1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/security.h>
31 #include <linux/random.h>
32 #include <linux/elf.h>
33 #include <linux/utsname.h>
34 #include <linux/coredump.h>
35 #include <asm/uaccess.h>
36 #include <asm/param.h>
37 #include <asm/page.h>
38 
39 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs);
40 static int load_elf_library(struct file *);
41 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
42 				int, int, unsigned long);
43 
44 /*
45  * If we don't support core dumping, then supply a NULL so we
46  * don't even try.
47  */
48 #ifdef CONFIG_ELF_CORE
49 static int elf_core_dump(struct coredump_params *cprm);
50 #else
51 #define elf_core_dump	NULL
52 #endif
53 
54 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
55 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
56 #else
57 #define ELF_MIN_ALIGN	PAGE_SIZE
58 #endif
59 
60 #ifndef ELF_CORE_EFLAGS
61 #define ELF_CORE_EFLAGS	0
62 #endif
63 
64 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
65 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
66 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
67 
68 static struct linux_binfmt elf_format = {
69 	.module		= THIS_MODULE,
70 	.load_binary	= load_elf_binary,
71 	.load_shlib	= load_elf_library,
72 	.core_dump	= elf_core_dump,
73 	.min_coredump	= ELF_EXEC_PAGESIZE,
74 };
75 
76 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
77 
set_brk(unsigned long start,unsigned long end)78 static int set_brk(unsigned long start, unsigned long end)
79 {
80 	start = ELF_PAGEALIGN(start);
81 	end = ELF_PAGEALIGN(end);
82 	if (end > start) {
83 		unsigned long addr;
84 		down_write(&current->mm->mmap_sem);
85 		addr = do_brk(start, end - start);
86 		up_write(&current->mm->mmap_sem);
87 		if (BAD_ADDR(addr))
88 			return addr;
89 	}
90 	current->mm->start_brk = current->mm->brk = end;
91 	return 0;
92 }
93 
94 /* We need to explicitly zero any fractional pages
95    after the data section (i.e. bss).  This would
96    contain the junk from the file that should not
97    be in memory
98  */
padzero(unsigned long elf_bss)99 static int padzero(unsigned long elf_bss)
100 {
101 	unsigned long nbyte;
102 
103 	nbyte = ELF_PAGEOFFSET(elf_bss);
104 	if (nbyte) {
105 		nbyte = ELF_MIN_ALIGN - nbyte;
106 		if (clear_user((void __user *) elf_bss, nbyte))
107 			return -EFAULT;
108 	}
109 	return 0;
110 }
111 
112 /* Let's use some macros to make this stack manipulation a little clearer */
113 #ifdef CONFIG_STACK_GROWSUP
114 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
115 #define STACK_ROUND(sp, items) \
116 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
117 #define STACK_ALLOC(sp, len) ({ \
118 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
119 	old_sp; })
120 #else
121 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
122 #define STACK_ROUND(sp, items) \
123 	(((unsigned long) (sp - items)) &~ 15UL)
124 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
125 #endif
126 
127 #ifndef ELF_BASE_PLATFORM
128 /*
129  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
130  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
131  * will be copied to the user stack in the same manner as AT_PLATFORM.
132  */
133 #define ELF_BASE_PLATFORM NULL
134 #endif
135 
136 static int
create_elf_tables(struct linux_binprm * bprm,struct elfhdr * exec,unsigned long load_addr,unsigned long interp_load_addr)137 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
138 		unsigned long load_addr, unsigned long interp_load_addr)
139 {
140 	unsigned long p = bprm->p;
141 	int argc = bprm->argc;
142 	int envc = bprm->envc;
143 	elf_addr_t __user *argv;
144 	elf_addr_t __user *envp;
145 	elf_addr_t __user *sp;
146 	elf_addr_t __user *u_platform;
147 	elf_addr_t __user *u_base_platform;
148 	elf_addr_t __user *u_rand_bytes;
149 	const char *k_platform = ELF_PLATFORM;
150 	const char *k_base_platform = ELF_BASE_PLATFORM;
151 	unsigned char k_rand_bytes[16];
152 	int items;
153 	elf_addr_t *elf_info;
154 	int ei_index = 0;
155 	const struct cred *cred = current_cred();
156 	struct vm_area_struct *vma;
157 
158 	/*
159 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
160 	 * evictions by the processes running on the same package. One
161 	 * thing we can do is to shuffle the initial stack for them.
162 	 */
163 
164 	p = arch_align_stack(p);
165 
166 	/*
167 	 * If this architecture has a platform capability string, copy it
168 	 * to userspace.  In some cases (Sparc), this info is impossible
169 	 * for userspace to get any other way, in others (i386) it is
170 	 * merely difficult.
171 	 */
172 	u_platform = NULL;
173 	if (k_platform) {
174 		size_t len = strlen(k_platform) + 1;
175 
176 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
177 		if (__copy_to_user(u_platform, k_platform, len))
178 			return -EFAULT;
179 	}
180 
181 	/*
182 	 * If this architecture has a "base" platform capability
183 	 * string, copy it to userspace.
184 	 */
185 	u_base_platform = NULL;
186 	if (k_base_platform) {
187 		size_t len = strlen(k_base_platform) + 1;
188 
189 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
190 		if (__copy_to_user(u_base_platform, k_base_platform, len))
191 			return -EFAULT;
192 	}
193 
194 	/*
195 	 * Generate 16 random bytes for userspace PRNG seeding.
196 	 */
197 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
198 	u_rand_bytes = (elf_addr_t __user *)
199 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
200 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
201 		return -EFAULT;
202 
203 	/* Create the ELF interpreter info */
204 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
205 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
206 #define NEW_AUX_ENT(id, val) \
207 	do { \
208 		elf_info[ei_index++] = id; \
209 		elf_info[ei_index++] = val; \
210 	} while (0)
211 
212 #ifdef ARCH_DLINFO
213 	/*
214 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
215 	 * AUXV.
216 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
217 	 * ARCH_DLINFO changes
218 	 */
219 	ARCH_DLINFO;
220 #endif
221 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
222 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
223 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
224 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
225 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
226 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
227 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
228 	NEW_AUX_ENT(AT_FLAGS, 0);
229 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
230 	NEW_AUX_ENT(AT_UID, cred->uid);
231 	NEW_AUX_ENT(AT_EUID, cred->euid);
232 	NEW_AUX_ENT(AT_GID, cred->gid);
233 	NEW_AUX_ENT(AT_EGID, cred->egid);
234  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
235 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
236 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
237 	if (k_platform) {
238 		NEW_AUX_ENT(AT_PLATFORM,
239 			    (elf_addr_t)(unsigned long)u_platform);
240 	}
241 	if (k_base_platform) {
242 		NEW_AUX_ENT(AT_BASE_PLATFORM,
243 			    (elf_addr_t)(unsigned long)u_base_platform);
244 	}
245 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
246 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
247 	}
248 #undef NEW_AUX_ENT
249 	/* AT_NULL is zero; clear the rest too */
250 	memset(&elf_info[ei_index], 0,
251 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
252 
253 	/* And advance past the AT_NULL entry.  */
254 	ei_index += 2;
255 
256 	sp = STACK_ADD(p, ei_index);
257 
258 	items = (argc + 1) + (envc + 1) + 1;
259 	bprm->p = STACK_ROUND(sp, items);
260 
261 	/* Point sp at the lowest address on the stack */
262 #ifdef CONFIG_STACK_GROWSUP
263 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
264 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
265 #else
266 	sp = (elf_addr_t __user *)bprm->p;
267 #endif
268 
269 
270 	/*
271 	 * Grow the stack manually; some architectures have a limit on how
272 	 * far ahead a user-space access may be in order to grow the stack.
