1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 
34 /*
35  * backref_node, mapping_node and tree_block start with this
36  */
37 struct tree_entry {
38 	struct rb_node rb_node;
39 	u64 bytenr;
40 };
41 
42 /*
43  * present a tree block in the backref cache
44  */
45 struct backref_node {
46 	struct rb_node rb_node;
47 	u64 bytenr;
48 
49 	u64 new_bytenr;
50 	/* objectid of tree block owner, can be not uptodate */
51 	u64 owner;
52 	/* link to pending, changed or detached list */
53 	struct list_head list;
54 	/* list of upper level blocks reference this block */
55 	struct list_head upper;
56 	/* list of child blocks in the cache */
57 	struct list_head lower;
58 	/* NULL if this node is not tree root */
59 	struct btrfs_root *root;
60 	/* extent buffer got by COW the block */
61 	struct extent_buffer *eb;
62 	/* level of tree block */
63 	unsigned int level:8;
64 	/* is the block in non-reference counted tree */
65 	unsigned int cowonly:1;
66 	/* 1 if no child node in the cache */
67 	unsigned int lowest:1;
68 	/* is the extent buffer locked */
69 	unsigned int locked:1;
70 	/* has the block been processed */
71 	unsigned int processed:1;
72 	/* have backrefs of this block been checked */
73 	unsigned int checked:1;
74 	/*
75 	 * 1 if corresponding block has been cowed but some upper
76 	 * level block pointers may not point to the new location
77 	 */
78 	unsigned int pending:1;
79 	/*
80 	 * 1 if the backref node isn't connected to any other
81 	 * backref node.
82 	 */
83 	unsigned int detached:1;
84 };
85 
86 /*
87  * present a block pointer in the backref cache
88  */
89 struct backref_edge {
90 	struct list_head list[2];
91 	struct backref_node *node[2];
92 };
93 
94 #define LOWER	0
95 #define UPPER	1
96 
97 struct backref_cache {
98 	/* red black tree of all backref nodes in the cache */
99 	struct rb_root rb_root;
100 	/* for passing backref nodes to btrfs_reloc_cow_block */
101 	struct backref_node *path[BTRFS_MAX_LEVEL];
102 	/*
103 	 * list of blocks that have been cowed but some block
104 	 * pointers in upper level blocks may not reflect the
105 	 * new location
106 	 */
107 	struct list_head pending[BTRFS_MAX_LEVEL];
108 	/* list of backref nodes with no child node */
109 	struct list_head leaves;
110 	/* list of blocks that have been cowed in current transaction */
111 	struct list_head changed;
112 	/* list of detached backref node. */
113 	struct list_head detached;
114 
115 	u64 last_trans;
116 
117 	int nr_nodes;
118 	int nr_edges;
119 };
120 
121 /*
122  * map address of tree root to tree
123  */
124 struct mapping_node {
125 	struct rb_node rb_node;
126 	u64 bytenr;
127 	void *data;
128 };
129 
130 struct mapping_tree {
131 	struct rb_root rb_root;
132 	spinlock_t lock;
133 };
134 
135 /*
136  * present a tree block to process
137  */
138 struct tree_block {
139 	struct rb_node rb_node;
140 	u64 bytenr;
141 	struct btrfs_key key;
142 	unsigned int level:8;
143 	unsigned int key_ready:1;
144 };
145 
146 #define MAX_EXTENTS 128
147 
148 struct file_extent_cluster {
149 	u64 start;
150 	u64 end;
151 	u64 boundary[MAX_EXTENTS];
152 	unsigned int nr;
153 };
154 
155 struct reloc_control {
156 	/* block group to relocate */
157 	struct btrfs_block_group_cache *block_group;
158 	/* extent tree */
159 	struct btrfs_root *extent_root;
160 	/* inode for moving data */
161 	struct inode *data_inode;
162 
163 	struct btrfs_block_rsv *block_rsv;
164 
165 	struct backref_cache backref_cache;
166 
167 	struct file_extent_cluster cluster;
168 	/* tree blocks have been processed */
169 	struct extent_io_tree processed_blocks;
170 	/* map start of tree root to corresponding reloc tree */
171 	struct mapping_tree reloc_root_tree;
172 	/* list of reloc trees */
173 	struct list_head reloc_roots;
174 	/* size of metadata reservation for merging reloc trees */
175 	u64 merging_rsv_size;
176 	/* size of relocated tree nodes */
177 	u64 nodes_relocated;
178 
179 	u64 search_start;
180 	u64 extents_found;
181 
182 	unsigned int stage:8;
183 	unsigned int create_reloc_tree:1;
184 	unsigned int merge_reloc_tree:1;
185 	unsigned int found_file_extent:1;
186 	unsigned int commit_transaction:1;
187 };
188 
189 /* stages of data relocation */
190 #define MOVE_DATA_EXTENTS	0
191 #define UPDATE_DATA_PTRS	1
192 
193 static void remove_backref_node(struct backref_cache *cache,
194 				struct backref_node *node);
195 static void __mark_block_processed(struct reloc_control *rc,
196 				   struct backref_node *node);
197 
mapping_tree_init(struct mapping_tree * tree)198 static void mapping_tree_init(struct mapping_tree *tree)
199 {
200 	tree->rb_root = RB_ROOT;
201 	spin_lock_init(&tree->lock);
202 }
203 
backref_cache_init(struct backref_cache * cache)204 static void backref_cache_init(struct backref_cache *cache)
205 {
206 	int i;
207 	cache->rb_root = RB_ROOT;
208 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
209 		INIT_LIST_HEAD(&cache->pending[i]);
210 	INIT_LIST_HEAD(&cache->changed);
211 	INIT_LIST_HEAD(&cache->detached);
212 	INIT_LIST_HEAD(&cache->leaves);
213 }
214 
backref_cache_cleanup(struct backref_cache * cache)215 static void backref_cache_cleanup(struct backref_cache *cache)
216 {
217 	struct backref_node *node;
218 	int i;
219 
220 	while (!list_empty(&cache->detached)) {
221 		node = list_entry(cache->detached.next,
222 				  struct backref_node, list);
223 		remove_backref_node(cache, node);
224 	}
225 
226 	while (!list_empty(&cache->leaves)) {
227 		node = list_entry(cache->leaves.next,
228 				  struct backref_node, lower);
229 		remove_backref_node(cache, node);
230 	}
231 
232 	cache->last_trans = 0;
233 
234 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
235 		BUG_ON(!list_empty(&cache->pending[i]));
236 	BUG_ON(!list_empty(&cache->changed));
237 	BUG_ON(!list_empty(&cache->detached));
238 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
239 	BUG_ON(cache->nr_nodes);
240 	BUG_ON(cache->nr_edges);
241 }
242 
alloc_backref_node(struct backref_cache * cache)243 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
244 {
245 	struct backref_node *node;
246 
247 	node = kzalloc(sizeof(*node), GFP_NOFS);
248 	if (node) {
249 		INIT_LIST_HEAD(&node->list);
250 		INIT_LIST_HEAD(&node->upper);
251 		INIT_LIST_HEAD(&node->lower);
252 		RB_CLEAR_NODE(&node->rb_node);
253 		cache->nr_nodes++;
254 	}
255 	return node;
256 }
257 
free_backref_node(struct backref_cache * cache,struct backref_node * node)258 static void free_backref_node(struct backref_cache *cache,
259 			      struct backref_node *node)
260 {
261 	if (node) {
262 		cache->nr_nodes--;
263 		kfree(node);
264 	}
265 }
266 
alloc_backref_edge(struct backref_cache * cache)267 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
268 {
269 	struct backref_edge *edge;
270 
271 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
272 	if (edge)
273 		cache->nr_edges++;
274 	return edge;
275 }
276 
free_backref_edge(struct backref_cache * cache,struct backref_edge * edge)277 static void free_backref_edge(struct backref_cache *cache,
278 			      struct backref_edge *edge)
279 {
280 	if (edge) {
281 		cache->nr_edges--;
282 		kfree(edge);
283 	}
284 }
285 
tree_insert(struct rb_root * root,u64 bytenr,struct rb_node * node)286 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
287 				   struct rb_node *node)
288 {
289 	struct rb_node **p = &root->rb_node;
290 	struct rb_node *parent = NULL;
291 	struct tree_entry *entry;
292 
293 	while (*p) {
294 		parent = *p;
295 		entry = rb_entry(parent, struct tree_entry, rb_node);
296 
297 		if (bytenr < entry->bytenr)
298 			p = &(*p)->rb_left;
299 		else if (bytenr > entry->bytenr)
300 			p = &(*p)->rb_right;
301 		else
302 			return parent;
303 	}
304 
305 	rb_link_node(node, parent, p);
306 	rb_insert_color(node, root);
307 	return NULL;
308 }
309 
tree_search(struct rb_root * root,u64 bytenr)310 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
311 {
312 	struct rb_node *n = root->rb_node;
313 	struct tree_entry *entry;
314 
315 	while (n) {
316 		entry = rb_entry(n, struct tree_entry, rb_node);
317 
318 		if (bytenr < entry->bytenr)
319 			n = n->rb_left;
320 		else if (bytenr > entry->bytenr)
321 			n = n->rb_right;
322 		else
323 			return n;
324 	}
325 	return NULL;
326 }
327 
328 /*
329  * walk up backref nodes until reach node presents tree root
330  */
walk_up_backref(struct backref_node * node,struct backref_edge * edges[],int * index)331 static struct backref_node *walk_up_backref(struct backref_node *node,
332 					    struct backref_edge *edges[],
333 					    int *index)
334 {
335 	struct backref_edge *edge;
336 	int idx = *index;
337 
338 	while (!list_empty(&node->upper)) {
339 		edge = list_entry(node->upper.next,
340 				  struct backref_edge, list[LOWER]);
341 		edges[idx++] = edge;
342 		node = edge->node[UPPER];
343 	}
344 	BUG_ON(node->detached);
345 	*index = idx;
346 	return node;
347 }
348 
349 /*
350  * walk down backref nodes to find start of next reference path
351  */
walk_down_backref(struct backref_edge * edges[],int * index)352 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
353 					      int *index)
354 {
355 	struct backref_edge *edge;
356 	struct backref_node *lower;
357 	int idx = *index;
358 
359 	while (idx > 0) {
360 		edge = edges[idx - 1];
361 		lower = edge->node[LOWER];
362 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
363 			idx--;
364 			continue;
365 		}
366 		edge = list_entry(edge->list[LOWER].next,
367 				  struct backref_edge, list[LOWER]);
368 		edges[idx - 1] = edge;
369 		*index = idx;
370 		return edge->node[UPPER];
371 	}
372 	*index = 0;
373 	return NULL;
374 }
375 
unlock_node_buffer(struct backref_node * node)376 static void unlock_node_buffer(struct backref_node *node)
377 {
378 	if (node->locked) {
379 		btrfs_tree_unlock(node->eb);
380 		node->locked = 0;
381 	}
382 }
383 
drop_node_buffer(struct backref_node * node)384 static void drop_node_buffer(struct backref_node *node)
385 {
386 	if (node->eb) {
387 		unlock_node_buffer(node);
388 		free_extent_buffer(node->eb);
389 		node->eb = NULL;
390 	}
391 }
392 
drop_backref_node(struct backref_cache * tree,struct backref_node * node)393 static void drop_backref_node(struct backref_cache *tree,
394 			      struct backref_node *node)
395 {
396 	BUG_ON(!list_empty(&node->upper));
397 
398 	drop_node_buffer(node);
399 	list_del(&node->list);
400 	list_del(&node->lower);
401 	if (!RB_EMPTY_NODE(&node->rb_node))
402 		rb_erase(&node->rb_node, &tree->rb_root);
403 	free_backref_node(tree, node);
404 }
405 
406 /*
407  * remove a backref node from the backref cache
408  */
remove_backref_node(struct backref_cache * cache,struct backref_node * node)409 static void remove_backref_node(struct backref_cache *cache,
410 				struct backref_node *node)
411 {
412 	struct backref_node *upper;
413 	struct backref_edge *edge;
414 
415 	if (!node)
416 		return;
417 
418 	BUG_ON(!node->lowest && !node->detached);
419 	while (!list_empty(&node->upper)) {
420 		edge = list_entry(node->upper.next, struct backref_edge,
421 				  list[LOWER]);
422 		upper = edge->node[UPPER];
423 		list_del(&edge->list[LOWER]);
424 		list_del(&edge->list[UPPER]);
425 		free_backref_edge(cache, edge);
426 
427 		if (RB_EMPTY_NODE(&upper->rb_node)) {
428 			BUG_ON(!list_empty(&node->upper));
429 			drop_backref_node(cache, node);
430 			node = upper;
431 			node->lowest = 1;
432 			continue;
433 		}
434 		/*
435 		 * add the node to leaf node list if no other
436 		 * child block cached.
437 		 */
438 		if (list_empty(&upper->lower)) {
439 			list_add_tail(&upper->lower, &cache->leaves);
440 			upper->lowest = 1;
441 		}
442 	}
443 
444 	drop_backref_node(cache, node);
445 }
446 
update_backref_node(struct backref_cache * cache,struct backref_node * node,u64 bytenr)447 static void update_backref_node(struct backref_cache *cache,
448 				struct backref_node *node, u64 bytenr)
449 {
450 	struct rb_node *rb_node;
451 	rb_erase(&node->rb_node, &cache->rb_root);
452 	node->bytenr = bytenr;
453 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
454 	BUG_ON(rb_node);
455 }
456 
457 /*
458  * update backref cache after a transaction commit
459  */
update_backref_cache(struct btrfs_trans_handle * trans,struct backref_cache * cache)460 static int update_backref_cache(struct btrfs_trans_handle *trans,
461 				struct backref_cache *cache)
462 {
463 	struct backref_node *node;
464 	int level = 0;
465 
466 	if (cache->last_trans == 0) {
467 		cache->last_trans = trans->transid;
468 		return 0;
469 	}
470 
471 	if (cache->last_trans == trans->transid)
472 		return 0;
473 
474 	/*
475 	 * detached nodes are used to avoid unnecessary backref
476 	 * lookup. transaction commit changes the extent tree.
477 	 * so the detached nodes are no longer useful.
478 	 */
479 	while (!list_empty(&cache->detached)) {
480 		node = list_entry(cache->detached.next,
481 				  struct backref_node, list);
482 		remove_backref_node(cache, node);
483 	}
484 
485 	while (!list_empty(&cache->changed)) {
486 		node = list_entry(cache->changed.next,
487 				  struct backref_node, list);
488 		list_del_init(&node->list);
489 		BUG_ON(node->pending);
490 		update_backref_node(cache, node, node->new_bytenr);
491 	}
492 
493 	/*
494 	 * some nodes can be left in the pending list if there were
495 	 * errors during processing the pending nodes.
496 	 */
497 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
498 		list_for_each_entry(node, &cache->pending[level], list) {
499 			BUG_ON(!node->pending);
500 			if (node->bytenr == node->new_bytenr)
501 				continue;
502 			update_backref_node(cache, node, node->new_bytenr);
503 		}
504 	}
505 
506 	cache->last_trans = 0;
507 	return 1;
508 }
509 
should_ignore_root(struct btrfs_root * root)510 static int should_ignore_root(struct btrfs_root *root)
511 {
512 	struct btrfs_root *reloc_root;
513 
514 	if (!root->ref_cows)
515 		return 0;
516 
517 	reloc_root = root->reloc_root;
518 	if (!reloc_root)
519 		return 0;
520 
521 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
522 	    root->fs_info->running_transaction->transid - 1)
523 		return 0;
524 	/*
525 	 * if there is reloc tree and it was created in previous
526 	 * transaction backref lookup can find the reloc tree,
527 	 * so backref node for the fs tree root is useless for
528 	 * relocation.
