len - *rdlen;
941 	size_t retlen;
942 	uint32_t offs;
943 
944 	if (jffs2_is_writebuffered(c)) {
945 		int rem = to_read % c->wbuf_pagesize;
946 
947 		if (rem)
948 			to_read += c->wbuf_pagesize - rem;
949 	}
950 
951 	/* We need to read more data */
952 	offs = ref_offset(ref) + *rdlen;
953 
954 	dbg_readinode("read more %d bytes\n", to_read);
955 
956 	err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
957 	if (err) {
958 		JFFS2_ERROR("can not read %d bytes from 0x%08x, "
959 			"error code: %d.\n", to_read, offs, err);
960 		return err;
961 	}
962 
963 	if (retlen < to_read) {
964 		JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
965 				offs, retlen, to_read);
966 		return -EIO;
967 	}
968 
969 	*rdlen += to_read;
970 	return 0;
971 }
972 
973 /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
974    with this ino. Perform a preliminary ordering on data nodes, throwing away
975    those which are completely obsoleted by newer ones. The naïve approach we
976    use to take of just returning them _all_ in version order will cause us to
977    run out of memory in certain degenerate cases. */
jffs2_get_inode_nodes(struct jffs2_sb_info * c,struct jffs2_inode_info * f,struct jffs2_readinode_info * rii)978 static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
979 				 struct jffs2_readinode_info *rii)
980 {
981 	struct jffs2_raw_node_ref *ref, *valid_ref;
982 	unsigned char *buf = NULL;
983 	union jffs2_node_union *node;
984 	size_t retlen;
985 	int len, err;
986 
987 	rii->mctime_ver = 0;
988 
989 	dbg_readinode("ino #%u\n", f->inocache->ino);
990 
991 	/* FIXME: in case of NOR and available ->point() this
992 	 * needs to be fixed. */
993 	len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
994 	buf = kmalloc(len, GFP_KERNEL);
995 	if (!buf)
996 		return -ENOMEM;
997 
998 	spin_lock(&c->erase_completion_lock);
999 	valid_ref = jffs2_first_valid_node(f->inocache->nodes);
1000 	if (!valid_ref && f->inocache->ino != 1)
1001 		JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
1002 	while (valid_ref) {
1003 		/* We can hold a pointer to a non-obsolete node without the spinlock,
1004 		   but _obsolete_ nodes may disappear at any time, if the block
1005 		   they're in gets erased. So if we mark 'ref' obsolete while we're
1006 		   not holding the lock, it can go away immediately. For that reason,
1007 		   we find the next valid node first, before processing 'ref'.
1008 		*/
1009 		ref = valid_ref;
1010 		valid_ref = jffs2_first_valid_node(ref->next_in_ino);
1011 		spin_unlock(&c->erase_completion_lock);
1012 
1013 		cond_resched();
1014 
1015 		/*
1016 		 * At this point we don't know the type of the node we're going
1017 		 * to read, so we do not know the size of its header. In order
1018 		 * to minimize the amount of flash IO we assume the header is
1019 		 * of size = JFFS2_MIN_NODE_HEADER.
1020 		 */
1021 		len = JFFS2_MIN_NODE_HEADER;
1022 		if (jffs2_is_writebuffered(c)) {
1023 			int end, rem;
1024 
1025 			/*
1026 			 * We are about to read JFFS2_MIN_NODE_HEADER bytes,
1027 			 * but this flash has some minimal I/O unit. It is
1028 			 * possible that we'll need to read more soon, so read
1029 			 * up to the next min. I/O unit, in order not to
1030 			 * re-read the same min. I/O unit twice.