273 	 */
274 	vma = find_extend_vma(current->mm, bprm->p);
275 	if (!vma)
276 		return -EFAULT;
277 
278 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
279 	if (__put_user(argc, sp++))
280 		return -EFAULT;
281 	argv = sp;
282 	envp = argv + argc + 1;
283 
284 	/* Populate argv and envp */
285 	p = current->mm->arg_end = current->mm->arg_start;
286 	while (argc-- > 0) {
287 		size_t len;
288 		if (__put_user((elf_addr_t)p, argv++))
289 			return -EFAULT;
290 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
291 		if (!len || len > MAX_ARG_STRLEN)
292 			return -EINVAL;
293 		p += len;
294 	}
295 	if (__put_user(0, argv))
296 		return -EFAULT;
297 	current->mm->arg_end = current->mm->env_start = p;
298 	while (envc-- > 0) {
299 		size_t len;
300 		if (__put_user((elf_addr_t)p, envp++))
301 			return -EFAULT;
302 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
303 		if (!len || len > MAX_ARG_STRLEN)
304 			return -EINVAL;
305 		p += len;
306 	}
307 	if (__put_user(0, envp))
308 		return -EFAULT;
309 	current->mm->env_end = p;
310 
311 	/* Put the elf_info on the stack in the right place.  */
312 	sp = (elf_addr_t __user *)envp + 1;
313 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
314 		return -EFAULT;
315 	return 0;
316 }
317 
elf_map(struct file * filep,unsigned long addr,struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)318 static unsigned long elf_map(struct file *filep, unsigned long addr,
319 		struct elf_phdr *eppnt, int prot, int type,
320 		unsigned long total_size)
321 {
322 	unsigned long map_addr;
323 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
324 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
325 	addr = ELF_PAGESTART(addr);
326 	size = ELF_PAGEALIGN(size);
327 
328 	/* mmap() will return -EINVAL if given a zero size, but a
329 	 * segment with zero filesize is perfectly valid */
330 	if (!size)
331 		return addr;
332 
333 	down_write(&current->mm->mmap_sem);
334 	/*
335 	* total_size is the size of the ELF (interpreter) image.
336 	* The _first_ mmap needs to know the full size, otherwise
337 	* randomization might put this image into an overlapping
338 	* position with the ELF binary image. (since size < total_size)
339 	* So we first map the 'big' image - and unmap the remainder at
340 	* the end. (which unmap is needed for ELF images with holes.)
341 	*/
342 	if (total_size) {
343 		total_size = ELF_PAGEALIGN(total_size);
344 		map_addr = do_mmap(filep, addr, total_size, prot, type, off);
345 		if (!BAD_ADDR(map_addr))
346 			do_munmap(current->mm, map_addr+size, total_size-size);
347 	} else
348 		map_addr = do_mmap(filep, addr, size, prot, type, off);
349 
350 	up_write(&current->mm->mmap_sem);
351 	return(map_addr);
352 }
353 
total_mapping_size(struct elf_phdr * cmds,int nr)354 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
355 {
356 	int i, first_idx = -1, last_idx = -1;
357 
358 	for (i = 0; i < nr; i++) {
359 		if (cmds[i].p_type == PT_LOAD) {
360 			last_idx = i;
361 			if (first_idx == -1)
362 				first_idx = i;
363 		}
364 	}
365 	if (first_idx == -1)
366 		return 0;
367 
368 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
369 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
370 }
371 
372 
373 /* This is much more generalized than the library routine read function,
374    so we keep this separate.  Technically the library read function
375    is only provided so that we can read a.out libraries that have
376    an ELF header */
377 
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long * interp_map_addr,unsigned long no_base)378 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
379 		struct file *interpreter, unsigned long *interp_map_addr,
380 		unsigned long no_base)
381 {
382 	struct elf_phdr *elf_phdata;
383 	struct elf_phdr *eppnt;
384 	unsigned long load_addr = 0;
385 	int load_addr_set = 0;
386 	unsigned long last_bss = 0, elf_bss = 0;
387 	unsigned long error = ~0UL;
388 	unsigned long total_size;
389 	int retval, i, size;
390 
391 	/* First of all, some simple consistency checks */
392 	if (interp_elf_ex->e_type != ET_EXEC &&
393 	    interp_elf_ex->e_type != ET_DYN)
394 		goto out;
395 	if (!elf_check_arch(interp_elf_ex))
396 		goto out;
397 	if (!interpreter->f_op || !interpreter->f_op->mmap)
398 		goto out;
399 
400 	/*
401 	 * If the size of this structure has changed, then punt, since
402 	 * we will be doing the wrong thing.
403 	 */
404 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
405 		goto out;
406 	if (interp_elf_ex->e_phnum < 1 ||
407 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
408 		goto out;
409 
410 	/* Now read in all of the header information */
411 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
412 	if (size > ELF_MIN_ALIGN)
413 		goto out;
414 	elf_phdata = kmalloc(size, GFP_KERNEL);
415 	if (!elf_phdata)
416 		goto out;
417 
418 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
419 			     (char *)elf_phdata, size);
420 	error = -EIO;
421 	if (retval != size) {
422 		if (retval < 0)
423 			error = retval;
424 		goto out_close;
425 	}
426 
427 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
428 	if (!total_size) {
429 		error = -EINVAL;
430 		goto out_close;
431 	}
432 
433 	eppnt = elf_phdata;
434 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
435 		if (eppnt->p_type == PT_LOAD) {
436 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
437 			int elf_prot = 0;
438 			unsigned long vaddr = 0;
439 			unsigned long k, map_addr;
440 
441 			if (eppnt->p_flags & PF_R)
442 		    		elf_prot = PROT_READ;
443 			if (eppnt->p_flags & PF_W)
444 				elf_prot |= PROT_WRITE;
445 			if (eppnt->p_flags & PF_X)
446 				elf_prot |= PROT_EXEC;
447 			vaddr = eppnt->p_vaddr;
448 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
449 				elf_type |= MAP_FIXED;
450 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
451 				load_addr = -vaddr;
452 
453 			map_addr = elf_map(interpreter, load_addr + vaddr,
454 					eppnt, elf_prot, elf_type, total_size);
455 			total_size = 0;
456 			if (!*interp_map_addr)
457 				*interp_map_addr = map_addr;
458 			error = map_addr;
459 			if (BAD_ADDR(map_addr))
460 				goto out_close;
461 
462 			if (!load_addr_set &&
463 			    interp_elf_ex->e_type == ET_DYN) {
464 				load_addr = map_addr - ELF_PAGESTART(vaddr);
465 				load_addr_set = 1;
466 			}
467 
468 			/*
469 			 * Check to see if the section's size will overflow the
470 			 * allowed task size. Note that p_filesz must always be
471 			 * <= p_memsize so it's only necessary to check p_memsz.
472 			 */
473 			k = load_addr + eppnt->p_vaddr;
474 			if (BAD_ADDR(k) ||
475 			    eppnt->p_filesz > eppnt->p_memsz ||
476 			    eppnt->p_memsz > TASK_SIZE ||
477 			    TASK_SIZE - eppnt->p_memsz < k) {
478 				error = -ENOMEM;
479 				goto out_close;
480 			}
481 
482 			/*
483 			 * Find the end of the file mapping for this phdr, and
484 			 * keep track of the largest address we see for this.