529 	 */
530 	return 1;
531 }
532 
533 /*
534  * find reloc tree by address of tree root
535  */
find_reloc_root(struct reloc_control * rc,u64 bytenr)536 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
537 					  u64 bytenr)
538 {
539 	struct rb_node *rb_node;
540 	struct mapping_node *node;
541 	struct btrfs_root *root = NULL;
542 
543 	spin_lock(&rc->reloc_root_tree.lock);
544 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
545 	if (rb_node) {
546 		node = rb_entry(rb_node, struct mapping_node, rb_node);
547 		root = (struct btrfs_root *)node->data;
548 	}
549 	spin_unlock(&rc->reloc_root_tree.lock);
550 	return root;
551 }
552 
is_cowonly_root(u64 root_objectid)553 static int is_cowonly_root(u64 root_objectid)
554 {
555 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
556 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
557 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
558 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
559 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
560 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
561 		return 1;
562 	return 0;
563 }
564 
read_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)565 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
566 					u64 root_objectid)
567 {
568 	struct btrfs_key key;
569 
570 	key.objectid = root_objectid;
571 	key.type = BTRFS_ROOT_ITEM_KEY;
572 	if (is_cowonly_root(root_objectid))
573 		key.offset = 0;
574 	else
575 		key.offset = (u64)-1;
576 
577 	return btrfs_read_fs_root_no_name(fs_info, &key);
578 }
579 
580 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
581 static noinline_for_stack
find_tree_root(struct reloc_control * rc,struct extent_buffer * leaf,struct btrfs_extent_ref_v0 * ref0)582 struct btrfs_root *find_tree_root(struct reloc_control *rc,
583 				  struct extent_buffer *leaf,
584 				  struct btrfs_extent_ref_v0 *ref0)
585 {
586 	struct btrfs_root *root;
587 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
588 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
589 
590 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
591 
592 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
593 	BUG_ON(IS_ERR(root));
594 
595 	if (root->ref_cows &&
596 	    generation != btrfs_root_generation(&root->root_item))
597 		return NULL;
598 
599 	return root;
600 }
601 #endif
602 
603 static noinline_for_stack
find_inline_backref(struct extent_buffer * leaf,int slot,unsigned long * ptr,unsigned long * end)604 int find_inline_backref(struct extent_buffer *leaf, int slot,
605 			unsigned long *ptr, unsigned long *end)
606 {
607 	struct btrfs_extent_item *ei;
608 	struct btrfs_tree_block_info *bi;
609 	u32 item_size;
610 
611 	item_size = btrfs_item_size_nr(leaf, slot);
612 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
613 	if (item_size < sizeof(*ei)) {
614 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
615 		return 1;
616 	}
617 #endif
618 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
619 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
620 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
621 
622 	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
623 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
624 		return 1;
625 	}
626 
627 	bi = (struct btrfs_tree_block_info *)(ei + 1);
628 	*ptr = (unsigned long)(bi + 1);
629 	*end = (unsigned long)ei + item_size;
630 	return 0;
631 }
632 
633 /*
634  * build backref tree for a given tree block. root of the backref tree
635  * corresponds the tree block, leaves of the backref tree correspond
636  * roots of b-trees that reference the tree block.
637  *
638  * the basic idea of this function is check backrefs of a given block
639  * to find upper level blocks that refernece the block, and then check
640  * bakcrefs of these upper level blocks recursively. the recursion stop
641  * when tree root is reached or backrefs for the block is cached.
642  *
643  * NOTE: if we find backrefs for a block are cached, we know backrefs
644  * for all upper level blocks that directly/indirectly reference the
645  * block are also cached.
646  */
647 static noinline_for_stack
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)648 struct backref_node *build_backref_tree(struct reloc_control *rc,
649 					struct btrfs_key *node_key,
650 					int level, u64 bytenr)
651 {
652 	struct backref_cache *cache = &rc->backref_cache;
653 	struct btrfs_path *path1;
654 	struct btrfs_path *path2;
655 	struct extent_buffer *eb;
656 	struct btrfs_root *root;
657 	struct backref_node *cur;
658 	struct backref_node *upper;
659 	struct backref_node *lower;
660 	struct backref_node *node = NULL;
661 	struct backref_node *exist = NULL;
662 	struct backref_edge *edge;
663 	struct rb_node *rb_node;
664 	struct btrfs_key key;
665 	unsigned long end;
666 	unsigned long ptr;
667 	LIST_HEAD(list);
668 	LIST_HEAD(useless);
669 	int cowonly;
670 	int ret;
671 	int err = 0;
672 
673 	path1 = btrfs_alloc_path();
674 	path2 = btrfs_alloc_path();
675 	if (!path1 || !path2) {
676 		err = -ENOMEM;
677 		goto out;
678 	}
679 
680 	node = alloc_backref_node(cache);
681 	if (!node) {
682 		err = -ENOMEM;
683 		goto out;
684 	}
685 
686 	node->bytenr = bytenr;
687 	node->level = level;
688 	node->lowest = 1;
689 	cur = node;
690 again:
691 	end = 0;
692 	ptr = 0;
693 	key.objectid = cur->bytenr;
694 	key.type = BTRFS_EXTENT_ITEM_KEY;
695 	key.offset = (u64)-1;
696 
697 	path1->search_commit_root = 1;
698 	path1->skip_locking = 1;
699 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
700 				0, 0);
701 	if (ret < 0) {
702 		err = ret;
703 		goto out;
704 	}
705 	BUG_ON(!ret || !path1->slots[0]);
706 
707 	path1->slots[0]--;
708 
709 	WARN_ON(cur->checked);
710 	if (!list_empty(&cur->upper)) {
711 		/*
712 		 * the backref was added previously when processsing
713 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
714 		 */
715 		BUG_ON(!list_is_singular(&cur->upper));
716 		edge = list_entry(cur->upper.next, struct backref_edge,
717 				  list[LOWER]);
718 		BUG_ON(!list_empty(&edge->list[UPPER]));
719 		exist = edge->node[UPPER];
720 		/*
721 		 * add the upper level block to pending list if we need
722 		 * check its backrefs
723 		 */
724 		if (!exist->checked)
725 			list_add_tail(&edge->list[UPPER], &list);
726 	} else {
727 		exist = NULL;
728 	}
729 
730 	while (1) {
731 		cond_resched();
732 		eb = path1->nodes[0];
733 
734 		if (ptr >= end) {
735 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
736 				ret = btrfs_next_leaf(rc->extent_root, path1);
737 				if (ret < 0) {
738 					err = ret;
739 					goto out;
740 				}
741 				if (ret > 0)
742 					break;
743 				eb = path1->nodes[0];
744 			}
745 
746 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
747 			if (key.objectid != cur->bytenr) {
748 				WARN_ON(exist);
749 				break;
750 			}
751 
752 			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
753 				ret = find_inline_backref(eb, path1->slots[0],
754 							  &ptr, &end);
755 				if (ret)
756 					goto next;
757 			}
758 		}
759 
760 		if (ptr < end) {
761 			/* update key for inline back ref */
762 			struct btrfs_extent_inline_ref *iref;
763 			iref = (struct btrfs_extent_inline_ref *)ptr;
764 			key.type = btrfs_extent_inline_ref_type(eb, iref);
765 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
766 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
767 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
768 		}
769 
770 		if (exist &&
771 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
772 		      exist->owner == key.offset) ||
773 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
774 		      exist->bytenr == key.offset))) {
775 			exist = NULL;
776 			goto next;
777 		}
778 
779 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
780 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
781 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
782 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
783 				struct btrfs_extent_ref_v0 *ref0;
784 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
785 						struct btrfs_extent_ref_v0);
786 				if (key.objectid == key.offset) {
787 					root = find_tree_root(rc, eb, ref0);
788 					if (root && !should_ignore_root(root))
789 						cur->root = root;
790 					else
791 						list_add(&cur->list, &useless);
792 					break;
793 				}
794 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
795 								      ref0)))
796 					cur->cowonly = 1;
797 			}
798 #else
799 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
800 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
801 #endif
802 			if (key.objectid == key.offset) {
803 				/*
804 				 * only root blocks of reloc trees use
805 				 * backref of this type.
806 				 */
807 				root = find_reloc_root(rc, cur->bytenr);
808 				BUG_ON(!root);
809 				cur->root = root;
810 				break;
811 			}
812 
813 			edge = alloc_backref_edge(cache);
814 			if (!edge) {
815 				err = -ENOMEM;
816 				goto out;
817 			}
818 			rb_node = tree_search(&cache->rb_root, key.offset);
819 			if (!rb_node) {
820 				upper = alloc_backref_node(cache);
821 				if (!upper) {
822 					free_backref_edge(cache, edge);
823 					err = -ENOMEM;
824 					goto out;
825 				}
826 				upper->bytenr = key.offset;
827 				upper->level = cur->level + 1;
828 				/*
829 				 *  backrefs for the upper level block isn't
830 				 *  cached, add the block to pending list
831 				 */
832 				list_add_tail(&edge->list[UPPER], &list);
833 			} else {
834 				upper = rb_entry(rb_node, struct backref_node,
835 						 rb_node);
836 				BUG_ON(!upper->checked);
837 				INIT_LIST_HEAD(&edge->list[UPPER]);
838 			}
839 			list_add_tail(&edge->list[LOWER], &cur->upper);
840 			edge->node[LOWER] = cur;
841 			edge->node[UPPER] = upper;
842 
843 			goto next;
844 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
845 			goto next;
846 		}
847 
848 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
849 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
850 		if (IS_ERR(root)) {
851 			err = PTR_ERR(root);
852 			goto out;
853 		}
854 
855 		if (!root->ref_cows)
856 			cur->cowonly = 1;
857 
858 		if (btrfs_root_level(&root->root_item) == cur->level) {
859 			/* tree root */
860 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
861 			       cur->bytenr);
862 			if (should_ignore_root(root))
863 				list_add(&cur->list, &useless);
864 			else
865 				cur->root = root;
866 			break;
867 		}
868 
869 		level = cur->level + 1;
870 
871 		/*
872 		 * searching the tree to find upper level blocks
873 		 * reference the block.
874 		 */
875 		path2->search_commit_root = 1;
876 		path2->skip_locking = 1;
877 		path2->lowest_level = level;
878 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
879 		path2->lowest_level = 0;
880 		if (ret < 0) {
881 			err = ret;
882 			goto out;
883 		}
884 		if (ret > 0 && path2->slots[level] > 0)
885 			path2->slots[level]--;
886 
887 		eb = path2->nodes[level];
888 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
889 			cur->bytenr);
890 
891 		lower = cur;
892 		for (; level < BTRFS_MAX_LEVEL; level++) {
893 			if (!path2->nodes[level]) {
894 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
895 				       lower->bytenr);
896 				if (should_ignore_root(root))
897 					list_add(&lower->list, &useless);
898 				else
899 					lower->root = root;
900 				break;
901 			}
902 
903 			edge = alloc_backref_edge(cache);
904 			if (!edge) {
905 				err = -ENOMEM;
906 				goto out;
907 			}
908 
909 			eb = path2->nodes[level];
910 			rb_node = tree_search(&cache->rb_root, eb->start);
911 			if (!rb_node) {
912 				upper = alloc_backref_node(cache);
913 				if (!upper) {
914 					free_backref_edge(cache, edge);
915 					err = -ENOMEM;
916 					goto out;
917 				}
918 				upper->bytenr = eb->start;
919 				upper->owner = btrfs_header_owner(eb);
920 				upper->level = lower->level + 1;
921 				if (!root->ref_cows)
922 					upper->cowonly = 1;
923 
924 				/*
925 				 * if we know the block isn't shared
926 				 * we can void checking its backrefs.
927 				 */
928 				if (btrfs_block_can_be_shared(root, eb))
929 					upper->checked = 0;
930 				else
931 					upper->checked = 1;
932 
933 				/*
934 				 * add the block to pending list if we
935 				 * need check its backrefs. only block
936 				 * at 'cur->level + 1' is added to the
937 				 * tail of pending list. this guarantees
938 				 * we check backrefs from lower level
939 				 * blocks to upper level blocks.
940 				 */
941 				if (!upper->checked &&
942 				    level == cur->level + 1) {
943 					list_add_tail(&edge->list[UPPER],
944 						      &list);
945 				} else
946 					INIT_LIST_HEAD(&edge->list[UPPER]);
947 			} else {
948 				upper = rb_entry(rb_node, struct backref_node,
949 						 rb_node);
950 				BUG_ON(!upper->checked);
951 				INIT_LIST_HEAD(&edge->list[UPPER]);
952 				if (!upper->owner)
953 					upper->owner = btrfs_header_owner(eb);
954 			}
955 			list_add_tail(&edge->list[LOWER], &lower->upper);
956 			edge->node[LOWER] = lower;
957 			edge->node[UPPER] = upper;
958 
959 			if (rb_node)
960 				break;
961 			lower = upper;
962 			upper = NULL;
963 		}
964 		btrfs_release_path(root, path2);
965 next:
966 		if (ptr < end) {
967 			ptr += btrfs_extent_inline_ref_size(key.type);
968 			if (ptr >= end) {
969 				WARN_ON(ptr > end);
970 				ptr = 0;
971 				end = 0;
972 			}
973 		}
974 		if (ptr >= end)
975 			path1->slots[0]++;
976 	}
977 	btrfs_release_path(rc->extent_root, path1);
978 
979 	cur->checked = 1;
980 	WARN_ON(exist);
981 
982 	/* the pending list isn't empty, take the first block to process */
983 	if (!list_empty(&list)) {
984 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
985 		list_del_init(&edge->list[UPPER]);
986 		cur = edge->node[UPPER];
987 		goto again;
988 	}
989 
990 	/*
991 	 * everything goes well, connect backref nodes and insert backref nodes
992 	 * into the cache.
993 	 */
994 	BUG_ON(!node->checked);
995 	cowonly = node->cowonly;
996 	if (!cowonly) {
997 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
998 				      &node->rb_node);
999 		BUG_ON(rb_node);
1000 		list_add_tail(&node->lower, &cache->leaves);
1001 	}
1002 
1003 	list_for_each_entry(edge, &node->upper, list[LOWER])
1004 		list_add_tail(&edge->list[UPPER], &list);
1005 
1006 	while (!list_empty(&list)) {
1007 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1008 		list_del_init(&edge->list[UPPER]);
1009 		upper = edge->node[UPPER];
1010 		if (upper->detached) {
1011 			list_del(&edge->list[LOWER]);
1012 			lower = edge->node[LOWER];
1013 			free_backref_edge(cache, edge);
1014 			if (list_empty(&lower->upper))
1015 				list_add(&lower->list, &useless);
1016 			continue;
1017 		}
1018 
1019 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1020 			if (upper->lowest) {
1021 				list_del_init(&upper->lower);
1022 				upper->lowest = 0;
1023 			}
1024 
1025 			list_add_tail(&edge->list[UPPER], &upper->lower);
1026 			continue;
1027 		}
1028 
1029 		BUG_ON(!upper->checked);
1030 		BUG_ON(cowonly != upper->cowonly);
1031 		if (!cowonly) {
1032 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1033 					      &upper->rb_node);
1034 			BUG_ON(rb_node);
1035 		}
1036 
1037 		list_add_tail(&edge->list[UPPER], &upper->lower);
1038 
1039 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1040 			list_add_tail(&edge->list[UPPER], &list);
1041 	}
1042 	/*
1043 	 * process useless backref nodes. backref nodes for tree leaves
1044 	 * are deleted from the cache. backref nodes for upper level
1045 	 * tree blocks are left in the cache to avoid unnecessary backref
1046 	 * lookup.
1047 	 */
1048 	while (!list_empty(&useless)) {
1049 		upper = list_entry(useless.next, struct backref_node, list);
1050 		list_del_init(&upper->list);
1051 		BUG_ON(!list_empty(&upper->upper));
1052 		if (upper == node)
1053 			node = NULL;
1054 		if (upper->lowest) {
1055 			list_del_init(&upper->lower);
1056 			upper->lowest = 0;
1057 		}
1058 		while (!list_empty(&upper->lower)) {
1059 			edge = list_entry(upper->lower.next,
1060 					  struct backref_edge, list[UPPER]);
1061 			list_del(&edge->list[UPPER]);
1062 			list_del(&edge->list[LOWER]);
1063 			lower = edge->node[LOWER];
1064 			free_backref_edge(cache, edge);
1065 
1066 			if (list_empty(&lower->upper))
1067 				list_add(&lower->list, &useless);
1068 		}
1069 		__mark_block_processed(rc, upper);
1070 		if (upper->level > 0) {
1071 			list_add(&upper->list, &cache->detached);
1072 			upper->detached = 1;
1073 		} else {
1074 			rb_erase(&upper->rb_node, &cache->rb_root);
1075 			free_backref_node(cache, upper);
1076 		}
1077 	}
1078 out:
1079 	btrfs_free_path(path1);
1080 	btrfs_free_path(path2);
1081 	if (err) {
1082 		while (!list_empty(&useless)) {
1083 			lower = list_entry(useless.next,
1084 					   struct backref_node, upper);
1085 			list_del_init(&lower->upper);
1086 		}
1087 		upper = node;
1088 		INIT_LIST_HEAD(&list);
1089 		while (upper) {
1090 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1091 				list_splice_tail(&upper->upper, &list);
1092 				free_backref_node(cache, upper);
1093 			}
1094 
1095 			if (list_empty(&list))
1096 				break;
1097 
1098 			edge = list_entry(list.next, struct backref_edge,
1099 					  list[LOWER]);
1100 			list_del(&edge->list[LOWER]);
1101 			upper = edge->node[UPPER];
1102 			free_backref_edge(cache, edge);
1103 		}
1104 		return ERR_PTR(err);
1105 	}
1106 	BUG_ON(node && node->detached);
1107 	return node;
1108 }
1109 
1110 /*
1111  * helper to add backref node for the newly created snapshot.