1031 			 */
1032 			end = ref_offset(ref) + len;
1033 			rem = end % c->wbuf_pagesize;
1034 			if (rem)
1035 				end += c->wbuf_pagesize - rem;
1036 			len = end - ref_offset(ref);
1037 		}
1038 
1039 		dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));
1040 
1041 		/* FIXME: point() */
1042 		err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
1043 		if (err) {
1044 			JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err);
1045 			goto free_out;
1046 		}
1047 
1048 		if (retlen < len) {
1049 			JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
1050 			err = -EIO;
1051 			goto free_out;
1052 		}
1053 
1054 		node = (union jffs2_node_union *)buf;
1055 
1056 		/* No need to mask in the valid bit; it shouldn't be invalid */
1057 		if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
1058 			JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
1059 				     ref_offset(ref), je16_to_cpu(node->u.magic),
1060 				     je16_to_cpu(node->u.nodetype),
1061 				     je32_to_cpu(node->u.totlen),
1062 				     je32_to_cpu(node->u.hdr_crc));
1063 			jffs2_dbg_dump_node(c, ref_offset(ref));
1064 			jffs2_mark_node_obsolete(c, ref);
1065 			goto cont;
1066 		}
1067 		if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
1068 			/* Not a JFFS2 node, whinge and move on */
1069 			JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
1070 				     je16_to_cpu(node->u.magic), ref_offset(ref));
1071 			jffs2_mark_node_obsolete(c, ref);
1072 			goto cont;
1073 		}
1074 
1075 		switch (je16_to_cpu(node->u.nodetype)) {
1076 
1077 		case JFFS2_NODETYPE_DIRENT:
1078 
1079 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) &&
1080 			    len < sizeof(struct jffs2_raw_dirent)) {
1081 				err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
1082 				if (unlikely(err))
1083 					goto free_out;
1084 			}
1085 
1086 			err = read_direntry(c, ref, &node->d, retlen, rii);
1087 			if (unlikely(err))
1088 				goto free_out;
1089 
1090 			break;
1091 
1092 		case JFFS2_NODETYPE_INODE:
1093 
1094 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) &&
1095 			    len < sizeof(struct jffs2_raw_inode)) {
1096 				err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
1097 				if (unlikely(err))
1098 					goto free_out;
1099 			}
1100 
1101 			err = read_dnode(c, ref, &node->i, len, rii);
1102 			if (unlikely(err))
1103 				goto free_out;
1104 
1105 			break;
1106 
1107 		default:
1108 			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) &&
1109 			    len < sizeof(struct jffs2_unknown_node)) {
1110 				err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
1111 				if (unlikely(err))
1112 					goto free_out;
1113 			}
1114 
1115 			err = read_unknown(c, ref, &node->u);
1116 			if (unlikely(err))
1117 				goto free_out;
1118 
1119 		}
1120 	cont:
1121 		spin_lock(&c->erase_completion_lock);
1122 	}
1123 
1124 	spin_unlock(&c->erase_completion_lock);
1125 	kfree(buf);
1126 
1127 	f->highest_version = rii->highest_version;
1128 
1129 	dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
1130 		      f->inocache->ino, rii->highest_version, rii->latest_mctime,
1131 		      rii->mctime_ver);
1132 	return 0;
1133 
1134  free_out:
1135 	jffs2_free_tmp_dnode_info_list(&rii->tn_root);
1136 	jffs2_free_full_dirent_list(rii->fds);
1137 	rii->fds = NULL;
1138 	kfree(buf);
1139 	return err;
1140 }
1141 
jffs2_do_read_inode_internal(struct jffs2_sb_info * c,struct jffs2_inode_info * f,struct jffs2_raw_inode * latest_node)1142 static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
1143 					struct jffs2_inode_info *f,
1144 					struct jffs2_raw_inode *latest_node)
1145 {
1146 	struct jffs2_readinode_info rii;
1147 	uint32_t crc, new_size;
1148 	size_t retlen;
1149 	int ret;
1150 
1151 	dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino,
1152 		      f->inocache->pino_nlink);
1153 
1154 	memset(&rii, 0, sizeof(rii));
1155 
1156 	/* Grab all nodes relevant to this ino */
1157 	ret = jffs2_get_inode_nodes(c, f, &rii);
1158 
1159 	if (ret) {
1160 		JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
1161 		if (f->inocache->state == INO_STATE_READING)
1162 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1163 		return ret;
1164 	}
1165 
1166 	ret = jffs2_build_inode_fragtree(c, f, &rii);
1167 	if (ret) {
1168 		JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
1169 			    f->inocache->ino, ret);
1170 		if (f->inocache->state == INO_STATE_READING)
1171 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1172 		jffs2_free_tmp_dnode_info_list(&rii.tn_root);
1173 		/* FIXME: We could at least crc-check them all */
1174 		if (rii.mdata_tn) {
1175 			jffs2_free_full_dnode(rii.mdata_tn->fn);
1176 			jffs2_free_tmp_dnode_info(rii.mdata_tn);
1177 			rii.mdata_tn = NULL;
1178 		}
1179 		return ret;
1180 	}
1181 
1182 	if (rii.mdata_tn) {