485 			 */
486 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
487 			if (k > elf_bss)
488 				elf_bss = k;
489 
490 			/*
491 			 * Do the same thing for the memory mapping - between
492 			 * elf_bss and last_bss is the bss section.
493 			 */
494 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
495 			if (k > last_bss)
496 				last_bss = k;
497 		}
498 	}
499 
500 	if (last_bss > elf_bss) {
501 		/*
502 		 * Now fill out the bss section.  First pad the last page up
503 		 * to the page boundary, and then perform a mmap to make sure
504 		 * that there are zero-mapped pages up to and including the
505 		 * last bss page.
506 		 */
507 		if (padzero(elf_bss)) {
508 			error = -EFAULT;
509 			goto out_close;
510 		}
511 
512 		/* What we have mapped so far */
513 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
514 
515 		/* Map the last of the bss segment */
516 		down_write(&current->mm->mmap_sem);
517 		error = do_brk(elf_bss, last_bss - elf_bss);
518 		up_write(&current->mm->mmap_sem);
519 		if (BAD_ADDR(error))
520 			goto out_close;
521 	}
522 
523 	error = load_addr;
524 
525 out_close:
526 	kfree(elf_phdata);
527 out:
528 	return error;
529 }
530 
531 /*
532  * These are the functions used to load ELF style executables and shared
533  * libraries.  There is no binary dependent code anywhere else.
534  */
535 
536 #define INTERPRETER_NONE 0
537 #define INTERPRETER_ELF 2
538 
539 #ifndef STACK_RND_MASK
540 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
541 #endif
542 
randomize_stack_top(unsigned long stack_top)543 static unsigned long randomize_stack_top(unsigned long stack_top)
544 {
545 	unsigned int random_variable = 0;
546 
547 	if ((current->flags & PF_RANDOMIZE) &&
548 		!(current->personality & ADDR_NO_RANDOMIZE)) {
549 		random_variable = get_random_int() & STACK_RND_MASK;
550 		random_variable <<= PAGE_SHIFT;
551 	}
552 #ifdef CONFIG_STACK_GROWSUP
553 	return PAGE_ALIGN(stack_top) + random_variable;
554 #else
555 	return PAGE_ALIGN(stack_top) - random_variable;
556 #endif
557 }
558 
load_elf_binary(struct linux_binprm * bprm,struct pt_regs * regs)559 static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
560 {
561 	struct file *interpreter = NULL; /* to shut gcc up */
562  	unsigned long load_addr = 0, load_bias = 0;
563 	int load_addr_set = 0;
564 	char * elf_interpreter = NULL;
565 	unsigned long error;
566 	struct elf_phdr *elf_ppnt, *elf_phdata;
567 	unsigned long elf_bss, elf_brk;
568 	int retval, i;
569 	unsigned int size;
570 	unsigned long elf_entry;
571 	unsigned long interp_load_addr = 0;
572 	unsigned long start_code, end_code, start_data, end_data;
573 	unsigned long reloc_func_desc __maybe_unused = 0;
574 	int executable_stack = EXSTACK_DEFAULT;
575 	unsigned long def_flags = 0;
576 	struct {
577 		struct elfhdr elf_ex;
578 		struct elfhdr interp_elf_ex;
579 	} *loc;
580 
581 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
582 	if (!loc) {
583 		retval = -ENOMEM;
584 		goto out_ret;
585 	}
586 
587 	/* Get the exec-header */
588 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
589 
590 	retval = -ENOEXEC;
591 	/* First of all, some simple consistency checks */
592 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
593 		goto out;
594 
595 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
596 		goto out;
597 	if (!elf_check_arch(&loc->elf_ex))
598 		goto out;
599 	if (!bprm->file->f_op || !bprm->file->f_op->mmap)
600 		goto out;
601 
602 	/* Now read in all of the header information */
603 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
604 		goto out;
605 	if (loc->elf_ex.e_phnum < 1 ||
606 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
607 		goto out;
608 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
609 	retval = -ENOMEM;
610 	elf_phdata = kmalloc(size, GFP_KERNEL);
611 	if (!elf_phdata)
612 		goto out;
613 
614 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
615 			     (char *)elf_phdata, size);
616 	if (retval != size) {
617 		if (retval >= 0)
618 			retval = -EIO;
619 		goto out_free_ph;
620 	}
621 
622 	elf_ppnt = elf_phdata;
623 	elf_bss = 0;
624 	elf_brk = 0;
625 
626 	start_code = ~0UL;
627 	end_code = 0;
628 	start_data = 0;
629 	end_data = 0;
630 
631 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
632 		if (elf_ppnt->p_type == PT_INTERP) {
633 			/* This is the program interpreter used for
634 			 * shared libraries - for now assume that this
635 			 * is an a.out format binary
636 			 */
637 			retval = -ENOEXEC;
638 			if (elf_ppnt->p_filesz > PATH_MAX ||
639 			    elf_ppnt->p_filesz < 2)
640 				goto out_free_ph;
641 
642 			retval = -ENOMEM;
643 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
644 						  GFP_KERNEL);
645 			if (!elf_interpreter)
646 				goto out_free_ph;
647 
648 			retval = kernel_read(bprm->file, elf_ppnt->p_offset,
649 					     elf_interpreter,
650 					     elf_ppnt->p_filesz);
651 			if (retval != elf_ppnt->p_filesz) {
652 				if (retval >= 0)
653 					retval = -EIO;
654 				goto out_free_interp;
655 			}
656 			/* make sure path is NULL terminated */
657 			retval = -ENOEXEC;
658 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
659 				goto out_free_interp;
660 
661 			interpreter = open_exec(elf_interpreter);
662 			retval = PTR_ERR(interpreter);
663 			if (IS_ERR(interpreter))
664 				goto out_free_interp;
665 
666 			/*
667 			 * If the binary is not readable then enforce
668 			 * mm->dumpable = 0 regardless of the interpreter's
669 			 * permissions.