1112  * the backref node is created by cloning backref node that
1113  * corresponds to root of source tree
1114  */
1115 static int clone_backref_node(struct btrfs_trans_handle *trans,
1116 			      struct reloc_control *rc,
1117 			      struct btrfs_root *src,
1118 			      struct btrfs_root *dest)
1119 {
1120 	struct btrfs_root *reloc_root = src->reloc_root;
1121 	struct backref_cache *cache = &rc->backref_cache;
1122 	struct backref_node *node = NULL;
1123 	struct backref_node *new_node;
1124 	struct backref_edge *edge;
1125 	struct backref_edge *new_edge;
1126 	struct rb_node *rb_node;
1127 
1128 	if (cache->last_trans > 0)
1129 		update_backref_cache(trans, cache);
1130 
1131 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1132 	if (rb_node) {
1133 		node = rb_entry(rb_node, struct backref_node, rb_node);
1134 		if (node->detached)
1135 			node = NULL;
1136 		else
1137 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1138 	}
1139 
1140 	if (!node) {
1141 		rb_node = tree_search(&cache->rb_root,
1142 				      reloc_root->commit_root->start);
1143 		if (rb_node) {
1144 			node = rb_entry(rb_node, struct backref_node,
1145 					rb_node);
1146 			BUG_ON(node->detached);
1147 		}
1148 	}
1149 
1150 	if (!node)
1151 		return 0;
1152 
1153 	new_node = alloc_backref_node(cache);
1154 	if (!new_node)
1155 		return -ENOMEM;
1156 
1157 	new_node->bytenr = dest->node->start;
1158 	new_node->level = node->level;
1159 	new_node->lowest = node->lowest;
1160 	new_node->checked = 1;
1161 	new_node->root = dest;
1162 
1163 	if (!node->lowest) {
1164 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1165 			new_edge = alloc_backref_edge(cache);
1166 			if (!new_edge)
1167 				goto fail;
1168 
1169 			new_edge->node[UPPER] = new_node;
1170 			new_edge->node[LOWER] = edge->node[LOWER];
1171 			list_add_tail(&new_edge->list[UPPER],
1172 				      &new_node->lower);
1173 		}
1174 	}
1175 
1176 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1177 			      &new_node->rb_node);
1178 	BUG_ON(rb_node);
1179 
1180 	if (!new_node->lowest) {
1181 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1182 			list_add_tail(&new_edge->list[LOWER],
1183 				      &new_edge->node[LOWER]->upper);
1184 		}
1185 	}
1186 	return 0;
1187 fail:
1188 	while (!list_empty(&new_node->lower)) {
1189 		new_edge = list_entry(new_node->lower.next,
1190 				      struct backref_edge, list[UPPER]);
1191 		list_del(&new_edge->list[UPPER]);
1192 		free_backref_edge(cache, new_edge);
1193 	}
1194 	free_backref_node(cache, new_node);
1195 	return -ENOMEM;
1196 }
1197 
1198 /*
1199  * helper to add 'address of tree root -> reloc tree' mapping
1200  */
1201 static int __add_reloc_root(struct btrfs_root *root)
1202 {
1203 	struct rb_node *rb_node;
1204 	struct mapping_node *node;
1205 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1206 
1207 	node = kmalloc(sizeof(*node), GFP_NOFS);
1208 	BUG_ON(!node);
1209 
1210 	node->bytenr = root->node->start;
1211 	node->data = root;
1212 
1213 	spin_lock(&rc->reloc_root_tree.lock);
1214 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1215 			      node->bytenr, &node->rb_node);
1216 	spin_unlock(&rc->reloc_root_tree.lock);
1217 	BUG_ON(rb_node);
1218 
1219 	list_add_tail(&root->root_list, &rc->reloc_roots);
1220 	return 0;
1221 }
1222 
1223 /*
1224  * helper to update/delete the 'address of tree root -> reloc tree'
1225  * mapping
1226  */
1227 static int __update_reloc_root(struct btrfs_root *root, int del)
1228 {
1229 	struct rb_node *rb_node;
1230 	struct mapping_node *node = NULL;
1231 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1232 
1233 	spin_lock(&rc->reloc_root_tree.lock);
1234 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1235 			      root->commit_root->start);
1236 	if (rb_node) {
1237 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1238 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1239 	}
1240 	spin_unlock(&rc->reloc_root_tree.lock);
1241 
1242 	BUG_ON((struct btrfs_root *)node->data != root);
1243 
1244 	if (!del) {
1245 		spin_lock(&rc->reloc_root_tree.lock);
1246 		node->bytenr = root->node->start;
1247 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1248 				      node->bytenr, &node->rb_node);
1249 		spin_unlock(&rc->reloc_root_tree.lock);
1250 		BUG_ON(rb_node);
1251 	} else {
1252 		list_del_init(&root->root_list);
1253 		kfree(node);
1254 	}
1255 	return 0;
1256 }
1257 
1258 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1259 					struct btrfs_root *root, u64 objectid)
1260 {
1261 	struct btrfs_root *reloc_root;
1262 	struct extent_buffer *eb;
1263 	struct btrfs_root_item *root_item;
1264 	struct btrfs_key root_key;
1265 	int ret;
1266 
1267 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1268 	BUG_ON(!root_item);
1269 
1270 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1271 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 	root_key.offset = objectid;
1273 
1274 	if (root->root_key.objectid == objectid) {
1275 		/* called by btrfs_init_reloc_root */
1276 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1277 				      BTRFS_TREE_RELOC_OBJECTID);
1278 		BUG_ON(ret);
1279 
1280 		btrfs_set_root_last_snapshot(&root->root_item,
1281 					     trans->transid - 1);
1282 	} else {
1283 		/*
1284 		 * called by btrfs_reloc_post_snapshot_hook.
1285 		 * the source tree is a reloc tree, all tree blocks
1286 		 * modified after it was created have RELOC flag
1287 		 * set in their headers. so it's OK to not update
1288 		 * the 'last_snapshot'.
1289 		 */
1290 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1291 				      BTRFS_TREE_RELOC_OBJECTID);
1292 		BUG_ON(ret);
1293 	}
1294 
1295 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1296 	btrfs_set_root_bytenr(root_item, eb->start);
1297 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1298 	btrfs_set_root_generation(root_item, trans->transid);
1299 
1300 	if (root->root_key.objectid == objectid) {
1301 		btrfs_set_root_refs(root_item, 0);
1302 		memset(&root_item->drop_progress, 0,
1303 		       sizeof(struct btrfs_disk_key));
1304 		root_item->drop_level = 0;
1305 	}
1306 
1307 	btrfs_tree_unlock(eb);
1308 	free_extent_buffer(eb);
1309 
1310 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1311 				&root_key, root_item);
1312 	BUG_ON(ret);
1313 	kfree(root_item);
1314 
1315 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1316 						 &root_key);
1317 	BUG_ON(IS_ERR(reloc_root));
1318 	reloc_root->last_trans = trans->transid;
1319 	return reloc_root;
1320 }
1321 
1322 /*
1323  * create reloc tree for a given fs tree. reloc tree is just a
1324  * snapshot of the fs tree with special root objectid.
1325  */
1326 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1327 			  struct btrfs_root *root)
1328 {
1329 	struct btrfs_root *reloc_root;
1330 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1331 	int clear_rsv = 0;
1332 
1333 	if (root->reloc_root) {
1334 		reloc_root = root->reloc_root;
1335 		reloc_root->last_trans = trans->transid;
1336 		return 0;
1337 	}
1338 
1339 	if (!rc || !rc->create_reloc_tree ||
1340 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1341 		return 0;
1342 
1343 	if (!trans->block_rsv) {
1344 		trans->block_rsv = rc->block_rsv;
1345 		clear_rsv = 1;
1346 	}
1347 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1348 	if (clear_rsv)
1349 		trans->block_rsv = NULL;
1350 
1351 	__add_reloc_root(reloc_root);
1352 	root->reloc_root = reloc_root;
1353 	return 0;
1354 }
1355 
1356 /*
1357  * update root item of reloc tree
1358  */
1359 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1360 			    struct btrfs_root *root)
1361 {
1362 	struct btrfs_root *reloc_root;
1363 	struct btrfs_root_item *root_item;
1364 	int del = 0;
1365 	int ret;
1366 
1367 	if (!root->reloc_root)
1368 		return 0;
1369 
1370 	reloc_root = root->reloc_root;
1371 	root_item = &reloc_root->root_item;
1372 
1373 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1374 	    btrfs_root_refs(root_item) == 0) {
1375 		root->reloc_root = NULL;
1376 		del = 1;
1377 	}
1378 
1379 	__update_reloc_root(reloc_root, del);
1380 
1381 	if (reloc_root->commit_root != reloc_root->node) {
1382 		btrfs_set_root_node(root_item, reloc_root->node);
1383 		free_extent_buffer(reloc_root->commit_root);
1384 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1385 	}
1386 
1387 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1388 				&reloc_root->root_key, root_item);
1389 	BUG_ON(ret);
1390 	return 0;
1391 }
1392 
1393 /*
1394  * helper to find first cached inode with inode number >= objectid
1395  * in a subvolume
1396  */
1397 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1398 {
1399 	struct rb_node *node;
1400 	struct rb_node *prev;
1401 	struct btrfs_inode *entry;
1402 	struct inode *inode;
1403 
1404 	spin_lock(&root->inode_lock);
1405 again:
1406 	node = root->inode_tree.rb_node;
1407 	prev = NULL;
1408 	while (node) {
1409 		prev = node;
1410 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1411 
1412 		if (objectid < entry->vfs_inode.i_ino)
1413 			node = node->rb_left;
1414 		else if (objectid > entry->vfs_inode.i_ino)
1415 			node = node->rb_right;
1416 		else
1417 			break;
1418 	}
1419 	if (!node) {
1420 		while (prev) {
1421 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1422 			if (objectid <= entry->vfs_inode.i_ino) {
1423 				node = prev;
1424 				break;
1425 			}
1426 			prev = rb_next(prev);
1427 		}
1428 	}
1429 	while (node) {
1430 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1431 		inode = igrab(&entry->vfs_inode);
1432 		if (inode) {
1433 			spin_unlock(&root->inode_lock);
1434 			return inode;
1435 		}
1436 
1437 		objectid = entry->vfs_inode.i_ino + 1;
1438 		if (cond_resched_lock(&root->inode_lock))
1439 			goto again;
1440 
1441 		node = rb_next(node);
1442 	}
1443 	spin_unlock(&root->inode_lock);
1444 	return NULL;
1445 }
1446 
1447 static int in_block_group(u64 bytenr,
1448 			  struct btrfs_block_group_cache *block_group)
1449 {
1450 	if (bytenr >= block_group->key.objectid &&
1451 	    bytenr < block_group->key.objectid + block_group->key.offset)
1452 		return 1;
1453 	return 0;
1454 }
1455 
1456 /*
1457  * get new location of data
1458  */
1459 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1460 			    u64 bytenr, u64 num_bytes)
1461 {
1462 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1463 	struct btrfs_path *path;
1464 	struct btrfs_file_extent_item *fi;
1465 	struct extent_buffer *leaf;
1466 	int ret;
1467 
1468 	path = btrfs_alloc_path();
1469 	if (!path)
1470 		return -ENOMEM;
1471 
1472 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1473 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
1474 				       bytenr, 0);
1475 	if (ret < 0)
1476 		goto out;
1477 	if (ret > 0) {
1478 		ret = -ENOENT;
1479 		goto out;
1480 	}
1481 
1482 	leaf = path->nodes[0];
1483 	fi = btrfs_item_ptr(leaf, path->slots[0],
1484 			    struct btrfs_file_extent_item);
1485 
1486 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1487 	       btrfs_file_extent_compression(leaf, fi) ||
1488 	       btrfs_file_extent_encryption(leaf, fi) ||
1489 	       btrfs_file_extent_other_encoding(leaf, fi));
1490 
1491 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1492 		ret = 1;
1493 		goto out;
1494 	}
1495 
1496 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1497 	ret = 0;
1498 out:
1499 	btrfs_free_path(path);
1500 	return ret;
1501 }
1502 
1503 /*
1504  * update file extent items in the tree leaf to point to
1505  * the new locations.
1506  */
1507 static noinline_for_stack
1508 int replace_file_extents(struct btrfs_trans_handle *trans,
1509 			 struct reloc_control *rc,
1510 			 struct btrfs_root *root,
1511 			 struct extent_buffer *leaf)
1512 {
1513 	struct btrfs_key key;
1514 	struct btrfs_file_extent_item *fi;
1515 	struct inode *inode = NULL;
1516 	u64 parent;
1517 	u64 bytenr;
1518 	u64 new_bytenr = 0;
1519 	u64 num_bytes;
1520 	u64 end;
1521 	u32 nritems;
1522 	u32 i;
1523 	int ret;
1524 	int first = 1;
1525 	int dirty = 0;
1526 
1527 	if (rc->stage != UPDATE_DATA_PTRS)
1528 		return 0;
1529 
1530 	/* reloc trees always use full backref */
1531 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1532 		parent = leaf->start;
1533 	else
1534 		parent = 0;
1535 
1536 	nritems = btrfs_header_nritems(leaf);
1537 	for (i = 0; i < nritems; i++) {
1538 		cond_resched();
1539 		btrfs_item_key_to_cpu(leaf, &key, i);
1540 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1541 			continue;
1542 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1543 		if (btrfs_file_extent_type(leaf, fi) ==
1544 		    BTRFS_FILE_EXTENT_INLINE)
1545 			continue;
1546 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1547 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1548 		if (bytenr == 0)
1549 			continue;
1550 		if (!in_block_group(bytenr, rc->block_group))
1551 			continue;
1552 
1553 		/*
1554 		 * if we are modifying block in fs tree, wait for readpage
1555 		 * to complete and drop the extent cache
1556 		 */
1557 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1558 			if (first) {
1559 				inode = find_next_inode(root, key.objectid);
1560 				first = 0;
1561 			} else if (inode && inode->i_ino < key.objectid) {
1562 				btrfs_add_delayed_iput(inode);
1563 				inode = find_next_inode(root, key.objectid);
1564 			}
1565 			if (inode && inode->i_ino == key.objectid) {
1566 				end = key.offset +
1567 				      btrfs_file_extent_num_bytes(leaf, fi);
1568 				WARN_ON(!IS_ALIGNED(key.offset,
1569 						    root->sectorsize));
1570 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1571 				end--;
1572 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1573 						      key.offset, end,
1574 						      GFP_NOFS);
1575 				if (!ret)
1576 					continue;
1577 
1578 				btrfs_drop_extent_cache(inode, key.offset, end,
1579 							1);
1580 				unlock_extent(&BTRFS_I(inode)->io_tree,
1581 					      key.offset, end, GFP_NOFS);
1582 			}
1583 		}
1584 
1585 		ret = get_new_location(rc->data_inode, &new_bytenr,
1586 				       bytenr, num_bytes);
1587 		if (ret > 0) {
1588 			WARN_ON(1);
1589 			continue;
1590 		}
1591 		BUG_ON(ret < 0);
1592 
1593 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1594 		dirty = 1;
1595 
1596 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1597 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1598 					   num_bytes, parent,
1599 					   btrfs_header_owner(leaf),
1600 					   key.objectid, key.offset);
1601 		BUG_ON(ret);
1602 
1603 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1604 					parent, btrfs_header_owner(leaf),
1605 					key.objectid, key.offset);
1606 		BUG_ON(ret);
1607 	}
1608 	if (dirty)
1609 		btrfs_mark_buffer_dirty(leaf);
1610 	if (inode)
1611 		btrfs_add_delayed_iput(inode);
1612 	return 0;
1613 }
1614 
1615 static noinline_for_stack
1616 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1617 		     struct btrfs_path *path, int level)
1618 {
1619 	struct btrfs_disk_key key1;
1620 	struct btrfs_disk_key key2;
1621 	btrfs_node_key(eb, &key1, slot);
1622 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1623 	return memcmp(&key1, &key2, sizeof(key1));
1624 }
1625 
1626 /*
1627  * try to replace tree blocks in fs tree with the new blocks
1628  * in reloc tree. tree blocks haven't been modified since the
1629  * reloc tree was create can be replaced.
1630  *
1631  * if a block was replaced, level of the block + 1 is returned.
1632  * if no block got replaced, 0 is returned. if there are other
1633  * errors, a negative error number is returned.