1183 		if (rii.mdata_tn->fn->raw == rii.latest_ref) {
1184 			f->metadata = rii.mdata_tn->fn;
1185 			jffs2_free_tmp_dnode_info(rii.mdata_tn);
1186 		} else {
1187 			jffs2_kill_tn(c, rii.mdata_tn);
1188 		}
1189 		rii.mdata_tn = NULL;
1190 	}
1191 
1192 	f->dents = rii.fds;
1193 
1194 	jffs2_dbg_fragtree_paranoia_check_nolock(f);
1195 
1196 	if (unlikely(!rii.latest_ref)) {
1197 		/* No data nodes for this inode. */
1198 		if (f->inocache->ino != 1) {
1199 			JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
1200 			if (!rii.fds) {
1201 				if (f->inocache->state == INO_STATE_READING)
1202 					jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1203 				return -EIO;
1204 			}
1205 			JFFS2_NOTICE("but it has children so we fake some modes for it\n");
1206 		}
1207 		latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
1208 		latest_node->version = cpu_to_je32(0);
1209 		latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
1210 		latest_node->isize = cpu_to_je32(0);
1211 		latest_node->gid = cpu_to_je16(0);
1212 		latest_node->uid = cpu_to_je16(0);
1213 		if (f->inocache->state == INO_STATE_READING)
1214 			jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1215 		return 0;
1216 	}
1217 
1218 	ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
1219 	if (ret || retlen != sizeof(*latest_node)) {
1220 		JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
1221 			ret, retlen, sizeof(*latest_node));
1222 		/* FIXME: If this fails, there seems to be a memory leak. Find it. */
1223 		mutex_unlock(&f->sem);
1224 		jffs2_do_clear_inode(c, f);
1225 		return ret?ret:-EIO;
1226 	}
1227 
1228 	crc = crc32(0, latest_node, sizeof(*latest_node)-8);
1229 	if (crc != je32_to_cpu(latest_node->node_crc)) {
1230 		JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
1231 			f->inocache->ino, ref_offset(rii.latest_ref));
1232 		mutex_unlock(&f->sem);
1233 		jffs2_do_clear_inode(c, f);
1234 		return -EIO;
1235 	}
1236 
1237 	switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
1238 	case S_IFDIR:
1239 		if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
1240 			/* The times in the latest_node are actually older than
1241 			   mctime in the latest dirent. Cheat. */
1242 			latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
1243 		}
1244 		break;
1245 
1246 
1247 	case S_IFREG:
1248 		/* If it was a regular file, truncate it to the latest node's isize */
1249 		new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
1250 		if (new_size != je32_to_cpu(latest_node->isize)) {
1251 			JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n",
1252 				      f->inocache->ino, je32_to_cpu(latest_node->isize), new_size);
1253 			latest_node->isize = cpu_to_je32(new_size);
1254 		}
1255 		break;
1256 
1257 	case S_IFLNK:
1258 		/* Hack to work around broken isize in old symlink code.
1259 		   Remove this when dwmw2 comes to his senses and stops
1260 		   symlinks from being an entirely gratuitous special
1261 		   case. */
1262 		if (!je32_to_cpu(latest_node->isize))
1263 			latest_node->isize = latest_node->dsize;
1264 
1265 		if (f->inocache->state != INO_STATE_CHECKING) {
1266 			/* Symlink's inode data is the target path. Read it and
1267 			 * keep in RAM to facilitate quick follow symlink
1268 			 * operation. */
1269 			f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL);
1270 			if (!f->target) {
1271 				JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize));
1272 				mutex_unlock(&f->sem);
1273 				jffs2_do_clear_inode(c, f);
1274 				return -ENOMEM;
1275 			}
1276 
1277 			ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
1278 						je32_to_cpu(latest_node->csize), &retlen, (char *)f->target);
1279 
1280 			if (ret  || retlen != je32_to_cpu(latest_node->csize)) {
1281 				if (retlen != je32_to_cpu(latest_node->csize))
1282 					ret = -EIO;
1283 				kfree(f->target);
1284 				f->target = NULL;
1285 				mutex_unlock(&f->sem);
1286 				jffs2_do_clear_inode(c, f);
1287 				return ret;
1288 			}
1289 
1290 			f->target[je32_to_cpu(latest_node->csize)] = '\0';
1291 			dbg_readinode("symlink's target '%s' cached\n", f->target);
1292 		}
1293 
1294 		/* fall through... */
1295 
1296 	case S_IFBLK:
1297 	case S_IFCHR:
1298 		/* Certain inode types should have only one data node, and it's
1299 		   kept as the metadata node */
1300 		if (f->metadata) {
1301 			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
1302 			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
1303 			mutex_unlock(&f->sem);
1304 			jffs2_do_clear_inode(c, f);
1305 			return -EIO;
1306 		}
1307 		if (!frag_first(&f->fragtree)) {
1308 			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
1309 			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
1310 			mutex_unlock(&f->sem);
1311 			jffs2_do_clear_inode(c, f);
1312 			return -EIO;
1313 		}
1314 		/* ASSERT: f->fraglist != NULL */