670 			 */
671 			if (file_permission(interpreter, MAY_READ) < 0)
672 				bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
673 
674 			retval = kernel_read(interpreter, 0, bprm->buf,
675 					     BINPRM_BUF_SIZE);
676 			if (retval != BINPRM_BUF_SIZE) {
677 				if (retval >= 0)
678 					retval = -EIO;
679 				goto out_free_dentry;
680 			}
681 
682 			/* Get the exec headers */
683 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
684 			break;
685 		}
686 		elf_ppnt++;
687 	}
688 
689 	elf_ppnt = elf_phdata;
690 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
691 		if (elf_ppnt->p_type == PT_GNU_STACK) {
692 			if (elf_ppnt->p_flags & PF_X)
693 				executable_stack = EXSTACK_ENABLE_X;
694 			else
695 				executable_stack = EXSTACK_DISABLE_X;
696 			break;
697 		}
698 
699 	/* Some simple consistency checks for the interpreter */
700 	if (elf_interpreter) {
701 		retval = -ELIBBAD;
702 		/* Not an ELF interpreter */
703 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
704 			goto out_free_dentry;
705 		/* Verify the interpreter has a valid arch */
706 		if (!elf_check_arch(&loc->interp_elf_ex))
707 			goto out_free_dentry;
708 	}
709 
710 	/* Flush all traces of the currently running executable */
711 	retval = flush_old_exec(bprm);
712 	if (retval)
713 		goto out_free_dentry;
714 
715 	/* OK, This is the point of no return */
716 	current->flags &= ~PF_FORKNOEXEC;
717 	current->mm->def_flags = def_flags;
718 
719 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
720 	   may depend on the personality.  */
721 	SET_PERSONALITY(loc->elf_ex);
722 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
723 		current->personality |= READ_IMPLIES_EXEC;
724 
725 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
726 		current->flags |= PF_RANDOMIZE;
727 
728 	setup_new_exec(bprm);
729 
730 	/* Do this so that we can load the interpreter, if need be.  We will
731 	   change some of these later */
732 	current->mm->free_area_cache = current->mm->mmap_base;
733 	current->mm->cached_hole_size = 0;
734 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
735 				 executable_stack);
736 	if (retval < 0) {
737 		send_sig(SIGKILL, current, 0);
738 		goto out_free_dentry;
739 	}
740 
741 	current->mm->start_stack = bprm->p;
742 
743 	/* Now we do a little grungy work by mmapping the ELF image into
744 	   the correct location in memory. */
745 	for(i = 0, elf_ppnt = elf_phdata;
746 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
747 		int elf_prot = 0, elf_flags;
748 		unsigned long k, vaddr;
749 
750 		if (elf_ppnt->p_type != PT_LOAD)
751 			continue;
752 
753 		if (unlikely (elf_brk > elf_bss)) {
754 			unsigned long nbyte;
755 
756 			/* There was a PT_LOAD segment with p_memsz > p_filesz
757 			   before this one. Map anonymous pages, if needed,
758 			   and clear the area.  */
759 			retval = set_brk(elf_bss + load_bias,
760 					 elf_brk + load_bias);
761 			if (retval) {
762 				send_sig(SIGKILL, current, 0);
763 				goto out_free_dentry;
764 			}
765 			nbyte = ELF_PAGEOFFSET(elf_bss);
766 			if (nbyte) {
767 				nbyte = ELF_MIN_ALIGN - nbyte;
768 				if (nbyte > elf_brk - elf_bss)
769 					nbyte = elf_brk - elf_bss;
770 				if (clear_user((void __user *)elf_bss +
771 							load_bias, nbyte)) {
772 					/*
773 					 * This bss-zeroing can fail if the ELF
774 					 * file specifies odd protections. So
775 					 * we don't check the return value
776 					 */
777 				}
778 			}
779 		}
780 
781 		if (elf_ppnt->p_flags & PF_R)
782 			elf_prot |= PROT_READ;
783 		if (elf_ppnt->p_flags & PF_W)
784 			elf_prot |= PROT_WRITE;
785 		if (elf_ppnt->p_flags & PF_X)
786 			elf_prot |= PROT_EXEC;
787 
788 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
789 
790 		vaddr = elf_ppnt->p_vaddr;
791 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
792 			elf_flags |= MAP_FIXED;
793 		} else if (loc->elf_ex.e_type == ET_DYN) {
794 			/* Try and get dynamic programs out of the way of the
795 			 * default mmap base, as well as whatever program they
796 			 * might try to exec.  This is because the brk will
797 			 * follow the loader, and is not movable.  */
798 #if defined(CONFIG_X86) || defined(CONFIG_ARM)
799 			load_bias = 0;
800 #else
801 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
802 #endif
803 		}
804 
805 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
806 				elf_prot, elf_flags, 0);
807 		if (BAD_ADDR(error)) {
808 			send_sig(SIGKILL, current, 0);
809 			retval = IS_ERR((void *)error) ?
810 				PTR_ERR((void*)error) : -EINVAL;
811 			goto out_free_dentry;
812 		}
813 
814 		if (!load_addr_set) {
815 			load_addr_set = 1;
816 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
817 			if (loc->elf_ex.e_type == ET_DYN) {
818 				load_bias += error -
819 				             ELF_PAGESTART(load_bias + vaddr);
820 				load_addr += load_bias;
821 				reloc_func_desc = load_bias;
822 			}
823 		}
824 		k = elf_ppnt->p_vaddr;
825 		if (k < start_code)
826 			start_code = k;
827 		if (start_data < k)
828 			start_data = k;
829 
830 		/*
831 		 * Check to see if the section's size will overflow the
832 		 * allowed task size. Note that p_filesz must always be
833 		 * <= p_memsz so it is only necessary to check p_memsz.
834 		 */
835 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
836 		    elf_ppnt->p_memsz > TASK_SIZE ||
837 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
838 			/* set_brk can never work. Avoid overflows. */
839 			send_sig(SIGKILL, current, 0);
840 			retval = -EINVAL;
841 			goto out_free_dentry;
842 		}
843 
844 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
845 
846 		if (k > elf_bss)
847 			elf_bss = k;
848 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
849 			end_code = k;
850 		if (end_data < k)
851 			end_data = k;
852 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
853 		if (k > elf_brk)
854 			elf_brk = k;
855 	}
856 
857 	loc->elf_ex.e_entry += load_bias;
858 	elf_bss += load_bias;
859 	elf_brk += load_bias;
860 	start_code += load_bias;
861 	end_code += load_bias;
862 	start_data += load_bias;
863 	end_data += load_bias;
864 
865 	/* Calling set_brk effectively mmaps the pages that we need
866 	 * for the bss and break sections.  We must do this before
867 	 * mapping in the interpreter, to make sure it doesn't wind
868 	 * up getting placed where the bss needs to go.
869 	 */
870 	retval = set_brk(elf_bss, elf_brk);
871 	if (retval) {
872 		send_sig(SIGKILL, current, 0);
873 		goto out_free_dentry;
874 	}
875 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
876 		send_sig(SIGSEGV, current, 0);
877 		retval = -EFAULT; /* Nobody gets to see this, but.. */
878 		goto out_free_dentry;
879 	}
880 
881 	if (elf_interpreter) {
882 		unsigned long uninitialized_var(interp_map_addr);
883 
884 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
885 					    interpreter,
886 					    &interp_map_addr,
887 					    load_bias);
888 		if (!IS_ERR((void *)elf_entry)) {
889 			/*
890 			 * load_elf_interp() returns relocation
891 			 * adjustment
892 			 */
893 			interp_load_addr = elf_entry;
894 			elf_entry += loc->interp_elf_ex.e_entry;
895 		}
896 		if (BAD_ADDR(elf_entry)) {
897 			force_sig(SIGSEGV, current);
898 			retval = IS_ERR((void *)elf_entry) ?
899 					(int)elf_entry : -EINVAL;
900 			goto out_free_dentry;
901 		}
902 		reloc_func_desc = interp_load_addr;
903 
904 		allow_write_access(interpreter);
905 		fput(interpreter);
906 		kfree(elf_interpreter);
907 	} else {
908 		elf_entry = loc->elf_ex.e_entry;
909 		if (BAD_ADDR(elf_entry)) {
910 			force_sig(SIGSEGV, current);
911 			retval = -EINVAL;
912 			goto out_free_dentry;
913 		}
914 	}
915 
916 	kfree(elf_phdata);
917 
918 	set_binfmt(&elf_format);
919 
920 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
921 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
922 	if (retval < 0) {
923 		send_sig(SIGKILL, current, 0);
924 		goto out;
925 	}
926 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
927 
928 	install_exec_creds(bprm);
929 	current->flags &= ~PF_FORKNOEXEC;
930 	retval = create_elf_tables(bprm, &loc->elf_ex,
931 			  load_addr, interp_load_addr);
932 	if (retval < 0) {
933 		send_sig(SIGKILL, current, 0);
934 		goto out;
935 	}
936 	/* N.B. passed_fileno might not be initialized? */
937 	current->mm->end_code = end_code;
938 	current->mm->start_code = start_code;
939 	current->mm->start_data = start_data;
940 	current->mm->end_data = end_data;
941 	current->mm->start_stack = bprm->p;
942 
943 #ifdef arch_randomize_brk
944 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
945 		current->mm->brk = current->mm->start_brk =
946 			arch_randomize_brk(current->mm);
947 #ifdef CONFIG_COMPAT_BRK
948 		current->brk_randomized = 1;
949 #endif
950 	}
951 #endif
952 
953 	if (current->personality & MMAP_PAGE_ZERO) {
954 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
955 		   and some applications "depend" upon this behavior.