1634  */
1635 static noinline_for_stack
1636 int replace_path(struct btrfs_trans_handle *trans,
1637 		 struct btrfs_root *dest, struct btrfs_root *src,
1638 		 struct btrfs_path *path, struct btrfs_key *next_key,
1639 		 int lowest_level, int max_level)
1640 {
1641 	struct extent_buffer *eb;
1642 	struct extent_buffer *parent;
1643 	struct btrfs_key key;
1644 	u64 old_bytenr;
1645 	u64 new_bytenr;
1646 	u64 old_ptr_gen;
1647 	u64 new_ptr_gen;
1648 	u64 last_snapshot;
1649 	u32 blocksize;
1650 	int cow = 0;
1651 	int level;
1652 	int ret;
1653 	int slot;
1654 
1655 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1656 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1657 
1658 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1659 again:
1660 	slot = path->slots[lowest_level];
1661 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1662 
1663 	eb = btrfs_lock_root_node(dest);
1664 	btrfs_set_lock_blocking(eb);
1665 	level = btrfs_header_level(eb);
1666 
1667 	if (level < lowest_level) {
1668 		btrfs_tree_unlock(eb);
1669 		free_extent_buffer(eb);
1670 		return 0;
1671 	}
1672 
1673 	if (cow) {
1674 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1675 		BUG_ON(ret);
1676 	}
1677 	btrfs_set_lock_blocking(eb);
1678 
1679 	if (next_key) {
1680 		next_key->objectid = (u64)-1;
1681 		next_key->type = (u8)-1;
1682 		next_key->offset = (u64)-1;
1683 	}
1684 
1685 	parent = eb;
1686 	while (1) {
1687 		level = btrfs_header_level(parent);
1688 		BUG_ON(level < lowest_level);
1689 
1690 		ret = btrfs_bin_search(parent, &key, level, &slot);
1691 		if (ret && slot > 0)
1692 			slot--;
1693 
1694 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1695 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1696 
1697 		old_bytenr = btrfs_node_blockptr(parent, slot);
1698 		blocksize = btrfs_level_size(dest, level - 1);
1699 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1700 
1701 		if (level <= max_level) {
1702 			eb = path->nodes[level];
1703 			new_bytenr = btrfs_node_blockptr(eb,
1704 							path->slots[level]);
1705 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1706 							path->slots[level]);
1707 		} else {
1708 			new_bytenr = 0;
1709 			new_ptr_gen = 0;
1710 		}
1711 
1712 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1713 			WARN_ON(1);
1714 			ret = level;
1715 			break;
1716 		}
1717 
1718 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1719 		    memcmp_node_keys(parent, slot, path, level)) {
1720 			if (level <= lowest_level) {
1721 				ret = 0;
1722 				break;
1723 			}
1724 
1725 			eb = read_tree_block(dest, old_bytenr, blocksize,
1726 					     old_ptr_gen);
1727 			BUG_ON(!eb);
1728 			btrfs_tree_lock(eb);
1729 			if (cow) {
1730 				ret = btrfs_cow_block(trans, dest, eb, parent,
1731 						      slot, &eb);
1732 				BUG_ON(ret);
1733 			}
1734 			btrfs_set_lock_blocking(eb);
1735 
1736 			btrfs_tree_unlock(parent);
1737 			free_extent_buffer(parent);
1738 
1739 			parent = eb;
1740 			continue;
1741 		}
1742 
1743 		if (!cow) {
1744 			btrfs_tree_unlock(parent);
1745 			free_extent_buffer(parent);
1746 			cow = 1;
1747 			goto again;
1748 		}
1749 
1750 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1751 				      path->slots[level]);
1752 		btrfs_release_path(src, path);
1753 
1754 		path->lowest_level = level;
1755 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1756 		path->lowest_level = 0;
1757 		BUG_ON(ret);
1758 
1759 		/*
1760 		 * swap blocks in fs tree and reloc tree.
1761 		 */
1762 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1763 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1764 		btrfs_mark_buffer_dirty(parent);
1765 
1766 		btrfs_set_node_blockptr(path->nodes[level],
1767 					path->slots[level], old_bytenr);
1768 		btrfs_set_node_ptr_generation(path->nodes[level],
1769 					      path->slots[level], old_ptr_gen);
1770 		btrfs_mark_buffer_dirty(path->nodes[level]);
1771 
1772 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1773 					path->nodes[level]->start,
1774 					src->root_key.objectid, level - 1, 0);
1775 		BUG_ON(ret);
1776 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1777 					0, dest->root_key.objectid, level - 1,
1778 					0);
1779 		BUG_ON(ret);
1780 
1781 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1782 					path->nodes[level]->start,
1783 					src->root_key.objectid, level - 1, 0);
1784 		BUG_ON(ret);
1785 
1786 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1787 					0, dest->root_key.objectid, level - 1,
1788 					0);
1789 		BUG_ON(ret);
1790 
1791 		btrfs_unlock_up_safe(path, 0);
1792 
1793 		ret = level;
1794 		break;
1795 	}
1796 	btrfs_tree_unlock(parent);
1797 	free_extent_buffer(parent);
1798 	return ret;
1799 }
1800 
1801 /*
1802  * helper to find next relocated block in reloc tree
1803  */
1804 static noinline_for_stack
1805 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1806 		       int *level)
1807 {
1808 	struct extent_buffer *eb;
1809 	int i;
1810 	u64 last_snapshot;
1811 	u32 nritems;
1812 
1813 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1814 
1815 	for (i = 0; i < *level; i++) {
1816 		free_extent_buffer(path->nodes[i]);
1817 		path->nodes[i] = NULL;
1818 	}
1819 
1820 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1821 		eb = path->nodes[i];
1822 		nritems = btrfs_header_nritems(eb);
1823 		while (path->slots[i] + 1 < nritems) {
1824 			path->slots[i]++;
1825 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1826 			    last_snapshot)
1827 				continue;
1828 
1829 			*level = i;
1830 			return 0;
1831 		}
1832 		free_extent_buffer(path->nodes[i]);
1833 		path->nodes[i] = NULL;
1834 	}
1835 	return 1;
1836 }
1837 
1838 /*
1839  * walk down reloc tree to find relocated block of lowest level
1840  */
1841 static noinline_for_stack
1842 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1843 			 int *level)
1844 {
1845 	struct extent_buffer *eb = NULL;
1846 	int i;
1847 	u64 bytenr;
1848 	u64 ptr_gen = 0;
1849 	u64 last_snapshot;
1850 	u32 blocksize;
1851 	u32 nritems;
1852 
1853 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1854 
1855 	for (i = *level; i > 0; i--) {
1856 		eb = path->nodes[i];
1857 		nritems = btrfs_header_nritems(eb);
1858 		while (path->slots[i] < nritems) {
1859 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1860 			if (ptr_gen > last_snapshot)
1861 				break;
1862 			path->slots[i]++;
1863 		}
1864 		if (path->slots[i] >= nritems) {
1865 			if (i == *level)
1866 				break;
1867 			*level = i + 1;
1868 			return 0;
1869 		}
1870 		if (i == 1) {
1871 			*level = i;
1872 			return 0;
1873 		}
1874 
1875 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1876 		blocksize = btrfs_level_size(root, i - 1);
1877 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1878 		BUG_ON(btrfs_header_level(eb) != i - 1);
1879 		path->nodes[i - 1] = eb;
1880 		path->slots[i - 1] = 0;
1881 	}
1882 	return 1;
1883 }
1884 
1885 /*
1886  * invalidate extent cache for file extents whose key in range of
1887  * [min_key, max_key)
1888  */
1889 static int invalidate_extent_cache(struct btrfs_root *root,
1890 				   struct btrfs_key *min_key,
1891 				   struct btrfs_key *max_key)
1892 {
1893 	struct inode *inode = NULL;
1894 	u64 objectid;
1895 	u64 start, end;
1896 
1897 	objectid = min_key->objectid;
1898 	while (1) {
1899 		cond_resched();
1900 		iput(inode);
1901 
1902 		if (objectid > max_key->objectid)
1903 			break;
1904 
1905 		inode = find_next_inode(root, objectid);
1906 		if (!inode)
1907 			break;
1908 
1909 		if (inode->i_ino > max_key->objectid) {
1910 			iput(inode);
1911 			break;
1912 		}
1913 
1914 		objectid = inode->i_ino + 1;
1915 		if (!S_ISREG(inode->i_mode))
1916 			continue;
1917 
1918 		if (unlikely(min_key->objectid == inode->i_ino)) {
1919 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1920 				continue;
1921 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1922 				start = 0;
1923 			else {
1924 				start = min_key->offset;
1925 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1926 			}
1927 		} else {
1928 			start = 0;
1929 		}
1930 
1931 		if (unlikely(max_key->objectid == inode->i_ino)) {
1932 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1933 				continue;
1934 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1935 				end = (u64)-1;
1936 			} else {
1937 				if (max_key->offset == 0)
1938 					continue;
1939 				end = max_key->offset;
1940 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1941 				end--;
1942 			}
1943 		} else {
1944 			end = (u64)-1;
1945 		}
1946 
1947 		/* the lock_extent waits for readpage to complete */
1948 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1949 		btrfs_drop_extent_cache(inode, start, end, 1);
1950 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1951 	}
1952 	return 0;
1953 }
1954 
1955 static int find_next_key(struct btrfs_path *path, int level,
1956 			 struct btrfs_key *key)
1957 
1958 {
1959 	while (level < BTRFS_MAX_LEVEL) {
1960 		if (!path->nodes[level])
1961 			break;
1962 		if (path->slots[level] + 1 <
1963 		    btrfs_header_nritems(path->nodes[level])) {
1964 			btrfs_node_key_to_cpu(path->nodes[level], key,
1965 					      path->slots[level] + 1);
1966 			return 0;
1967 		}
1968 		level++;
1969 	}
1970 	return 1;
1971 }
1972 
1973 /*
1974  * merge the relocated tree blocks in reloc tree with corresponding
1975  * fs tree.
1976  */
1977 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1978 					       struct btrfs_root *root)
1979 {
1980 	LIST_HEAD(inode_list);
1981 	struct btrfs_key key;
1982 	struct btrfs_key next_key;
1983 	struct btrfs_trans_handle *trans;
1984 	struct btrfs_root *reloc_root;
1985 	struct btrfs_root_item *root_item;
1986 	struct btrfs_path *path;
1987 	struct extent_buffer *leaf;
1988 	unsigned long nr;
1989 	int level;
1990 	int max_level;
1991 	int replaced = 0;
1992 	int ret;
1993 	int err = 0;
1994 	u32 min_reserved;
1995 
1996 	path = btrfs_alloc_path();
1997 	if (!path)
1998 		return -ENOMEM;
1999 
2000 	reloc_root = root->reloc_root;
2001 	root_item = &reloc_root->root_item;
2002 
2003 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2004 		level = btrfs_root_level(root_item);
2005 		extent_buffer_get(reloc_root->node);
2006 		path->nodes[level] = reloc_root->node;
2007 		path->slots[level] = 0;
2008 	} else {
2009 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2010 
2011 		level = root_item->drop_level;
2012 		BUG_ON(level == 0);
2013 		path->lowest_level = level;
2014 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2015 		path->lowest_level = 0;
2016 		if (ret < 0) {
2017 			btrfs_free_path(path);
2018 			return ret;
2019 		}
2020 
2021 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2022 				      path->slots[level]);
2023 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2024 
2025 		btrfs_unlock_up_safe(path, 0);
2026 	}
2027 
2028 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2029 	memset(&next_key, 0, sizeof(next_key));
2030 
2031 	while (1) {
2032 		trans = btrfs_start_transaction(root, 0);
2033 		BUG_ON(IS_ERR(trans));
2034 		trans->block_rsv = rc->block_rsv;
2035 
2036 		ret = btrfs_block_rsv_check(trans, root, rc->block_rsv,
2037 					    min_reserved, 0);
2038 		if (ret) {
2039 			BUG_ON(ret != -EAGAIN);
2040 			ret = btrfs_commit_transaction(trans, root);
2041 			BUG_ON(ret);
2042 			continue;
2043 		}
2044 
2045 		replaced = 0;
2046 		max_level = level;
2047 
2048 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2049 		if (ret < 0) {
2050 			err = ret;
2051 			goto out;
2052 		}
2053 		if (ret > 0)
2054 			break;
2055 
2056 		if (!find_next_key(path, level, &key) &&
2057 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2058 			ret = 0;
2059 		} else {
2060 			ret = replace_path(trans, root, reloc_root, path,
2061 					   &next_key, level, max_level);
2062 		}
2063 		if (ret < 0) {
2064 			err = ret;
2065 			goto out;
2066 		}
2067 
2068 		if (ret > 0) {
2069 			level = ret;
2070 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2071 					      path->slots[level]);
2072 			replaced = 1;
2073 		}
2074 
2075 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2076 		if (ret > 0)
2077 			break;
2078 
2079 		BUG_ON(level == 0);
2080 		/*
2081 		 * save the merging progress in the drop_progress.
2082 		 * this is OK since root refs == 1 in this case.
2083 		 */
2084 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2085 			       path->slots[level]);
2086 		root_item->drop_level = level;
2087 
2088 		nr = trans->blocks_used;
2089 		btrfs_end_transaction_throttle(trans, root);
2090 
2091 		btrfs_btree_balance_dirty(root, nr);
2092 
2093 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2094 			invalidate_extent_cache(root, &key, &next_key);
2095 	}
2096 
2097 	/*
2098 	 * handle the case only one block in the fs tree need to be
2099 	 * relocated and the block is tree root.