1315 		if (frag_next(frag_first(&f->fragtree))) {
1316 			JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
1317 			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
1318 			/* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
1319 			mutex_unlock(&f->sem);
1320 			jffs2_do_clear_inode(c, f);
1321 			return -EIO;
1322 		}
1323 		/* OK. We're happy */
1324 		f->metadata = frag_first(&f->fragtree)->node;
1325 		jffs2_free_node_frag(frag_first(&f->fragtree));
1326 		f->fragtree = RB_ROOT;
1327 		break;
1328 	}
1329 	if (f->inocache->state == INO_STATE_READING)
1330 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
1331 
1332 	return 0;
1333 }
1334 
1335 /* Scan the list of all nodes present for this ino, build map of versions, etc. */
jffs2_do_read_inode(struct jffs2_sb_info * c,struct jffs2_inode_info * f,uint32_t ino,struct jffs2_raw_inode * latest_node)1336 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
1337 			uint32_t ino, struct jffs2_raw_inode *latest_node)
1338 {
1339 	dbg_readinode("read inode #%u\n", ino);
1340 
1341  retry_inocache:
1342 	spin_lock(&c->inocache_lock);
1343 	f->inocache = jffs2_get_ino_cache(c, ino);
1344 
1345 	if (f->inocache) {
1346 		/* Check its state. We may need to wait before we can use it */
1347 		switch(f->inocache->state) {
1348 		case INO_STATE_UNCHECKED:
1349 		case INO_STATE_CHECKEDABSENT:
1350 			f->inocache->state = INO_STATE_READING;
1351 			break;
1352 
1353 		case INO_STATE_CHECKING:
1354 		case INO_STATE_GC:
1355 			/* If it's in either of these states, we need
1356 			   to wait for whoever's got it to finish and
1357 			   put it back. */
1358 			dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
1359 			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
1360 			goto retry_inocache;
1361 
1362 		case INO_STATE_READING:
1363 		case INO_STATE_PRESENT:
1364 			/* Eep. This should never happen. It can
1365 			happen if Linux calls read_inode() again
1366 			before clear_inode() has finished though. */
1367 			JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
1368 			/* Fail. That's probably better than allowing it to succeed */
1369 			f->inocache = NULL;
1370 			break;
1371 
1372 		default:
1373 			BUG();
1374 		}
1375 	}
1376 	spin_unlock(&c->inocache_lock);
1377 
1378 	if (!f->inocache && ino == 1) {
1379 		/* Special case - no root inode on medium */
1380 		f->inocache = jffs2_alloc_inode_cache();
1381 		if (!f->inocache) {
1382 			JFFS2_ERROR("cannot allocate inocache for root inode\n");
1383 			return -ENOMEM;
1384 		}
1385 		dbg_readinode("creating inocache for root inode\n");
1386 		memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
1387 		f->inocache->ino = f->inocache->pino_nlink = 1;
1388 		f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
1389 		f->inocache->state = INO_STATE_READING;
1390 		jffs2_add_ino_cache(c, f->inocache);
1391 	}
1392 	if (!f->inocache) {
1393 		JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino);
1394 		return -ENOENT;
1395 	}
1396 
1397 	return jffs2_do_read_inode_internal(c, f, latest_node);
1398 }
1399 
jffs2_do_crccheck_inode(struct jffs2_sb_info * c,struct jffs2_inode_cache * ic)1400 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
1401 {
1402 	struct jffs2_raw_inode n;
1403 	struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
1404 	int ret;
1405 
1406 	if (!f)
1407 		return -ENOMEM;
1408 
1409 	mutex_init(&f->sem);
1410 	mutex_lock(&f->sem);
1411 	f->inocache = ic;
1412 
1413 	ret = jffs2_do_read_inode_internal(c, f, &n);
1414 	if (!ret) {
1415 		mutex_unlock(&f->sem);
1416 		jffs2_do_clear_inode(c, f);
1417 	}
1418 	kfree (f);
1419 	return ret;
1420 }
1421 
jffs2_do_clear_inode(struct jffs2_sb_info * c,struct jffs2_inode_info * f)1422 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
1423 {
1424 	struct jffs2_full_dirent *fd, *fds;
1425 	int deleted;
1426 
1427 	jffs2_xattr_delete_inode(c, f->inocache);
1428 	mutex_lock(&f->sem);
1429 	deleted = f->inocache && !f->inocache->pino_nlink;
1430 
1431 	if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
1432 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
1433 
1434 	if (f->metadata) {
1435 		if (deleted)
1436 			jffs2_mark_node_obsolete(c, f->metadata->raw);
1437 		jffs2_free_full_dnode(f->metadata);
1438 	}
1439 
1440 	jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
1441 
1442 	if (f->target) {
1443 		kfree(f->target);
1444 		f->target = NULL;
1445 	}
1446 
1447 	fds = f->dents;
1448 	while(fds) {
1449 		fd = fds;
1450 		fds = fd->next;
1451 		jffs2_free_full_dirent(fd);
1452 	}
1453 
1454 	if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
1455 		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
1456 		if (f->inocache->nodes == (void *)f->inocache)
1457 			jffs2_del_ino_cache(c, f->inocache);
1458 	}
1459 
1460 	mutex_unlock(&f->sem);
1461 }
1462