956 		   Since we do not have the power to recompile these, we
957 		   emulate the SVr4 behavior. Sigh. */
958 		down_write(&current->mm->mmap_sem);
959 		error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
960 				MAP_FIXED | MAP_PRIVATE, 0);
961 		up_write(&current->mm->mmap_sem);
962 	}
963 
964 #ifdef ELF_PLAT_INIT
965 	/*
966 	 * The ABI may specify that certain registers be set up in special
967 	 * ways (on i386 %edx is the address of a DT_FINI function, for
968 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
969 	 * that the e_entry field is the address of the function descriptor
970 	 * for the startup routine, rather than the address of the startup
971 	 * routine itself.  This macro performs whatever initialization to
972 	 * the regs structure is required as well as any relocations to the
973 	 * function descriptor entries when executing dynamically links apps.
974 	 */
975 	ELF_PLAT_INIT(regs, reloc_func_desc);
976 #endif
977 
978 	start_thread(regs, elf_entry, bprm->p);
979 	retval = 0;
980 out:
981 	kfree(loc);
982 out_ret:
983 	return retval;
984 
985 	/* error cleanup */
986 out_free_dentry:
987 	allow_write_access(interpreter);
988 	if (interpreter)
989 		fput(interpreter);
990 out_free_interp:
991 	kfree(elf_interpreter);
992 out_free_ph:
993 	kfree(elf_phdata);
994 	goto out;
995 }
996 
997 /* This is really simpleminded and specialized - we are loading an
998    a.out library that is given an ELF header. */
load_elf_library(struct file * file)999 static int load_elf_library(struct file *file)
1000 {
1001 	struct elf_phdr *elf_phdata;
1002 	struct elf_phdr *eppnt;
1003 	unsigned long elf_bss, bss, len;
1004 	int retval, error, i, j;
1005 	struct elfhdr elf_ex;
1006 
1007 	error = -ENOEXEC;
1008 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1009 	if (retval != sizeof(elf_ex))
1010 		goto out;
1011 
1012 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1013 		goto out;
1014 
1015 	/* First of all, some simple consistency checks */
1016 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1017 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap)
1018 		goto out;
1019 
1020 	/* Now read in all of the header information */
1021 
1022 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1023 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1024 
1025 	error = -ENOMEM;
1026 	elf_phdata = kmalloc(j, GFP_KERNEL);
1027 	if (!elf_phdata)
1028 		goto out;
1029 
1030 	eppnt = elf_phdata;
1031 	error = -ENOEXEC;
1032 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1033 	if (retval != j)
1034 		goto out_free_ph;
1035 
1036 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1037 		if ((eppnt + i)->p_type == PT_LOAD)
1038 			j++;
1039 	if (j != 1)
1040 		goto out_free_ph;
1041 
1042 	while (eppnt->p_type != PT_LOAD)
1043 		eppnt++;
1044 
1045 	/* Now use mmap to map the library into memory. */
1046 	down_write(&current->mm->mmap_sem);
1047 	error = do_mmap(file,
1048 			ELF_PAGESTART(eppnt->p_vaddr),
1049 			(eppnt->p_filesz +
1050 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1051 			PROT_READ | PROT_WRITE | PROT_EXEC,
1052 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1053 			(eppnt->p_offset -
1054 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1055 	up_write(&current->mm->mmap_sem);
1056 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1057 		goto out_free_ph;
1058 
1059 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1060 	if (padzero(elf_bss)) {
1061 		error = -EFAULT;
1062 		goto out_free_ph;
1063 	}
1064 
1065 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1066 			    ELF_MIN_ALIGN - 1);
1067 	bss = eppnt->p_memsz + eppnt->p_vaddr;
1068 	if (bss > len) {
1069 		down_write(&current->mm->mmap_sem);
1070 		do_brk(len, bss - len);
1071 		up_write(&current->mm->mmap_sem);
1072 	}
1073 	error = 0;
1074 
1075 out_free_ph:
1076 	kfree(elf_phdata);
1077 out:
1078 	return error;
1079 }
1080 
1081 #ifdef CONFIG_ELF_CORE
1082 /*
1083  * ELF core dumper
1084  *
1085  * Modelled on fs/exec.c:aout_core_dump()
1086  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1087  */
1088 
1089 /*
1090  * Decide what to dump of a segment, part, all or none.
1091  */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1092 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1093 				   unsigned long mm_flags)
1094 {
1095 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1096 
1097 	/* The vma can be set up to tell us the answer directly.  */
1098 	if (vma->vm_flags & VM_ALWAYSDUMP)
1099 		goto whole;
1100 
1101 	/* Hugetlb memory check */
1102 	if (vma->vm_flags & VM_HUGETLB) {
1103 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1104 			goto whole;
1105 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1106 			goto whole;
1107 	}
1108 
1109 	/* Do not dump I/O mapped devices or special mappings */
1110 	if (vma->vm_flags & (VM_IO | VM_RESERVED))
1111 		return 0;
1112 
1113 	/* By default, dump shared memory if mapped from an anonymous file. */
1114 	if (vma->vm_flags & VM_SHARED) {
1115 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ?
1116 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1117 			goto whole;
1118 		return 0;
1119 	}
1120 
1121 	/* Dump segments that have been written to.  */
1122 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1123 		goto whole;
1124 	if (vma->vm_file == NULL)
1125 		return 0;
1126 
1127 	if (FILTER(MAPPED_PRIVATE))
1128 		goto whole;
1129 
1130 	/*
1131 	 * If this looks like the beginning of a DSO or executable mapping,
1132 	 * check for an ELF header.  If we find one, dump the first page to
1133 	 * aid in determining what was mapped here.
1134 	 */
1135 	if (FILTER(ELF_HEADERS) &&
1136 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1137 		u32 __user *header = (u32 __user *) vma->vm_start;
1138 		u32 word;
1139 		mm_segment_t fs = get_fs();
1140 		/*
1141 		 * Doing it this way gets the constant folded by GCC.
1142 		 */
1143 		union {
1144 			u32 cmp;
1145 			char elfmag[SELFMAG];
1146 		} magic;
1147 		BUILD_BUG_ON(SELFMAG != sizeof word);
1148 		magic.elfmag[EI_MAG0] = ELFMAG0;
1149 		magic.elfmag[EI_MAG1] = ELFMAG1;
1150 		magic.elfmag[EI_MAG2] = ELFMAG2;
1151 		magic.elfmag[EI_MAG3] = ELFMAG3;
1152 		/*
1153 		 * Switch to the user "segment" for get_user(),
1154 		 * then put back what elf_core_dump() had in place.