2100 	 */
2101 	leaf = btrfs_lock_root_node(root);
2102 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2103 	btrfs_tree_unlock(leaf);
2104 	free_extent_buffer(leaf);
2105 	if (ret < 0)
2106 		err = ret;
2107 out:
2108 	btrfs_free_path(path);
2109 
2110 	if (err == 0) {
2111 		memset(&root_item->drop_progress, 0,
2112 		       sizeof(root_item->drop_progress));
2113 		root_item->drop_level = 0;
2114 		btrfs_set_root_refs(root_item, 0);
2115 		btrfs_update_reloc_root(trans, root);
2116 	}
2117 
2118 	nr = trans->blocks_used;
2119 	btrfs_end_transaction_throttle(trans, root);
2120 
2121 	btrfs_btree_balance_dirty(root, nr);
2122 
2123 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2124 		invalidate_extent_cache(root, &key, &next_key);
2125 
2126 	return err;
2127 }
2128 
2129 static noinline_for_stack
2130 int prepare_to_merge(struct reloc_control *rc, int err)
2131 {
2132 	struct btrfs_root *root = rc->extent_root;
2133 	struct btrfs_root *reloc_root;
2134 	struct btrfs_trans_handle *trans;
2135 	LIST_HEAD(reloc_roots);
2136 	u64 num_bytes = 0;
2137 	int ret;
2138 
2139 	mutex_lock(&root->fs_info->trans_mutex);
2140 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2141 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2142 	mutex_unlock(&root->fs_info->trans_mutex);
2143 again:
2144 	if (!err) {
2145 		num_bytes = rc->merging_rsv_size;
2146 		ret = btrfs_block_rsv_add(NULL, root, rc->block_rsv,
2147 					  num_bytes);
2148 		if (ret)
2149 			err = ret;
2150 	}
2151 
2152 	trans = btrfs_join_transaction(rc->extent_root, 1);
2153 	if (IS_ERR(trans)) {
2154 		if (!err)
2155 			btrfs_block_rsv_release(rc->extent_root,
2156 						rc->block_rsv, num_bytes);
2157 		return PTR_ERR(trans);
2158 	}
2159 
2160 	if (!err) {
2161 		if (num_bytes != rc->merging_rsv_size) {
2162 			btrfs_end_transaction(trans, rc->extent_root);
2163 			btrfs_block_rsv_release(rc->extent_root,
2164 						rc->block_rsv, num_bytes);
2165 			goto again;
2166 		}
2167 	}
2168 
2169 	rc->merge_reloc_tree = 1;
2170 
2171 	while (!list_empty(&rc->reloc_roots)) {
2172 		reloc_root = list_entry(rc->reloc_roots.next,
2173 					struct btrfs_root, root_list);
2174 		list_del_init(&reloc_root->root_list);
2175 
2176 		root = read_fs_root(reloc_root->fs_info,
2177 				    reloc_root->root_key.offset);
2178 		BUG_ON(IS_ERR(root));
2179 		BUG_ON(root->reloc_root != reloc_root);
2180 
2181 		/*
2182 		 * set reference count to 1, so btrfs_recover_relocation
2183 		 * knows it should resumes merging
2184 		 */
2185 		if (!err)
2186 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2187 		btrfs_update_reloc_root(trans, root);
2188 
2189 		list_add(&reloc_root->root_list, &reloc_roots);
2190 	}
2191 
2192 	list_splice(&reloc_roots, &rc->reloc_roots);
2193 
2194 	if (!err)
2195 		btrfs_commit_transaction(trans, rc->extent_root);
2196 	else
2197 		btrfs_end_transaction(trans, rc->extent_root);
2198 	return err;
2199 }
2200 
2201 static noinline_for_stack
2202 int merge_reloc_roots(struct reloc_control *rc)
2203 {
2204 	struct btrfs_root *root;
2205 	struct btrfs_root *reloc_root;
2206 	LIST_HEAD(reloc_roots);
2207 	int found = 0;
2208 	int ret;
2209 again:
2210 	root = rc->extent_root;
2211 	mutex_lock(&root->fs_info->trans_mutex);
2212 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2213 	mutex_unlock(&root->fs_info->trans_mutex);
2214 
2215 	while (!list_empty(&reloc_roots)) {
2216 		found = 1;
2217 		reloc_root = list_entry(reloc_roots.next,
2218 					struct btrfs_root, root_list);
2219 
2220 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2221 			root = read_fs_root(reloc_root->fs_info,
2222 					    reloc_root->root_key.offset);
2223 			BUG_ON(IS_ERR(root));
2224 			BUG_ON(root->reloc_root != reloc_root);
2225 
2226 			ret = merge_reloc_root(rc, root);
2227 			BUG_ON(ret);
2228 		} else {
2229 			list_del_init(&reloc_root->root_list);
2230 		}
2231 		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0);
2232 	}
2233 
2234 	if (found) {
2235 		found = 0;
2236 		goto again;
2237 	}
2238 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2239 	return 0;
2240 }
2241 
2242 static void free_block_list(struct rb_root *blocks)
2243 {
2244 	struct tree_block *block;
2245 	struct rb_node *rb_node;
2246 	while ((rb_node = rb_first(blocks))) {
2247 		block = rb_entry(rb_node, struct tree_block, rb_node);
2248 		rb_erase(rb_node, blocks);
2249 		kfree(block);
2250 	}
2251 }
2252 
2253 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2254 				      struct btrfs_root *reloc_root)
2255 {
2256 	struct btrfs_root *root;
2257 
2258 	if (reloc_root->last_trans == trans->transid)
2259 		return 0;
2260 
2261 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2262 	BUG_ON(IS_ERR(root));
2263 	BUG_ON(root->reloc_root != reloc_root);
2264 
2265 	return btrfs_record_root_in_trans(trans, root);
2266 }
2267 
2268 static noinline_for_stack
2269 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2270 				     struct reloc_control *rc,
2271 				     struct backref_node *node,
2272 				     struct backref_edge *edges[], int *nr)
2273 {
2274 	struct backref_node *next;
2275 	struct btrfs_root *root;
2276 	int index = 0;
2277 
2278 	next = node;
2279 	while (1) {
2280 		cond_resched();
2281 		next = walk_up_backref(next, edges, &index);
2282 		root = next->root;
2283 		BUG_ON(!root);
2284 		BUG_ON(!root->ref_cows);
2285 
2286 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2287 			record_reloc_root_in_trans(trans, root);
2288 			break;
2289 		}
2290 
2291 		btrfs_record_root_in_trans(trans, root);
2292 		root = root->reloc_root;
2293 
2294 		if (next->new_bytenr != root->node->start) {
2295 			BUG_ON(next->new_bytenr);
2296 			BUG_ON(!list_empty(&next->list));
2297 			next->new_bytenr = root->node->start;
2298 			next->root = root;
2299 			list_add_tail(&next->list,
2300 				      &rc->backref_cache.changed);
2301 			__mark_block_processed(rc, next);
2302 			break;
2303 		}
2304 
2305 		WARN_ON(1);
2306 		root = NULL;
2307 		next = walk_down_backref(edges, &index);
2308 		if (!next || next->level <= node->level)
2309 			break;
2310 	}
2311 	if (!root)
2312 		return NULL;
2313 
2314 	*nr = index;
2315 	next = node;
2316 	/* setup backref node path for btrfs_reloc_cow_block */
2317 	while (1) {
2318 		rc->backref_cache.path[next->level] = next;
2319 		if (--index < 0)
2320 			break;
2321 		next = edges[index]->node[UPPER];
2322 	}
2323 	return root;
2324 }
2325 
2326 /*
2327  * select a tree root for relocation. return NULL if the block
2328  * is reference counted. we should use do_relocation() in this
2329  * case. return a tree root pointer if the block isn't reference
2330  * counted. return -ENOENT if the block is root of reloc tree.
2331  */
2332 static noinline_for_stack
2333 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2334 				   struct backref_node *node)
2335 {
2336 	struct backref_node *next;
2337 	struct btrfs_root *root;
2338 	struct btrfs_root *fs_root = NULL;
2339 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2340 	int index = 0;
2341 
2342 	next = node;
2343 	while (1) {
2344 		cond_resched();
2345 		next = walk_up_backref(next, edges, &index);
2346 		root = next->root;
2347 		BUG_ON(!root);
2348 
2349 		/* no other choice for non-references counted tree */
2350 		if (!root->ref_cows)
2351 			return root;
2352 
2353 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2354 			fs_root = root;
2355 
2356 		if (next != node)
2357 			return NULL;
2358 
2359 		next = walk_down_backref(edges, &index);
2360 		if (!next || next->level <= node->level)
2361 			break;
2362 	}
2363 
2364 	if (!fs_root)
2365 		return ERR_PTR(-ENOENT);
2366 	return fs_root;
2367 }
2368 
2369 static noinline_for_stack
2370 u64 calcu_metadata_size(struct reloc_control *rc,
2371 			struct backref_node *node, int reserve)
2372 {
2373 	struct backref_node *next = node;
2374 	struct backref_edge *edge;
2375 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2376 	u64 num_bytes = 0;
2377 	int index = 0;
2378 
2379 	BUG_ON(reserve && node->processed);
2380 
2381 	while (next) {
2382 		cond_resched();
2383 		while (1) {
2384 			if (next->processed && (reserve || next != node))
2385 				break;
2386 
2387 			num_bytes += btrfs_level_size(rc->extent_root,
2388 						      next->level);
2389 
2390 			if (list_empty(&next->upper))
2391 				break;
2392 
2393 			edge = list_entry(next->upper.next,
2394 					  struct backref_edge, list[LOWER]);
2395 			edges[index++] = edge;
2396 			next = edge->node[UPPER];
2397 		}
2398 		next = walk_down_backref(edges, &index);
2399 	}
2400 	return num_bytes;
2401 }
2402 
2403 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2404 				  struct reloc_control *rc,
2405 				  struct backref_node *node)
2406 {
2407 	struct btrfs_root *root = rc->extent_root;
2408 	u64 num_bytes;
2409 	int ret;
2410 
2411 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2412 
2413 	trans->block_rsv = rc->block_rsv;
2414 	ret = btrfs_block_rsv_add(trans, root, rc->block_rsv, num_bytes);
2415 	if (ret) {
2416 		if (ret == -EAGAIN)
2417 			rc->commit_transaction = 1;
2418 		return ret;
2419 	}
2420 
2421 	return 0;
2422 }
2423 
2424 static void release_metadata_space(struct reloc_control *rc,
2425 				   struct backref_node *node)
2426 {
2427 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2428 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2429 }
2430 
2431 /*
2432  * relocate a block tree, and then update pointers in upper level
2433  * blocks that reference the block to point to the new location.
2434  *
2435  * if called by link_to_upper, the block has already been relocated.
2436  * in that case this function just updates pointers.
2437  */
2438 static int do_relocation(struct btrfs_trans_handle *trans,
2439 			 struct reloc_control *rc,
2440 			 struct backref_node *node,
2441 			 struct btrfs_key *key,
2442 			 struct btrfs_path *path, int lowest)
2443 {
2444 	struct backref_node *upper;
2445 	struct backref_edge *edge;
2446 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2447 	struct btrfs_root *root;
2448 	struct extent_buffer *eb;
2449 	u32 blocksize;
2450 	u64 bytenr;
2451 	u64 generation;
2452 	int nr;
2453 	int slot;
2454 	int ret;
2455 	int err = 0;
2456 
2457 	BUG_ON(lowest && node->eb);
2458 
2459 	path->lowest_level = node->level + 1;
2460 	rc->backref_cache.path[node->level] = node;
2461 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2462 		cond_resched();
2463 
2464 		upper = edge->node[UPPER];
2465 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2466 		BUG_ON(!root);
2467 
2468 		if (upper->eb && !upper->locked) {
2469 			if (!lowest) {
2470 				ret = btrfs_bin_search(upper->eb, key,
2471 						       upper->level, &slot);
2472 				BUG_ON(ret);
2473 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2474 				if (node->eb->start == bytenr)
2475 					goto next;
2476 			}
2477 			drop_node_buffer(upper);
2478 		}
2479 
2480 		if (!upper->eb) {
2481 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2482 			if (ret < 0) {
2483 				err = ret;
2484 				break;
2485 			}
2486 			BUG_ON(ret > 0);
2487 
2488 			if (!upper->eb) {
2489 				upper->eb = path->nodes[upper->level];
2490 				path->nodes[upper->level] = NULL;
2491 			} else {
2492 				BUG_ON(upper->eb != path->nodes[upper->level]);
2493 			}
2494 
2495 			upper->locked = 1;
2496 			path->locks[upper->level] = 0;
2497 
2498 			slot = path->slots[upper->level];
2499 			btrfs_release_path(NULL, path);
2500 		} else {
2501 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2502 					       &slot);
2503 			BUG_ON(ret);
2504 		}
2505 
2506 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2507 		if (lowest) {
2508 			BUG_ON(bytenr != node->bytenr);
2509 		} else {
2510 			if (node->eb->start == bytenr)
2511 				goto next;
2512 		}
2513 
2514 		blocksize = btrfs_level_size(root, node->level);
2515 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2516 		eb = read_tree_block(root, bytenr, blocksize, generation);
2517 		if (!eb) {
2518 			err = -EIO;
2519 			goto next;
2520 		}
2521 		btrfs_tree_lock(eb);
2522 		btrfs_set_lock_blocking(eb);
2523 
2524 		if (!node->eb) {
2525 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2526 					      slot, &eb);
2527 			btrfs_tree_unlock(eb);
2528 			free_extent_buffer(eb);
2529 			if (ret < 0) {
2530 				err = ret;
2531 				goto next;
2532 			}
2533 			BUG_ON(node->eb != eb);
2534 		} else {
2535 			btrfs_set_node_blockptr(upper->eb, slot,
2536 						node->eb->start);
2537 			btrfs_set_node_ptr_generation(upper->eb, slot,
2538 						      trans->transid);
2539 			btrfs_mark_buffer_dirty(upper->eb);
2540 
2541 			ret = btrfs_inc_extent_ref(trans, root,
2542 						node->eb->start, blocksize,
2543 						upper->eb->start,
2544 						btrfs_header_owner(upper->eb),
2545 						node->level, 0);
2546 			BUG_ON(ret);
2547 
2548 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2549 			BUG_ON(ret);
2550 		}
2551 next:
2552 		if (!upper->pending)
2553 			drop_node_buffer(upper);
2554 		else
2555 			unlock_node_buffer(upper);
2556 		if (err)
2557 			break;
2558 	}
2559 
2560 	if (!err && node->pending) {
2561 		drop_node_buffer(node);
2562 		list_move_tail(&node->list, &rc->backref_cache.changed);
2563 		node->pending = 0;
2564 	}
2565 
2566 	path->lowest_level = 0;
2567 	BUG_ON(err == -ENOSPC);
2568 	return err;
2569 }
2570 
2571 static int link_to_upper(struct btrfs_trans_handle *trans,
2572 			 struct reloc_control *rc,
2573 			 struct backref_node *node,
2574 			 struct btrfs_path *path)
2575 {
2576 	struct btrfs_key key;
2577 
2578 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2579 	return do_relocation(trans, rc, node, &key, path, 0);
2580 }
2581 
2582 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2583 				struct reloc_control *rc,
2584 				struct btrfs_path *path, int err)
2585 {
2586 	LIST_HEAD(list);
2587 	struct backref_cache *cache = &rc->backref_cache;
2588 	struct backref_node *node;
2589 	int level;
2590 	int ret;
2591 
2592 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2593 		while (!list_empty(&cache->pending[level])) {
2594 			node = list_entry(cache->pending[level].next,
2595 					  struct backref_node, list);
2596 			list_move_tail(&node->list, &list);
2597 			BUG_ON(!node->pending);
2598 
2599 			if (!err) {
2600 				ret = link_to_upper(trans, rc, node, path);
2601 				if (ret < 0)
2602 					err = ret;
2603 			}
2604 		}
2605 		list_splice_init(&list, &cache->pending[level]);
2606 	}
2607 	return err;
2608 }
2609 
2610 static void mark_block_processed(struct reloc_control *rc,
2611 				 u64 bytenr, u32 blocksize)
2612 {
2613 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2614 			EXTENT_DIRTY, GFP_NOFS);
2615 }
2616 
2617 static void __mark_block_processed(struct reloc_control *rc,
2618 				   struct backref_node *node)
2619 {
2620 	u32 blocksize;
2621 	if (node->level == 0 ||
2622 	    in_block_group(node->bytenr, rc->block_group)) {
2623 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2624 		mark_block_processed(rc, node->bytenr, blocksize);
2625 	}
2626 	node->processed = 1;
2627 }
2628 
2629 /*
2630  * mark a block and all blocks directly/indirectly reference the block
2631  * as processed.
2632  */
2633 static void update_processed_blocks(struct reloc_control *rc,
2634 				    struct backref_node *node)
2635 {
2636 	struct backref_node *next = node;
2637 	struct backref_edge *edge;
2638 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2639 	int index = 0;
2640 
2641 	while (next) {
2642 		cond_resched();
2643 		while (1) {
2644 			if (next->processed)
2645 				break;
2646 
2647 			__mark_block_processed(rc, next);
2648 
2649 			if (list_empty(&next->upper))
2650 				break;
2651 
2652 			edge = list_entry(next->upper.next,
2653 					  struct backref_edge, list[LOWER]);
2654 			edges[index++] = edge;
2655 			next = edge->node[UPPER];
2656 		}
2657 		next = walk_down_backref(edges, &index);
2658 	}
2659 }
2660 
2661 static int tree_block_processed(u64 bytenr, u32 blocksize,
2662 				struct reloc_control *rc)
2663 {
2664 	if (test_range_bit(&rc->processed_blocks, bytenr,
2665 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2666 		return 1;
2667 	return 0;
2668 }
2669 
2670 static int get_tree_block_key(struct reloc_control *rc,
2671 			      struct tree_block *block)
2672 {
2673 	struct extent_buffer *eb;
2674 
2675 	BUG_ON(block->key_ready);
2676 	eb = read_tree_block(rc->extent_root, block->bytenr,
2677 			     block->key.objectid, block->key.offset);
2678 	BUG_ON(!eb);
2679 	WARN_ON(btrfs_header_level(eb) != block->level);
2680 	if (block->level == 0)
2681 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2682 	else
2683 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2684 	free_extent_buffer(eb);
2685 	block->key_ready = 1;
2686 	return 0;
2687 }
2688 
2689 static int reada_tree_block(struct reloc_control *rc,
2690 			    struct tree_block *block)
2691 {
2692 	BUG_ON(block->key_ready);
2693 	readahead_tree_block(rc->extent_root, block->bytenr,
2694 			     block->key.objectid, block->key.offset);
2695 	return 0;
2696 }
2697 
2698 /*
2699  * helper function to relocate a tree block
2700  */
2701 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2702 				struct reloc_control *rc,
2703 				struct backref_node *node,
2704 				struct btrfs_key *key,
2705 				struct btrfs_path *path)
2706 {
2707 	struct btrfs_root *root;
2708 	int release = 0;
2709 	int ret = 0;
2710 
2711 	if (!node)
2712 		return 0;
2713 
2714 	BUG_ON(node->processed);
2715 	root = select_one_root(trans, node);
2716 	if (root == ERR_PTR(-ENOENT)) {
2717 		update_processed_blocks(rc, node);
2718 		goto out;
2719 	}
2720 
2721 	if (!root || root->ref_cows) {
2722 		ret = reserve_metadata_space(trans, rc, node);
2723 		if (ret)
2724 			goto out;
2725 		release = 1;
2726 	}
2727 
2728 	if (root) {
2729 		if (root->ref_cows) {
2730 			BUG_ON(node->new_bytenr);
2731 			BUG_ON(!list_empty(&node->list));
2732 			btrfs_record_root_in_trans(trans, root);
2733 			root = root->reloc_root;
2734 			node->new_bytenr = root->node->start;
2735 			node->root = root;
2736 			list_add_tail(&node->list, &rc->backref_cache.changed);
2737 		} else {
2738 			path->lowest_level = node->level;
2739 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2740 			btrfs_release_path(root, path);
2741 			if (ret > 0)
2742 				ret = 0;
2743 		}
2744 		if (!ret)
2745 			update_processed_blocks(rc, node);
2746 	} else {
2747 		ret = do_relocation(trans, rc, node, key, path, 1);
2748 	}
2749 out:
2750 	if (ret || node->level == 0 || node->cowonly) {
2751 		if (release)
2752 			release_metadata_space(rc, node);
2753 		remove_backref_node(&rc->backref_cache, node);
2754 	}
2755 	return ret;
2756 }
2757 
2758 /*
2759  * relocate a list of blocks
2760  */
2761 static noinline_for_stack
2762 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2763 			 struct reloc_control *rc, struct rb_root *blocks)
2764 {
2765 	struct backref_node *node;
2766 	struct btrfs_path *path;
2767 	struct tree_block *block;
2768 	struct rb_node *rb_node;
2769 	int ret;
2770 	int err = 0;
2771 
2772 	path = btrfs_alloc_path();
2773 	if (!path)
2774 		return -ENOMEM;
2775 
2776 	rb_node = rb_first(blocks);
2777 	while (rb_node) {
2778 		block = rb_entry(rb_node, struct tree_block, rb_node);
2779 		if (!block->key_ready)
2780 			reada_tree_block(rc, block);
2781 		rb_node = rb_next(rb_node);
2782 	}
2783 
2784 	rb_node = rb_first(blocks);
2785 	while (rb_node) {
2786 		block = rb_entry(rb_node, struct tree_block, rb_node);
2787 		if (!block->key_ready)
2788 			get_tree_block_key(rc, block);
2789 		rb_node = rb_next(rb_node);
2790 	}
2791 
2792 	rb_node = rb_first(blocks);
2793 	while (rb_node) {
2794 		block = rb_entry(rb_node, struct tree_block, rb_node);
2795 
2796 		node = build_backref_tree(rc, &block->key,
2797 					  block->level, block->bytenr);
2798 		if (IS_ERR(node)) {
2799 			err = PTR_ERR(node);
2800 			goto out;
2801 		}
2802 
2803 		ret = relocate_tree_block(trans, rc, node, &block->key,
2804 					  path);
2805 		if (ret < 0) {
2806 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2807 				err = ret;
2808 			goto out;
2809 		}
2810 		rb_node = rb_next(rb_node);
2811 	}
2812 out:
2813 	free_block_list(blocks);
2814 	err = finish_pending_nodes(trans, rc, path, err);
2815 
2816 	btrfs_free_path(path);
2817 	return err;
2818 }
2819 
2820 static noinline_for_stack
2821 int prealloc_file_extent_cluster(struct inode *inode,
2822 				 struct file_extent_cluster *cluster)
2823 {
2824 	u64 alloc_hint = 0;
2825 	u64 start;
2826 	u64 end;
2827 	u64 offset = BTRFS_I(inode)->index_cnt;
2828 	u64 num_bytes;
2829 	int nr = 0;
2830 	int ret = 0;
2831 
2832 	BUG_ON(cluster->start != cluster->boundary[0]);
2833 	mutex_lock(&inode->i_mutex);
2834 
2835 	ret = btrfs_check_data_free_space(inode, cluster->end +
2836 					  1 - cluster->start);
2837 	if (ret)
2838 		goto out;
2839 
2840 	while (nr < cluster->nr) {
2841 		start = cluster->boundary[nr] - offset;
2842 		if (nr + 1 < cluster->nr)
2843 			end = cluster->boundary[nr + 1] - 1 - offset;
2844 		else
2845 			end = cluster->end - offset;
2846 
2847 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2848 		num_bytes = end + 1 - start;
2849 		ret = btrfs_prealloc_file_range(inode, 0, start,
2850 						num_bytes, num_bytes,
2851 						end + 1, &alloc_hint);
2852 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2853 		if (ret)
2854 			break;
2855 		nr++;
2856 	}
2857 	btrfs_free_reserved_data_space(inode, cluster->end +
2858 				       1 - cluster->start);
2859 out:
2860 	mutex_unlock(&inode->i_mutex);
2861 	return ret;
2862 }
2863 
2864 static noinline_for_stack
2865 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2866 			 u64 block_start)
2867 {
2868 	struct btrfs_root *root = BTRFS_I(inode)->root;
2869 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2870 	struct extent_map *em;
2871 	int ret = 0;
2872 
2873 	em = alloc_extent_map(GFP_NOFS);
2874 	if (!em)
2875 		return -ENOMEM;
2876 
2877 	em->start = start;
2878 	em->len = end + 1 - start;
2879 	em->block_len = em->len;
2880 	em->block_start = block_start;
2881 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2882 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2883 
2884 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2885 	while (1) {
2886 		write_lock(&em_tree->lock);
2887 		ret = add_extent_mapping(em_tree, em);
2888 		write_unlock(&em_tree->lock);
2889 		if (ret != -EEXIST) {
2890 			free_extent_map(em);
2891 			break;
2892 		}
2893 		btrfs_drop_extent_cache(inode, start, end, 0);
2894 	}
2895 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2896 	return ret;
2897 }
2898 
2899 static int relocate_file_extent_cluster(struct inode *inode,
2900 					struct file_extent_cluster *cluster)
2901 {
2902 	u64 page_start;
2903 	u64 page_end;
2904 	u64 offset = BTRFS_I(inode)->index_cnt;
2905 	unsigned long index;
2906 	unsigned long last_index;
2907 	struct page *page;
2908 	struct file_ra_state *ra;
2909 	int nr = 0;
2910 	int ret = 0;
2911 
2912 	if (!cluster->nr)
2913 		return 0;
2914 
2915 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2916 	if (!ra)
2917 		return -ENOMEM;
2918 
2919 	ret = prealloc_file_extent_cluster(inode, cluster);
2920 	if (ret)
2921 		goto out;
2922 
2923 	file_ra_state_init(ra, inode->i_mapping);
2924 
2925 	ret = setup_extent_mapping(inode, cluster->start - offset,
2926 				   cluster->end - offset, cluster->start);
2927 	if (ret)
2928 		goto out;
2929 
2930 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2931 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2932 	while (index <= last_index) {
2933 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2934 		if (ret)
2935 			goto out;
2936 
2937 		page = find_lock_page(inode->i_mapping, index);
2938 		if (!page) {
2939 			page_cache_sync_readahead(inode->i_mapping,
2940 						  ra, NULL, index,
2941 						  last_index + 1 - index);
2942 			page = grab_cache_page(inode->i_mapping, index);
2943 			if (!page) {
2944 				btrfs_delalloc_release_metadata(inode,
2945 							PAGE_CACHE_SIZE);
2946 				ret = -ENOMEM;
2947 				goto out;
2948 			}
2949 		}
2950 
2951 		if (PageReadahead(page)) {
2952 			page_cache_async_readahead(inode->i_mapping,
2953 						   ra, NULL, page, index,
2954 						   last_index + 1 - index);
2955 		}
2956 
2957 		if (!PageUptodate(page)) {
2958 			btrfs_readpage(NULL, page);
2959 			lock_page(page);
2960 			if (!PageUptodate(page)) {
2961 				unlock_page(page);
2962 				page_cache_release(page);
2963 				btrfs_delalloc_release_metadata(inode,
2964 							PAGE_CACHE_SIZE);
2965 				ret = -EIO;
2966 				goto out;
2967 			}
2968 		}
2969 
2970 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2971 		page_end = page_start + PAGE_CACHE_SIZE - 1;
2972 
2973 		lock_extent(&BTRFS_I(inode)->io_tree,
2974 			    page_start, page_end, GFP_NOFS);
2975 
2976 		set_page_extent_mapped(page);
2977 
2978 		if (nr < cluster->nr &&
2979 		    page_start + offset == cluster->boundary[nr]) {
2980 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2981 					page_start, page_end,
2982 					EXTENT_BOUNDARY, GFP_NOFS);
2983 			nr++;
2984 		}
2985 
2986 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
2987 		set_page_dirty(page);
2988 
2989 		unlock_extent(&BTRFS_I(inode)->io_tree,
2990 			      page_start, page_end, GFP_NOFS);
2991 		unlock_page(page);
2992 		page_cache_release(page);
2993 
2994 		index++;
2995 		balance_dirty_pages_ratelimited(inode->i_mapping);
2996 		btrfs_throttle(BTRFS_I(inode)->root);
2997 	}
2998 	WARN_ON(nr != cluster->nr);
2999 out:
3000 	kfree(ra);
3001 	return ret;
3002 }
3003 
3004 static noinline_for_stack
3005 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3006 			 struct file_extent_cluster *cluster)
3007 {
3008 	int ret;
3009 
3010 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3011 		ret = relocate_file_extent_cluster(inode, cluster);
3012 		if (ret)
3013 			return ret;
3014 		cluster->nr = 0;
3015 	}
3016 
3017 	if (!cluster->nr)
3018 		cluster->start = extent_key->objectid;
3019 	else
3020 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3021 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3022 	cluster->boundary[cluster->nr] = extent_key->objectid;
3023 	cluster->nr++;
3024 
3025 	if (cluster->nr >= MAX_EXTENTS) {
3026 		ret = relocate_file_extent_cluster(inode, cluster);
3027 		if (ret)
3028 			return ret;
3029 		cluster->nr = 0;
3030 	}
3031 	return 0;
3032 }
3033 
3034 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3035 static int get_ref_objectid_v0(struct reloc_control *rc,
3036 			       struct btrfs_path *path,
3037 			       struct btrfs_key *extent_key,
3038 			       u64 *ref_objectid, int *path_change)
3039 {
3040 	struct btrfs_key key;
3041 	struct extent_buffer *leaf;
3042 	struct btrfs_extent_ref_v0 *ref0;
3043 	int ret;
3044 	int slot;
3045 
3046 	leaf = path->nodes[0];
3047 	slot = path->slots[0];
3048 	while (1) {
3049 		if (slot >= btrfs_header_nritems(leaf)) {
3050 			ret = btrfs_next_leaf(rc->extent_root, path);
3051 			if (ret < 0)
3052 				return ret;
3053 			BUG_ON(ret > 0);
3054 			leaf = path->nodes[0];
3055 			slot = path->slots[0];
3056 			if (path_change)
3057 				*path_change = 1;
3058 		}
3059 		btrfs_item_key_to_cpu(leaf, &key, slot);
3060 		if (key.objectid != extent_key->objectid)
3061 			return -ENOENT;
3062 
3063 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3064 			slot++;
3065 			continue;
3066 		}
3067 		ref0 = btrfs_item_ptr(leaf, slot,
3068 				struct btrfs_extent_ref_v0);
3069 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3070 		break;
3071 	}
3072 	return 0;
3073 }
3074 #endif
3075 
3076 /*
3077  * helper to add a tree block to the list.
3078  * the major work is getting the generation and level of the block
3079  */
3080 static int add_tree_block(struct reloc_control *rc,
3081 			  struct btrfs_key *extent_key,
3082 			  struct btrfs_path *path,
3083 			  struct rb_root *blocks)
3084 {
3085 	struct extent_buffer *eb;
3086 	struct btrfs_extent_item *ei;
3087 	struct btrfs_tree_block_info *bi;
3088 	struct tree_block *block;
3089 	struct rb_node *rb_node;
3090 	u32 item_size;
3091 	int level = -1;
3092 	int generation;
3093 
3094 	eb =  path->nodes[0];
3095 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3096 
3097 	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
3098 		ei = btrfs_item_ptr(eb, path->slots[0],
3099 				struct btrfs_extent_item);
3100 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3101 		generation = btrfs_extent_generation(eb, ei);
3102 		level = btrfs_tree_block_level(eb, bi);
3103 	} else {
3104 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3105 		u64 ref_owner;
3106 		int ret;
3107 
3108 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3109 		ret = get_ref_objectid_v0(rc, path, extent_key,
3110 					  &ref_owner, NULL);
3111 		if (ret < 0)
3112 			return ret;
3113 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3114 		level = (int)ref_owner;
3115 		/* FIXME: get real generation */
3116 		generation = 0;
3117 #else
3118 		BUG();
3119 #endif
3120 	}
3121 
3122 	btrfs_release_path(rc->extent_root, path);
3123 
3124 	BUG_ON(level == -1);
3125 
3126 	block = kmalloc(sizeof(*block), GFP_NOFS);
3127 	if (!block)
3128 		return -ENOMEM;
3129 
3130 	block->bytenr = extent_key->objectid;
3131 	block->key.objectid = extent_key->offset;
3132 	block->key.offset = generation;
3133 	block->level = level;
3134 	block->key_ready = 0;
3135 
3136 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3137 	BUG_ON(rb_node);
3138 
3139 	return 0;
3140 }
3141 
3142 /*
3143  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3144  */
3145 static int __add_tree_block(struct reloc_control *rc,
3146 			    u64 bytenr, u32 blocksize,
3147 			    struct rb_root *blocks)
3148 {
3149 	struct btrfs_path *path;
3150 	struct btrfs_key key;
3151 	int ret;
3152 
3153 	if (tree_block_processed(bytenr, blocksize, rc))
3154 		return 0;
3155 
3156 	if (tree_search(blocks, bytenr))
3157 		return 0;
3158 
3159 	path = btrfs_alloc_path();
3160 	if (!path)
3161 		return -ENOMEM;
3162 
3163 	key.objectid = bytenr;
3164 	key.type = BTRFS_EXTENT_ITEM_KEY;
3165 	key.offset = blocksize;
3166 
3167 	path->search_commit_root = 1;
3168 	path->skip_locking = 1;
3169 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3170 	if (ret < 0)
3171 		goto out;
3172 	BUG_ON(ret);
3173 
3174 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3175 	ret = add_tree_block(rc, &key, path, blocks);
3176 out:
3177 	btrfs_free_path(path);
3178 	return ret;
3179 }
3180 
3181 /*
3182  * helper to check if the block use full backrefs for pointers in it
3183  */
3184 static int block_use_full_backref(struct reloc_control *rc,
3185 				  struct extent_buffer *eb)
3186 {
3187 	u64 flags;
3188 	int ret;
3189 
3190 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3191 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3192 		return 1;
3193 
3194 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3195 				       eb->start, eb->len, NULL, &flags);
3196 	BUG_ON(ret);
3197 
3198 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3199 		ret = 1;
3200 	else
3201 		ret = 0;
3202 	return ret;
3203 }
3204 
3205 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3206 				    struct inode *inode, u64 ino)
3207 {
3208 	struct btrfs_key key;
3209 	struct btrfs_path *path;
3210 	struct btrfs_root *root = fs_info->tree_root;
3211 	struct btrfs_trans_handle *trans;
3212 	unsigned long nr;
3213 	int ret = 0;
3214 
3215 	if (inode)
3216 		goto truncate;
3217 
3218 	key.objectid = ino;
3219 	key.type = BTRFS_INODE_ITEM_KEY;
3220 	key.offset = 0;
3221 
3222 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3223 	if (!inode || IS_ERR(inode) || is_bad_inode(inode)) {
3224 		if (inode && !IS_ERR(inode))
3225 			iput(inode);
3226 		return -ENOENT;
3227 	}
3228 
3229 truncate:
3230 	path = btrfs_alloc_path();
3231 	if (!path) {
3232 		ret = -ENOMEM;
3233 		goto out;
3234 	}
3235 
3236 	trans = btrfs_join_transaction(root, 0);
3237 	if (IS_ERR(trans)) {
3238 		btrfs_free_path(path);
3239 		ret = PTR_ERR(trans);
3240 		goto out;
3241 	}
3242 
3243 	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3244 
3245 	btrfs_free_path(path);
3246 	nr = trans->blocks_used;
3247 	btrfs_end_transaction(trans, root);
3248 	btrfs_btree_balance_dirty(root, nr);
3249 out:
3250 	iput(inode);
3251 	return ret;
3252 }
3253 
3254 /*
3255  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3256  * this function scans fs tree to find blocks reference the data extent
3257  */
3258 static int find_data_references(struct reloc_control *rc,
3259 				struct btrfs_key *extent_key,
3260 				struct extent_buffer *leaf,
3261 				struct btrfs_extent_data_ref *ref,
3262 				struct rb_root *blocks)
3263 {
3264 	struct btrfs_path *path;
3265 	struct tree_block *block;
3266 	struct btrfs_root *root;
3267 	struct btrfs_file_extent_item *fi;
3268 	struct rb_node *rb_node;
3269 	struct btrfs_key key;
3270 	u64 ref_root;
3271 	u64 ref_objectid;
3272 	u64 ref_offset;
3273 	u32 ref_count;
3274 	u32 nritems;
3275 	int err = 0;
3276 	int added = 0;
3277 	int counted;
3278 	int ret;
3279 
3280 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3281 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3282 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3283 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3284 
3285 	/*
3286 	 * This is an extent belonging to the free space cache, lets just delete
3287 	 * it and redo the search.