1155 		 */
1156 		set_fs(USER_DS);
1157 		if (unlikely(get_user(word, header)))
1158 			word = 0;
1159 		set_fs(fs);
1160 		if (word == magic.cmp)
1161 			return PAGE_SIZE;
1162 	}
1163 
1164 #undef	FILTER
1165 
1166 	return 0;
1167 
1168 whole:
1169 	return vma->vm_end - vma->vm_start;
1170 }
1171 
1172 /* An ELF note in memory */
1173 struct memelfnote
1174 {
1175 	const char *name;
1176 	int type;
1177 	unsigned int datasz;
1178 	void *data;
1179 };
1180 
notesize(struct memelfnote * en)1181 static int notesize(struct memelfnote *en)
1182 {
1183 	int sz;
1184 
1185 	sz = sizeof(struct elf_note);
1186 	sz += roundup(strlen(en->name) + 1, 4);
1187 	sz += roundup(en->datasz, 4);
1188 
1189 	return sz;
1190 }
1191 
1192 #define DUMP_WRITE(addr, nr, foffset)	\
1193 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1194 
alignfile(struct file * file,loff_t * foffset)1195 static int alignfile(struct file *file, loff_t *foffset)
1196 {
1197 	static const char buf[4] = { 0, };
1198 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset);
1199 	return 1;
1200 }
1201 
writenote(struct memelfnote * men,struct file * file,loff_t * foffset)1202 static int writenote(struct memelfnote *men, struct file *file,
1203 			loff_t *foffset)
1204 {
1205 	struct elf_note en;
1206 	en.n_namesz = strlen(men->name) + 1;
1207 	en.n_descsz = men->datasz;
1208 	en.n_type = men->type;
1209 
1210 	DUMP_WRITE(&en, sizeof(en), foffset);
1211 	DUMP_WRITE(men->name, en.n_namesz, foffset);
1212 	if (!alignfile(file, foffset))
1213 		return 0;
1214 	DUMP_WRITE(men->data, men->datasz, foffset);
1215 	if (!alignfile(file, foffset))
1216 		return 0;
1217 
1218 	return 1;
1219 }
1220 #undef DUMP_WRITE
1221 
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags,u8 osabi)1222 static void fill_elf_header(struct elfhdr *elf, int segs,
1223 			    u16 machine, u32 flags, u8 osabi)
1224 {
1225 	memset(elf, 0, sizeof(*elf));
1226 
1227 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1228 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1229 	elf->e_ident[EI_DATA] = ELF_DATA;
1230 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1231 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1232 
1233 	elf->e_type = ET_CORE;
1234 	elf->e_machine = machine;
1235 	elf->e_version = EV_CURRENT;
1236 	elf->e_phoff = sizeof(struct elfhdr);
1237 	elf->e_flags = flags;
1238 	elf->e_ehsize = sizeof(struct elfhdr);
1239 	elf->e_phentsize = sizeof(struct elf_phdr);
1240 	elf->e_phnum = segs;
1241 
1242 	return;
1243 }
1244 
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1245 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1246 {
1247 	phdr->p_type = PT_NOTE;
1248 	phdr->p_offset = offset;
1249 	phdr->p_vaddr = 0;
1250 	phdr->p_paddr = 0;
1251 	phdr->p_filesz = sz;
1252 	phdr->p_memsz = 0;
1253 	phdr->p_flags = 0;
1254 	phdr->p_align = 0;
1255 	return;
1256 }
1257 
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1258 static void fill_note(struct memelfnote *note, const char *name, int type,
1259 		unsigned int sz, void *data)
1260 {
1261 	note->name = name;
1262 	note->type = type;
1263 	note->datasz = sz;
1264 	note->data = data;
1265 	return;
1266 }
1267 
1268 /*
1269  * fill up all the fields in prstatus from the given task struct, except
1270  * registers which need to be filled up separately.
1271  */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1272 static void fill_prstatus(struct elf_prstatus *prstatus,
1273 		struct task_struct *p, long signr)
1274 {
1275 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1276 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1277 	prstatus->pr_sighold = p->blocked.sig[0];
1278 	rcu_read_lock();
1279 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1280 	rcu_read_unlock();
1281 	prstatus->pr_pid = task_pid_vnr(p);
1282 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1283 	prstatus->pr_sid = task_session_vnr(p);
1284 	if (thread_group_leader(p)) {
1285 		struct task_cputime cputime;
1286 
1287 		/*
1288 		 * This is the record for the group leader.  It shows the
1289 		 * group-wide total, not its individual thread total.
1290 		 */
1291 		thread_group_cputime(p, &cputime);
1292 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1293 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1294 	} else {
1295 		cputime_to_timeval(p->utime, &prstatus->pr_utime);
1296 		cputime_to_timeval(p->stime, &prstatus->pr_stime);
1297 	}
1298 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1299 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1300 }
1301 
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1302 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1303 		       struct mm_struct *mm)
1304 {
1305 	const struct cred *cred;
1306 	unsigned int i, len;
1307 
1308 	/* first copy the parameters from user space */
1309 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1310 
1311 	len = mm->arg_end - mm->arg_start;
1312 	if (len >= ELF_PRARGSZ)
1313 		len = ELF_PRARGSZ-1;
1314 	if (copy_from_user(&psinfo->pr_psargs,
1315 		           (const char __user *)mm->arg_start, len))
1316 		return -EFAULT;
1317 	for(i = 0; i < len; i++)
1318 		if (psinfo->pr_psargs[i] == 0)
1319 			psinfo->pr_psargs[i] = ' ';
1320 	psinfo->pr_psargs[len] = 0;
1321 
1322 	rcu_read_lock();
1323 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1324 	rcu_read_unlock();
1325 	psinfo->pr_pid = task_pid_vnr(p);
1326 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1327 	psinfo->pr_sid = task_session_vnr(p);
1328 
1329 	i = p->state ? ffz(~p->state) + 1 : 0;
1330 	psinfo->pr_state = i;
1331 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1332 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1333 	psinfo->pr_nice = task_nice(p);
1334 	psinfo->pr_flag = p->flags;
1335 	rcu_read_lock();
1336 	cred = __task_cred(p);
1337 	SET_UID(psinfo->pr_uid, cred->uid);
1338 	SET_GID(psinfo->pr_gid, cred->gid);
1339 	rcu_read_unlock();
1340 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1341 
1342 	return 0;
1343 }
1344 
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1345 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1346 {
1347 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1348 	int i = 0;
1349 	do
1350 		i += 2;
1351 	while (auxv[i - 2] != AT_NULL);
1352 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1353 }
1354 
1355 #ifdef CORE_DUMP_USE_REGSET
1356 #include <linux/regset.h>
1357 
1358 struct elf_thread_core_info {
1359 	struct elf_thread_core_info *next;
1360 	struct task_struct *task;
1361 	struct elf_prstatus prstatus;
1362 	struct memelfnote notes[0];
1363 };
1364 
1365 struct elf_note_info {
1366 	struct elf_thread_core_info *thread;
1367 	struct memelfnote psinfo;
1368 	struct memelfnote auxv;
1369 	size_t size;
1370 	int thread_notes;
1371 };
1372 
1373 /*
1374  * When a regset has a writeback hook, we call it on each thread before
1375  * dumping user memory.  On register window machines, this makes sure the
1376  * user memory backing the register data is up to date before we read it.
1377  */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1378 static void do_thread_regset_writeback(struct task_struct *task,
1379 				       const struct user_regset *regset)
1380 {
1381 	if (regset->writeback)
1382 		regset->writeback(task, regset, 1);
1383 }
1384 
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1385 static int fill_thread_core_info(struct elf_thread_core_info *t,
1386 				 const struct user_regset_view *view,
1387 				 long signr, size_t *total)
1388 {
1389 	unsigned int i;
1390 
1391 	/*
1392 	 * NT_PRSTATUS is the one special case, because the regset data
1393 	 * goes into the pr_reg field inside the note contents, rather
1394 	 * than being the whole note contents.  We fill the reset in here.