3288 	 */
3289 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3290 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3291 					       NULL, ref_objectid);
3292 		if (ret != -ENOENT)
3293 			return ret;
3294 		ret = 0;
3295 	}
3296 
3297 	path = btrfs_alloc_path();
3298 	if (!path)
3299 		return -ENOMEM;
3300 
3301 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3302 	if (IS_ERR(root)) {
3303 		err = PTR_ERR(root);
3304 		goto out;
3305 	}
3306 
3307 	key.objectid = ref_objectid;
3308 	key.offset = ref_offset;
3309 	key.type = BTRFS_EXTENT_DATA_KEY;
3310 
3311 	path->search_commit_root = 1;
3312 	path->skip_locking = 1;
3313 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3314 	if (ret < 0) {
3315 		err = ret;
3316 		goto out;
3317 	}
3318 
3319 	leaf = path->nodes[0];
3320 	nritems = btrfs_header_nritems(leaf);
3321 	/*
3322 	 * the references in tree blocks that use full backrefs
3323 	 * are not counted in
3324 	 */
3325 	if (block_use_full_backref(rc, leaf))
3326 		counted = 0;
3327 	else
3328 		counted = 1;
3329 	rb_node = tree_search(blocks, leaf->start);
3330 	if (rb_node) {
3331 		if (counted)
3332 			added = 1;
3333 		else
3334 			path->slots[0] = nritems;
3335 	}
3336 
3337 	while (ref_count > 0) {
3338 		while (path->slots[0] >= nritems) {
3339 			ret = btrfs_next_leaf(root, path);
3340 			if (ret < 0) {
3341 				err = ret;
3342 				goto out;
3343 			}
3344 			if (ret > 0) {
3345 				WARN_ON(1);
3346 				goto out;
3347 			}
3348 
3349 			leaf = path->nodes[0];
3350 			nritems = btrfs_header_nritems(leaf);
3351 			added = 0;
3352 
3353 			if (block_use_full_backref(rc, leaf))
3354 				counted = 0;
3355 			else
3356 				counted = 1;
3357 			rb_node = tree_search(blocks, leaf->start);
3358 			if (rb_node) {
3359 				if (counted)
3360 					added = 1;
3361 				else
3362 					path->slots[0] = nritems;
3363 			}
3364 		}
3365 
3366 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3367 		if (key.objectid != ref_objectid ||
3368 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3369 			WARN_ON(1);
3370 			break;
3371 		}
3372 
3373 		fi = btrfs_item_ptr(leaf, path->slots[0],
3374 				    struct btrfs_file_extent_item);
3375 
3376 		if (btrfs_file_extent_type(leaf, fi) ==
3377 		    BTRFS_FILE_EXTENT_INLINE)
3378 			goto next;
3379 
3380 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3381 		    extent_key->objectid)
3382 			goto next;
3383 
3384 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3385 		if (key.offset != ref_offset)
3386 			goto next;
3387 
3388 		if (counted)
3389 			ref_count--;
3390 		if (added)
3391 			goto next;
3392 
3393 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3394 			block = kmalloc(sizeof(*block), GFP_NOFS);
3395 			if (!block) {
3396 				err = -ENOMEM;
3397 				break;
3398 			}
3399 			block->bytenr = leaf->start;
3400 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3401 			block->level = 0;
3402 			block->key_ready = 1;
3403 			rb_node = tree_insert(blocks, block->bytenr,
3404 					      &block->rb_node);
3405 			BUG_ON(rb_node);
3406 		}
3407 		if (counted)
3408 			added = 1;
3409 		else
3410 			path->slots[0] = nritems;
3411 next:
3412 		path->slots[0]++;
3413 
3414 	}
3415 out:
3416 	btrfs_free_path(path);
3417 	return err;
3418 }
3419 
3420 /*
3421  * hepler to find all tree blocks that reference a given data extent
3422  */
3423 static noinline_for_stack
3424 int add_data_references(struct reloc_control *rc,
3425 			struct btrfs_key *extent_key,
3426 			struct btrfs_path *path,
3427 			struct rb_root *blocks)
3428 {
3429 	struct btrfs_key key;
3430 	struct extent_buffer *eb;
3431 	struct btrfs_extent_data_ref *dref;
3432 	struct btrfs_extent_inline_ref *iref;
3433 	unsigned long ptr;
3434 	unsigned long end;
3435 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3436 	int ret;
3437 	int err = 0;
3438 
3439 	eb = path->nodes[0];
3440 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3441 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3442 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3443 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3444 		ptr = end;
3445 	else
3446 #endif
3447 		ptr += sizeof(struct btrfs_extent_item);
3448 
3449 	while (ptr < end) {
3450 		iref = (struct btrfs_extent_inline_ref *)ptr;
3451 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3452 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3453 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3454 			ret = __add_tree_block(rc, key.offset, blocksize,
3455 					       blocks);
3456 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3457 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3458 			ret = find_data_references(rc, extent_key,
3459 						   eb, dref, blocks);
3460 		} else {
3461 			BUG();
3462 		}
3463 		ptr += btrfs_extent_inline_ref_size(key.type);
3464 	}
3465 	WARN_ON(ptr > end);
3466 
3467 	while (1) {
3468 		cond_resched();
3469 		eb = path->nodes[0];
3470 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3471 			ret = btrfs_next_leaf(rc->extent_root, path);
3472 			if (ret < 0) {
3473 				err = ret;
3474 				break;
3475 			}
3476 			if (ret > 0)
3477 				break;
3478 			eb = path->nodes[0];
3479 		}
3480 
3481 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3482 		if (key.objectid != extent_key->objectid)
3483 			break;
3484 
3485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3486 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3487 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3488 #else
3489 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3490 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3491 #endif
3492 			ret = __add_tree_block(rc, key.offset, blocksize,
3493 					       blocks);
3494 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3495 			dref = btrfs_item_ptr(eb, path->slots[0],
3496 					      struct btrfs_extent_data_ref);
3497 			ret = find_data_references(rc, extent_key,
3498 						   eb, dref, blocks);
3499 		} else {
3500 			ret = 0;
3501 		}
3502 		if (ret) {
3503 			err = ret;
3504 			break;
3505 		}
3506 		path->slots[0]++;
3507 	}
3508 	btrfs_release_path(rc->extent_root, path);
3509 	if (err)
3510 		free_block_list(blocks);
3511 	return err;
3512 }
3513 
3514 /*
3515  * hepler to find next unprocessed extent
3516  */
3517 static noinline_for_stack
3518 int find_next_extent(struct btrfs_trans_handle *trans,
3519 		     struct reloc_control *rc, struct btrfs_path *path,
3520 		     struct btrfs_key *extent_key)
3521 {
3522 	struct btrfs_key key;
3523 	struct extent_buffer *leaf;
3524 	u64 start, end, last;
3525 	int ret;
3526 
3527 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3528 	while (1) {
3529 		cond_resched();
3530 		if (rc->search_start >= last) {
3531 			ret = 1;
3532 			break;
3533 		}
3534 
3535 		key.objectid = rc->search_start;
3536 		key.type = BTRFS_EXTENT_ITEM_KEY;
3537 		key.offset = 0;
3538 
3539 		path->search_commit_root = 1;
3540 		path->skip_locking = 1;
3541 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3542 					0, 0);
3543 		if (ret < 0)
3544 			break;
3545 next:
3546 		leaf = path->nodes[0];
3547 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3548 			ret = btrfs_next_leaf(rc->extent_root, path);
3549 			if (ret != 0)
3550 				break;
3551 			leaf = path->nodes[0];
3552 		}
3553 
3554 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3555 		if (key.objectid >= last) {
3556 			ret = 1;
3557 			break;
3558 		}
3559 
3560 		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3561 		    key.objectid + key.offset <= rc->search_start) {
3562 			path->slots[0]++;
3563 			goto next;
3564 		}
3565 
3566 		ret = find_first_extent_bit(&rc->processed_blocks,
3567 					    key.objectid, &start, &end,
3568 					    EXTENT_DIRTY);
3569 
3570 		if (ret == 0 && start <= key.objectid) {
3571 			btrfs_release_path(rc->extent_root, path);
3572 			rc->search_start = end + 1;
3573 		} else {
3574 			rc->search_start = key.objectid + key.offset;
3575 			memcpy(extent_key, &key, sizeof(key));
3576 			return 0;
3577 		}
3578 	}
3579 	btrfs_release_path(rc->extent_root, path);
3580 	return ret;
3581 }
3582 
3583 static void set_reloc_control(struct reloc_control *rc)
3584 {
3585 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3586 	mutex_lock(&fs_info->trans_mutex);
3587 	fs_info->reloc_ctl = rc;
3588 	mutex_unlock(&fs_info->trans_mutex);
3589 }
3590 
3591 static void unset_reloc_control(struct reloc_control *rc)
3592 {
3593 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3594 	mutex_lock(&fs_info->trans_mutex);
3595 	fs_info->reloc_ctl = NULL;
3596 	mutex_unlock(&fs_info->trans_mutex);
3597 }
3598 
3599 static int check_extent_flags(u64 flags)
3600 {
3601 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3602 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3603 		return 1;
3604 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3605 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3606 		return 1;
3607 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3608 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3609 		return 1;
3610 	return 0;
3611 }
3612 
3613 static noinline_for_stack
3614 int prepare_to_relocate(struct reloc_control *rc)
3615 {
3616 	struct btrfs_trans_handle *trans;
3617 	int ret;
3618 
3619 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
3620 	if (!rc->block_rsv)
3621 		return -ENOMEM;
3622 
3623 	/*
3624 	 * reserve some space for creating reloc trees.
3625 	 * btrfs_init_reloc_root will use them when there
3626 	 * is no reservation in transaction handle.
3627 	 */
3628 	ret = btrfs_block_rsv_add(NULL, rc->extent_root, rc->block_rsv,
3629 				  rc->extent_root->nodesize * 256);
3630 	if (ret)
3631 		return ret;
3632 
3633 	rc->block_rsv->refill_used = 1;
3634 	btrfs_add_durable_block_rsv(rc->extent_root->fs_info, rc->block_rsv);
3635 
3636 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3637 	rc->search_start = rc->block_group->key.objectid;
3638 	rc->extents_found = 0;
3639 	rc->nodes_relocated = 0;
3640 	rc->merging_rsv_size = 0;
3641 
3642 	rc->create_reloc_tree = 1;
3643 	set_reloc_control(rc);
3644 
3645 	trans = btrfs_join_transaction(rc->extent_root, 1);
3646 	BUG_ON(IS_ERR(trans));
3647 	btrfs_commit_transaction(trans, rc->extent_root);
3648 	return 0;
3649 }
3650 
3651 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3652 {
3653 	struct rb_root blocks = RB_ROOT;
3654 	struct btrfs_key key;
3655 	struct btrfs_trans_handle *trans = NULL;
3656 	struct btrfs_path *path;
3657 	struct btrfs_extent_item *ei;
3658 	unsigned long nr;
3659 	u64 flags;
3660 	u32 item_size;
3661 	int ret;
3662 	int err = 0;
3663 	int progress = 0;
3664 
3665 	path = btrfs_alloc_path();
3666 	if (!path)
3667 		return -ENOMEM;
3668 
3669 	ret = prepare_to_relocate(rc);
3670 	if (ret) {
3671 		err = ret;
3672 		goto out_free;
3673 	}
3674 
3675 	while (1) {
3676 		progress++;
3677 		trans = btrfs_start_transaction(rc->extent_root, 0);
3678 		BUG_ON(IS_ERR(trans));
3679 restart:
3680 		if (update_backref_cache(trans, &rc->backref_cache)) {
3681 			btrfs_end_transaction(trans, rc->extent_root);
3682 			continue;
3683 		}
3684 
3685 		ret = find_next_extent(trans, rc, path, &key);
3686 		if (ret < 0)
3687 			err = ret;
3688 		if (ret != 0)
3689 			break;
3690 
3691 		rc->extents_found++;
3692 
3693 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3694 				    struct btrfs_extent_item);
3695 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3696 		if (item_size >= sizeof(*ei)) {
3697 			flags = btrfs_extent_flags(path->nodes[0], ei);
3698 			ret = check_extent_flags(flags);
3699 			BUG_ON(ret);
3700 
3701 		} else {
3702 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3703 			u64 ref_owner;
3704 			int path_change = 0;
3705 
3706 			BUG_ON(item_size !=
3707 			       sizeof(struct btrfs_extent_item_v0));
3708 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3709 						  &path_change);
3710 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3711 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3712 			else
3713 				flags = BTRFS_EXTENT_FLAG_DATA;
3714 
3715 			if (path_change) {
3716 				btrfs_release_path(rc->extent_root, path);
3717 
3718 				path->search_commit_root = 1;
3719 				path->skip_locking = 1;
3720 				ret = btrfs_search_slot(NULL, rc->extent_root,
3721 							&key, path, 0, 0);
3722 				if (ret < 0) {
3723 					err = ret;
3724 					break;
3725 				}
3726 				BUG_ON(ret > 0);
3727 			}
3728 #else
3729 			BUG();
3730 #endif
3731 		}
3732 
3733 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3734 			ret = add_tree_block(rc, &key, path, &blocks);
3735 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3736 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3737 			ret = add_data_references(rc, &key, path, &blocks);
3738 		} else {
3739 			btrfs_release_path(rc->extent_root, path);
3740 			ret = 0;
3741 		}
3742 		if (ret < 0) {
3743 			err = ret;
3744 			break;
3745 		}
3746 
3747 		if (!RB_EMPTY_ROOT(&blocks)) {
3748 			ret = relocate_tree_blocks(trans, rc, &blocks);
3749 			if (ret < 0) {
3750 				if (ret != -EAGAIN) {
3751 					err = ret;
3752 					break;
3753 				}
3754 				rc->extents_found--;
3755 				rc->search_start = key.objectid;
3756 			}
3757 		}
3758 
3759 		ret = btrfs_block_rsv_check(trans, rc->extent_root,
3760 					    rc->block_rsv, 0, 5);
3761 		if (ret < 0) {
3762 			if (ret != -EAGAIN) {
3763 				err = ret;
3764 				WARN_ON(1);
3765 				break;
3766 			}
3767 			rc->commit_transaction = 1;
3768 		}
3769 
3770 		if (rc->commit_transaction) {
3771 			rc->commit_transaction = 0;
3772 			ret = btrfs_commit_transaction(trans, rc->extent_root);
3773 			BUG_ON(ret);
3774 		} else {
3775 			nr = trans->blocks_used;
3776 			btrfs_end_transaction_throttle(trans, rc->extent_root);
3777 			btrfs_btree_balance_dirty(rc->extent_root, nr);
3778 		}
3779 		trans = NULL;
3780 
3781 		if (rc->stage == MOVE_DATA_EXTENTS &&
3782 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3783 			rc->found_file_extent = 1;
3784 			ret = relocate_data_extent(rc->data_inode,
3785 						   &key, &rc->cluster);
3786 			if (ret < 0) {
3787 				err = ret;
3788 				break;
3789 			}
3790 		}
3791 	}
3792 	if (trans && progress && err == -ENOSPC) {
3793 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3794 					      rc->block_group->flags);
3795 		if (ret == 0) {
3796 			err = 0;
3797 			progress = 0;
3798 			goto restart;
3799 		}
3800 	}
3801 
3802 	btrfs_release_path(rc->extent_root, path);
3803 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3804 			  GFP_NOFS);
3805 
3806 	if (trans) {
3807 		nr = trans->blocks_used;
3808 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3809 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3810 	}
3811 
3812 	if (!err) {
3813 		ret = relocate_file_extent_cluster(rc->data_inode,
3814 						   &rc->cluster);
3815 		if (ret < 0)
3816 			err = ret;
3817 	}
3818 
3819 	rc->create_reloc_tree = 0;
3820 	set_reloc_control(rc);
3821 
3822 	backref_cache_cleanup(&rc->backref_cache);
3823 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3824 
3825 	err = prepare_to_merge(rc, err);
3826 
3827 	merge_reloc_roots(rc);
3828 
3829 	rc->merge_reloc_tree = 0;
3830 	unset_reloc_control(rc);
3831 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3832 
3833 	/* get rid of pinned extents */
3834 	trans = btrfs_join_transaction(rc->extent_root, 1);
3835 	if (IS_ERR(trans))
3836 		err = PTR_ERR(trans);
3837 	else
3838 		btrfs_commit_transaction(trans, rc->extent_root);
3839 out_free:
3840 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3841 	btrfs_free_path(path);
3842 	return err;
3843 }
3844 
3845 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3846 				 struct btrfs_root *root, u64 objectid)
3847 {
3848 	struct btrfs_path *path;
3849 	struct btrfs_inode_item *item;
3850 	struct extent_buffer *leaf;
3851 	int ret;
3852 
3853 	path = btrfs_alloc_path();
3854 	if (!path)
3855 		return -ENOMEM;
3856 
3857 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3858 	if (ret)
3859 		goto out;
3860 
3861 	leaf = path->nodes[0];
3862 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3863 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3864 	btrfs_set_inode_generation(leaf, item, 1);
3865 	btrfs_set_inode_size(leaf, item, 0);
3866 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3867 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3868 					  BTRFS_INODE_PREALLOC);
3869 	btrfs_mark_buffer_dirty(leaf);
3870 	btrfs_release_path(root, path);
3871 out:
3872 	btrfs_free_path(path);
3873 	return ret;
3874 }
3875 
3876 /*
3877  * helper to create inode for data relocation.