1395 	 * We assume that regset 0 is NT_PRSTATUS.
1396 	 */
1397 	fill_prstatus(&t->prstatus, t->task, signr);
1398 	(void) view->regsets[0].get(t->task, &view->regsets[0],
1399 				    0, sizeof(t->prstatus.pr_reg),
1400 				    &t->prstatus.pr_reg, NULL);
1401 
1402 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1403 		  sizeof(t->prstatus), &t->prstatus);
1404 	*total += notesize(&t->notes[0]);
1405 
1406 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1407 
1408 	/*
1409 	 * Each other regset might generate a note too.  For each regset
1410 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1411 	 * all zero and we'll know to skip writing it later.
1412 	 */
1413 	for (i = 1; i < view->n; ++i) {
1414 		const struct user_regset *regset = &view->regsets[i];
1415 		do_thread_regset_writeback(t->task, regset);
1416 		if (regset->core_note_type &&
1417 		    (!regset->active || regset->active(t->task, regset))) {
1418 			int ret;
1419 			size_t size = regset->n * regset->size;
1420 			void *data = kmalloc(size, GFP_KERNEL);
1421 			if (unlikely(!data))
1422 				return 0;
1423 			ret = regset->get(t->task, regset,
1424 					  0, size, data, NULL);
1425 			if (unlikely(ret))
1426 				kfree(data);
1427 			else {
1428 				if (regset->core_note_type != NT_PRFPREG)
1429 					fill_note(&t->notes[i], "LINUX",
1430 						  regset->core_note_type,
1431 						  size, data);
1432 				else {
1433 					t->prstatus.pr_fpvalid = 1;
1434 					fill_note(&t->notes[i], "CORE",
1435 						  NT_PRFPREG, size, data);
1436 				}
1437 				*total += notesize(&t->notes[i]);
1438 			}
1439 		}
1440 	}
1441 
1442 	return 1;
1443 }
1444 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,long signr,struct pt_regs * regs)1445 static int fill_note_info(struct elfhdr *elf, int phdrs,
1446 			  struct elf_note_info *info,
1447 			  long signr, struct pt_regs *regs)
1448 {
1449 	struct task_struct *dump_task = current;
1450 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1451 	struct elf_thread_core_info *t;
1452 	struct elf_prpsinfo *psinfo;
1453 	struct core_thread *ct;
1454 	unsigned int i;
1455 
1456 	info->size = 0;
1457 	info->thread = NULL;
1458 
1459 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1460 	if (psinfo == NULL)
1461 		return 0;
1462 
1463 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1464 
1465 	/*
1466 	 * Figure out how many notes we're going to need for each thread.
1467 	 */
1468 	info->thread_notes = 0;
1469 	for (i = 0; i < view->n; ++i)
1470 		if (view->regsets[i].core_note_type != 0)
1471 			++info->thread_notes;
1472 
1473 	/*
1474 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1475 	 * since it is our one special case.
1476 	 */
1477 	if (unlikely(info->thread_notes == 0) ||
1478 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1479 		WARN_ON(1);
1480 		return 0;
1481 	}
1482 
1483 	/*
1484 	 * Initialize the ELF file header.
1485 	 */
1486 	fill_elf_header(elf, phdrs,
1487 			view->e_machine, view->e_flags, view->ei_osabi);
1488 
1489 	/*
1490 	 * Allocate a structure for each thread.
1491 	 */
1492 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1493 		t = kzalloc(offsetof(struct elf_thread_core_info,
1494 				     notes[info->thread_notes]),
1495 			    GFP_KERNEL);
1496 		if (unlikely(!t))
1497 			return 0;
1498 
1499 		t->task = ct->task;
1500 		if (ct->task == dump_task || !info->thread) {
1501 			t->next = info->thread;
1502 			info->thread = t;
1503 		} else {
1504 			/*
1505 			 * Make sure to keep the original task at
1506 			 * the head of the list.
1507 			 */
1508 			t->next = info->thread->next;
1509 			info->thread->next = t;
1510 		}
1511 	}
1512 
1513 	/*
1514 	 * Now fill in each thread's information.
1515 	 */
1516 	for (t = info->thread; t != NULL; t = t->next)
1517 		if (!fill_thread_core_info(t, view, signr, &info->size))
1518 			return 0;
1519 
1520 	/*
1521 	 * Fill in the two process-wide notes.
1522 	 */
1523 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1524 	info->size += notesize(&info->psinfo);
1525 
1526 	fill_auxv_note(&info->auxv, current->mm);
1527 	info->size += notesize(&info->auxv);
1528 
1529 	return 1;
1530 }
1531 
get_note_info_size(struct elf_note_info * info)1532 static size_t get_note_info_size(struct elf_note_info *info)
1533 {
1534 	return info->size;
1535 }
1536 
1537 /*
1538  * Write all the notes for each thread.  When writing the first thread, the
1539  * process-wide notes are interleaved after the first thread-specific note.
1540  */
write_note_info(struct elf_note_info * info,struct file * file,loff_t * foffset)1541 static int write_note_info(struct elf_note_info *info,
1542 			   struct file *file, loff_t *foffset)
1543 {
1544 	bool first = 1;
1545 	struct elf_thread_core_info *t = info->thread;
1546 
1547 	do {
1548 		int i;
1549 
1550 		if (!writenote(&t->notes[0], file, foffset))
1551 			return 0;
1552 
1553 		if (first && !writenote(&info->psinfo, file, foffset))
1554 			return 0;
1555 		if (first && !writenote(&info->auxv, file, foffset))
1556 			return 0;
1557 
1558 		for (i = 1; i < info->thread_notes; ++i)
1559 			if (t->notes[i].data &&
1560 			    !writenote(&t->notes[i], file, foffset))
1561 				return 0;
1562 
1563 		first = 0;
1564 		t = t->next;
1565 	} while (t);
1566 
1567 	return 1;
1568 }
1569 
free_note_info(struct elf_note_info * info)1570 static void free_note_info(struct elf_note_info *info)
1571 {
1572 	struct elf_thread_core_info *threads = info->thread;
1573 	while (threads) {
1574 		unsigned int i;
1575 		struct elf_thread_core_info *t = threads;
1576 		threads = t->next;
1577 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1578 		for (i = 1; i < info->thread_notes; ++i)
1579 			kfree(t->notes[i].data);
1580 		kfree(t);
1581 	}
1582 	kfree(info->psinfo.data);
1583 }
1584 
1585 #else
1586 
1587 /* Here is the structure in which status of each thread is captured. */
1588 struct elf_thread_status
1589 {
1590 	struct list_head list;
1591 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1592 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1593 	struct task_struct *thread;
1594 #ifdef ELF_CORE_COPY_XFPREGS
1595 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1596 #endif
1597 	struct memelfnote notes[3];
1598 	int num_notes;
1599 };
1600 
1601 /*
1602  * In order to add the specific thread information for the elf file format,
1603  * we need to keep a linked list of every threads pr_status and then create
1604  * a single section for them in the final core file.