3878  * the inode is in data relocation tree and its link count is 0
3879  */
3880 static noinline_for_stack
3881 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3882 				 struct btrfs_block_group_cache *group)
3883 {
3884 	struct inode *inode = NULL;
3885 	struct btrfs_trans_handle *trans;
3886 	struct btrfs_root *root;
3887 	struct btrfs_key key;
3888 	unsigned long nr;
3889 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3890 	int err = 0;
3891 
3892 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3893 	if (IS_ERR(root))
3894 		return ERR_CAST(root);
3895 
3896 	trans = btrfs_start_transaction(root, 6);
3897 	if (IS_ERR(trans))
3898 		return ERR_CAST(trans);
3899 
3900 	err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
3901 	if (err)
3902 		goto out;
3903 
3904 	err = __insert_orphan_inode(trans, root, objectid);
3905 	BUG_ON(err);
3906 
3907 	key.objectid = objectid;
3908 	key.type = BTRFS_INODE_ITEM_KEY;
3909 	key.offset = 0;
3910 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3911 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3912 	BTRFS_I(inode)->index_cnt = group->key.objectid;
3913 
3914 	err = btrfs_orphan_add(trans, inode);
3915 out:
3916 	nr = trans->blocks_used;
3917 	btrfs_end_transaction(trans, root);
3918 	btrfs_btree_balance_dirty(root, nr);
3919 	if (err) {
3920 		if (inode)
3921 			iput(inode);
3922 		inode = ERR_PTR(err);
3923 	}
3924 	return inode;
3925 }
3926 
3927 static struct reloc_control *alloc_reloc_control(void)
3928 {
3929 	struct reloc_control *rc;
3930 
3931 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3932 	if (!rc)
3933 		return NULL;
3934 
3935 	INIT_LIST_HEAD(&rc->reloc_roots);
3936 	backref_cache_init(&rc->backref_cache);
3937 	mapping_tree_init(&rc->reloc_root_tree);
3938 	extent_io_tree_init(&rc->processed_blocks, NULL, GFP_NOFS);
3939 	return rc;
3940 }
3941 
3942 /*
3943  * function to relocate all extents in a block group.
3944  */
3945 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3946 {
3947 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3948 	struct reloc_control *rc;
3949 	struct inode *inode;
3950 	struct btrfs_path *path;
3951 	int ret;
3952 	int rw = 0;
3953 	int err = 0;
3954 
3955 	rc = alloc_reloc_control();
3956 	if (!rc)
3957 		return -ENOMEM;
3958 
3959 	rc->extent_root = extent_root;
3960 
3961 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3962 	BUG_ON(!rc->block_group);
3963 
3964 	if (!rc->block_group->ro) {
3965 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3966 		if (ret) {
3967 			err = ret;
3968 			goto out;
3969 		}
3970 		rw = 1;
3971 	}
3972 
3973 	path = btrfs_alloc_path();
3974 	if (!path) {
3975 		err = -ENOMEM;
3976 		goto out;
3977 	}
3978 
3979 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
3980 					path);
3981 	btrfs_free_path(path);
3982 
3983 	if (!IS_ERR(inode))
3984 		ret = delete_block_group_cache(fs_info, inode, 0);
3985 	else
3986 		ret = PTR_ERR(inode);
3987 
3988 	if (ret && ret != -ENOENT) {
3989 		err = ret;
3990 		goto out;
3991 	}
3992 
3993 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3994 	if (IS_ERR(rc->data_inode)) {
3995 		err = PTR_ERR(rc->data_inode);
3996 		rc->data_inode = NULL;
3997 		goto out;
3998 	}
3999 
4000 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4001 	       (unsigned long long)rc->block_group->key.objectid,
4002 	       (unsigned long long)rc->block_group->flags);
4003 
4004 	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4005 	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
4006 
4007 	while (1) {
4008 		mutex_lock(&fs_info->cleaner_mutex);
4009 
4010 		btrfs_clean_old_snapshots(fs_info->tree_root);
4011 		ret = relocate_block_group(rc);
4012 
4013 		mutex_unlock(&fs_info->cleaner_mutex);
4014 		if (ret < 0) {
4015 			err = ret;
4016 			goto out;
4017 		}
4018 
4019 		if (rc->extents_found == 0)
4020 			break;
4021 
4022 		printk(KERN_INFO "btrfs: found %llu extents\n",
4023 			(unsigned long long)rc->extents_found);
4024 
4025 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4026 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
4027 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4028 						 0, -1);
4029 			rc->stage = UPDATE_DATA_PTRS;
4030 		}
4031 	}
4032 
4033 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4034 				     rc->block_group->key.objectid,
4035 				     rc->block_group->key.objectid +
4036 				     rc->block_group->key.offset - 1);
4037 
4038 	WARN_ON(rc->block_group->pinned > 0);
4039 	WARN_ON(rc->block_group->reserved > 0);
4040 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4041 out:
4042 	if (err && rw)
4043 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4044 	iput(rc->data_inode);
4045 	btrfs_put_block_group(rc->block_group);
4046 	kfree(rc);
4047 	return err;
4048 }
4049 
4050 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4051 {
4052 	struct btrfs_trans_handle *trans;
4053 	int ret;
4054 
4055 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4056 	BUG_ON(IS_ERR(trans));
4057 
4058 	memset(&root->root_item.drop_progress, 0,
4059 		sizeof(root->root_item.drop_progress));
4060 	root->root_item.drop_level = 0;
4061 	btrfs_set_root_refs(&root->root_item, 0);
4062 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4063 				&root->root_key, &root->root_item);
4064 	BUG_ON(ret);
4065 
4066 	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4067 	BUG_ON(ret);
4068 	return 0;
4069 }
4070 
4071 /*
4072  * recover relocation interrupted by system crash.
4073  *
4074  * this function resumes merging reloc trees with corresponding fs trees.
4075  * this is important for keeping the sharing of tree blocks
4076  */
4077 int btrfs_recover_relocation(struct btrfs_root *root)
4078 {
4079 	LIST_HEAD(reloc_roots);
4080 	struct btrfs_key key;
4081 	struct btrfs_root *fs_root;
4082 	struct btrfs_root *reloc_root;
4083 	struct btrfs_path *path;
4084 	struct extent_buffer *leaf;
4085 	struct reloc_control *rc = NULL;
4086 	struct btrfs_trans_handle *trans;
4087 	int ret;
4088 	int err = 0;
4089 
4090 	path = btrfs_alloc_path();
4091 	if (!path)
4092 		return -ENOMEM;
4093 
4094 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4095 	key.type = BTRFS_ROOT_ITEM_KEY;
4096 	key.offset = (u64)-1;
4097 
4098 	while (1) {
4099 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4100 					path, 0, 0);
4101 		if (ret < 0) {
4102 			err = ret;
4103 			goto out;
4104 		}
4105 		if (ret > 0) {
4106 			if (path->slots[0] == 0)
4107 				break;
4108 			path->slots[0]--;
4109 		}
4110 		leaf = path->nodes[0];
4111 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4112 		btrfs_release_path(root->fs_info->tree_root, path);
4113 
4114 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4115 		    key.type != BTRFS_ROOT_ITEM_KEY)
4116 			break;
4117 
4118 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4119 		if (IS_ERR(reloc_root)) {
4120 			err = PTR_ERR(reloc_root);
4121 			goto out;
4122 		}
4123 
4124 		list_add(&reloc_root->root_list, &reloc_roots);
4125 
4126 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4127 			fs_root = read_fs_root(root->fs_info,
4128 					       reloc_root->root_key.offset);
4129 			if (IS_ERR(fs_root)) {
4130 				ret = PTR_ERR(fs_root);
4131 				if (ret != -ENOENT) {
4132 					err = ret;
4133 					goto out;
4134 				}
4135 				mark_garbage_root(reloc_root);
4136 			}
4137 		}
4138 
4139 		if (key.offset == 0)
4140 			break;
4141 
4142 		key.offset--;
4143 	}
4144 	btrfs_release_path(root->fs_info->tree_root, path);
4145 
4146 	if (list_empty(&reloc_roots))
4147 		goto out;
4148 
4149 	rc = alloc_reloc_control();
4150 	if (!rc) {
4151 		err = -ENOMEM;
4152 		goto out;
4153 	}
4154 
4155 	rc->extent_root = root->fs_info->extent_root;
4156 
4157 	set_reloc_control(rc);
4158 
4159 	trans = btrfs_join_transaction(rc->extent_root, 1);
4160 	if (IS_ERR(trans)) {
4161 		unset_reloc_control(rc);
4162 		err = PTR_ERR(trans);
4163 		goto out_free;
4164 	}
4165 
4166 	rc->merge_reloc_tree = 1;
4167 
4168 	while (!list_empty(&reloc_roots)) {
4169 		reloc_root = list_entry(reloc_roots.next,
4170 					struct btrfs_root, root_list);
4171 		list_del(&reloc_root->root_list);
4172 
4173 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4174 			list_add_tail(&reloc_root->root_list,
4175 				      &rc->reloc_roots);
4176 			continue;
4177 		}
4178 
4179 		fs_root = read_fs_root(root->fs_info,
4180 				       reloc_root->root_key.offset);
4181 		BUG_ON(IS_ERR(fs_root));
4182 
4183 		__add_reloc_root(reloc_root);
4184 		fs_root->reloc_root = reloc_root;
4185 	}
4186 
4187 	btrfs_commit_transaction(trans, rc->extent_root);
4188 
4189 	merge_reloc_roots(rc);
4190 
4191 	unset_reloc_control(rc);
4192 
4193 	trans = btrfs_join_transaction(rc->extent_root, 1);
4194 	if (IS_ERR(trans))
4195 		err = PTR_ERR(trans);
4196 	else
4197 		btrfs_commit_transaction(trans, rc->extent_root);
4198 out_free:
4199 	kfree(rc);
4200 out:
4201 	while (!list_empty(&reloc_roots)) {
4202 		reloc_root = list_entry(reloc_roots.next,
4203 					struct btrfs_root, root_list);
4204 		list_del(&reloc_root->root_list);
4205 		free_extent_buffer(reloc_root->node);
4206 		free_extent_buffer(reloc_root->commit_root);
4207 		kfree(reloc_root);
4208 	}
4209 	btrfs_free_path(path);
4210 
4211 	if (err == 0) {
4212 		/* cleanup orphan inode in data relocation tree */
4213 		fs_root = read_fs_root(root->fs_info,
4214 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4215 		if (IS_ERR(fs_root))
4216 			err = PTR_ERR(fs_root);
4217 		else
4218 			err = btrfs_orphan_cleanup(fs_root);
4219 	}
4220 	return err;
4221 }
4222 
4223 /*
4224  * helper to add ordered checksum for data relocation.
4225  *
4226  * cloning checksum properly handles the nodatasum extents.
4227  * it also saves CPU time to re-calculate the checksum.
4228  */
4229 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4230 {
4231 	struct btrfs_ordered_sum *sums;
4232 	struct btrfs_sector_sum *sector_sum;
4233 	struct btrfs_ordered_extent *ordered;
4234 	struct btrfs_root *root = BTRFS_I(inode)->root;
4235 	size_t offset;
4236 	int ret;
4237 	u64 disk_bytenr;
4238 	LIST_HEAD(list);
4239 
4240 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4241 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4242 
4243 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4244 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4245 				       disk_bytenr + len - 1, &list);
4246 
4247 	while (!list_empty(&list)) {
4248 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4249 		list_del_init(&sums->list);
4250 
4251 		sector_sum = sums->sums;
4252 		sums->bytenr = ordered->start;
4253 
4254 		offset = 0;
4255 		while (offset < sums->len) {
4256 			sector_sum->bytenr += ordered->start - disk_bytenr;
4257 			sector_sum++;
4258 			offset += root->sectorsize;
4259 		}
4260 
4261 		btrfs_add_ordered_sum(inode, ordered, sums);
4262 	}
4263 	btrfs_put_ordered_extent(ordered);
4264 	return ret;
4265 }
4266 
4267 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4268 			   struct btrfs_root *root, struct extent_buffer *buf,
4269 			   struct extent_buffer *cow)
4270 {
4271 	struct reloc_control *rc;
4272 	struct backref_node *node;
4273 	int first_cow = 0;
4274 	int level;
4275 	int ret;
4276 
4277 	rc = root->fs_info->reloc_ctl;
4278 	if (!rc)
4279 		return;
4280 
4281 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4282 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4283 
4284 	level = btrfs_header_level(buf);
4285 	if (btrfs_header_generation(buf) <=
4286 	    btrfs_root_last_snapshot(&root->root_item))
4287 		first_cow = 1;
4288 
4289 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4290 	    rc->create_reloc_tree) {
4291 		WARN_ON(!first_cow && level == 0);
4292 
4293 		node = rc->backref_cache.path[level];
4294 		BUG_ON(node->bytenr != buf->start &&
4295 		       node->new_bytenr != buf->start);
4296 
4297 		drop_node_buffer(node);
4298 		extent_buffer_get(cow);
4299 		node->eb = cow;
4300 		node->new_bytenr = cow->start;
4301 
4302 		if (!node->pending) {
4303 			list_move_tail(&node->list,
4304 				       &rc->backref_cache.pending[level]);
4305 			node->pending = 1;
4306 		}
4307 
4308 		if (first_cow)
4309 			__mark_block_processed(rc, node);
4310 
4311 		if (first_cow && level > 0)
4312 			rc->nodes_relocated += buf->len;
4313 	}
4314 
4315 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4316 		ret = replace_file_extents(trans, rc, root, cow);
4317 		BUG_ON(ret);
4318 	}
4319 }
4320 
4321 /*
4322  * called before creating snapshot. it calculates metadata reservation
4323  * requried for relocating tree blocks in the snapshot
4324  */
4325 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4326 			      struct btrfs_pending_snapshot *pending,
4327 			      u64 *bytes_to_reserve)
4328 {
4329 	struct btrfs_root *root;
4330 	struct reloc_control *rc;
4331 
4332 	root = pending->root;
4333 	if (!root->reloc_root)
4334 		return;
4335 
4336 	rc = root->fs_info->reloc_ctl;
4337 	if (!rc->merge_reloc_tree)
4338 		return;
4339 
4340 	root = root->reloc_root;
4341 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4342 	/*
4343 	 * relocation is in the stage of merging trees. the space
4344 	 * used by merging a reloc tree is twice the size of
4345 	 * relocated tree nodes in the worst case. half for cowing
4346 	 * the reloc tree, half for cowing the fs tree. the space
4347 	 * used by cowing the reloc tree will be freed after the
4348 	 * tree is dropped. if we create snapshot, cowing the fs
4349 	 * tree may use more space than it frees. so we need
4350 	 * reserve extra space.
4351 	 */
4352 	*bytes_to_reserve += rc->nodes_relocated;
4353 }
4354 
4355 /*
4356  * called after snapshot is created. migrate block reservation
4357  * and create reloc root for the newly created snapshot
4358  */
4359 void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4360 			       struct btrfs_pending_snapshot *pending)
4361 {
4362 	struct btrfs_root *root = pending->root;
4363 	struct btrfs_root *reloc_root;
4364 	struct btrfs_root *new_root;
4365 	struct reloc_control *rc;
4366 	int ret;
4367 
4368 	if (!root->reloc_root)
4369 		return;
4370 
4371 	rc = root->fs_info->reloc_ctl;
4372 	rc->merging_rsv_size += rc->nodes_relocated;
4373 
4374 	if (rc->merge_reloc_tree) {
4375 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4376 					      rc->block_rsv,
4377 					      rc->nodes_relocated);
4378 		BUG_ON(ret);
4379 	}
4380 
4381 	new_root = pending->snap;
4382 	reloc_root = create_reloc_root(trans, root->reloc_root,
4383 				       new_root->root_key.objectid);
4384 
4385 	__add_reloc_root(reloc_root);
4386 	new_root->reloc_root = reloc_root;
4387 
4388 	if (rc->create_reloc_tree) {
4389 		ret = clone_backref_node(trans, rc, root, reloc_root);
4390 		BUG_ON(ret);
4391 	}
4392 }
4393