1605  */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1606 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1607 {
1608 	int sz = 0;
1609 	struct task_struct *p = t->thread;
1610 	t->num_notes = 0;
1611 
1612 	fill_prstatus(&t->prstatus, p, signr);
1613 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1614 
1615 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1616 		  &(t->prstatus));
1617 	t->num_notes++;
1618 	sz += notesize(&t->notes[0]);
1619 
1620 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1621 								&t->fpu))) {
1622 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1623 			  &(t->fpu));
1624 		t->num_notes++;
1625 		sz += notesize(&t->notes[1]);
1626 	}
1627 
1628 #ifdef ELF_CORE_COPY_XFPREGS
1629 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1630 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1631 			  sizeof(t->xfpu), &t->xfpu);
1632 		t->num_notes++;
1633 		sz += notesize(&t->notes[2]);
1634 	}
1635 #endif
1636 	return sz;
1637 }
1638 
1639 struct elf_note_info {
1640 	struct memelfnote *notes;
1641 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1642 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1643 	struct list_head thread_list;
1644 	elf_fpregset_t *fpu;
1645 #ifdef ELF_CORE_COPY_XFPREGS
1646 	elf_fpxregset_t *xfpu;
1647 #endif
1648 	int thread_status_size;
1649 	int numnote;
1650 };
1651 
elf_note_info_init(struct elf_note_info * info)1652 static int elf_note_info_init(struct elf_note_info *info)
1653 {
1654 	memset(info, 0, sizeof(*info));
1655 	INIT_LIST_HEAD(&info->thread_list);
1656 
1657 	/* Allocate space for six ELF notes */
1658 	info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL);
1659 	if (!info->notes)
1660 		return 0;
1661 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1662 	if (!info->psinfo)
1663 		goto notes_free;
1664 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1665 	if (!info->prstatus)
1666 		goto psinfo_free;
1667 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1668 	if (!info->fpu)
1669 		goto prstatus_free;
1670 #ifdef ELF_CORE_COPY_XFPREGS
1671 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1672 	if (!info->xfpu)
1673 		goto fpu_free;
1674 #endif
1675 	return 1;
1676 #ifdef ELF_CORE_COPY_XFPREGS
1677  fpu_free:
1678 	kfree(info->fpu);
1679 #endif
1680  prstatus_free:
1681 	kfree(info->prstatus);
1682  psinfo_free:
1683 	kfree(info->psinfo);
1684  notes_free:
1685 	kfree(info->notes);
1686 	return 0;
1687 }
1688 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,long signr,struct pt_regs * regs)1689 static int fill_note_info(struct elfhdr *elf, int phdrs,
1690 			  struct elf_note_info *info,
1691 			  long signr, struct pt_regs *regs)
1692 {
1693 	struct list_head *t;
1694 
1695 	if (!elf_note_info_init(info))
1696 		return 0;
1697 
1698 	if (signr) {
1699 		struct core_thread *ct;
1700 		struct elf_thread_status *ets;
1701 
1702 		for (ct = current->mm->core_state->dumper.next;
1703 						ct; ct = ct->next) {
1704 			ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1705 			if (!ets)
1706 				return 0;
1707 
1708 			ets->thread = ct->task;
1709 			list_add(&ets->list, &info->thread_list);
1710 		}
1711 
1712 		list_for_each(t, &info->thread_list) {
1713 			int sz;
1714 
1715 			ets = list_entry(t, struct elf_thread_status, list);
1716 			sz = elf_dump_thread_status(signr, ets);
1717 			info->thread_status_size += sz;
1718 		}
1719 	}
1720 	/* now collect the dump for the current */
1721 	memset(info->prstatus, 0, sizeof(*info->prstatus));
1722 	fill_prstatus(info->prstatus, current, signr);
1723 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1724 
1725 	/* Set up header */
1726 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI);
1727 
1728 	/*
1729 	 * Set up the notes in similar form to SVR4 core dumps made
1730 	 * with info from their /proc.
1731 	 */
1732 
1733 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1734 		  sizeof(*info->prstatus), info->prstatus);
1735 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
1736 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1737 		  sizeof(*info->psinfo), info->psinfo);
1738 
1739 	info->numnote = 2;
1740 
1741 	fill_auxv_note(&info->notes[info->numnote++], current->mm);
1742 
1743 	/* Try to dump the FPU. */
1744 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1745 							       info->fpu);
1746 	if (info->prstatus->pr_fpvalid)
1747 		fill_note(info->notes + info->numnote++,
1748 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1749 #ifdef ELF_CORE_COPY_XFPREGS
1750 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
1751 		fill_note(info->notes + info->numnote++,
1752 			  "LINUX", ELF_CORE_XFPREG_TYPE,
1753 			  sizeof(*info->xfpu), info->xfpu);
1754 #endif
1755 
1756 	return 1;
1757 }
1758 
get_note_info_size(struct elf_note_info * info)1759 static size_t get_note_info_size(struct elf_note_info *info)
1760 {
1761 	int sz = 0;
1762 	int i;
1763 
1764 	for (i = 0; i < info->numnote; i++)
1765 		sz += notesize(info->notes + i);
1766 
1767 	sz += info->thread_status_size;
1768 
1769 	return sz;
1770 }
1771 
write_note_info(struct elf_note_info * info,struct file * file,loff_t * foffset)1772 static int write_note_info(struct elf_note_info *info,
1773 			   struct file *file, loff_t *foffset)
1774 {
1775 	int i;
1776 	struct list_head *t;
1777 
1778 	for (i = 0; i < info->numnote; i++)
1779 		if (!writenote(info->notes + i, file, foffset))
1780 			return 0;
1781 
1782 	/* write out the thread status notes section */
1783 	list_for_each(t, &info->thread_list) {
1784 		struct elf_thread_status *tmp =
1785 				list_entry(t, struct elf_thread_status, list);
1786 
1787 		for (i = 0; i < tmp->num_notes; i++)
1788 			if (!writenote(&tmp->notes[i], file, foffset))
1789 				return 0;
1790 	}
1791 
1792 	return 1;
1793 }
1794 
free_note_info(struct elf_note_info * info)1795 static void free_note_info(struct elf_note_info *info)
1796 {
1797 	while (!list_empty(&info->thread_list)) {
1798 		struct list_head *tmp = info->thread_list.next;
1799 		list_del(tmp);
1800 		kfree(list_entry(tmp, struct elf_thread_status, list));
1801 	}
1802 
1803 	kfree(info->prstatus);
1804 	kfree(info->psinfo);
1805 	kfree(info->notes);
1806 	kfree(info->fpu);
1807 #ifdef ELF_CORE_COPY_XFPREGS
1808 	kfree(info->xfpu);
1809 #endif
1810 }
1811 
1812 #endif
1813 
first_vma(struct task_struct * tsk,struct vm_area_struct * gate_vma)1814 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1815 					struct vm_area_struct *gate_vma)
1816 {
1817 	struct vm_area_struct *ret = tsk->mm->mmap;
1818 
1819 	if (ret)
1820 		return ret;
1821 	return gate_vma;
1822 }
1823 /*
1824  * Helper function for iterating across a vma list.  It ensures that the caller
1825  * will visit `gate_vma' prior to terminating the search.
1826  */
next_vma(struct vm_area_struct * this_vma,struct vm_area_struct * gate_vma)1827 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1828 					struct vm_area_struct *gate_vma)
1829 {
1830 	struct vm_area_struct *ret;
1831 
1832 	ret = this_vma->vm_next;
1833 	if (ret)
1834 		return ret;
1835 	if (this_vma == gate_vma)
1836 		return NULL;
1837 	return gate_vma;
1838 }
1839 
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)1840 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1841 			     elf_addr_t e_shoff, int segs)
1842 {
1843 	elf->e_shoff = e_shoff;
1844 	elf->e_shentsize = sizeof(*shdr4extnum);
1845 	elf->e_shnum = 1;
1846 	elf->e_shstrndx = SHN_UNDEF;
1847 
1848 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1849 
1850 	shdr4extnum->sh_type = SHT_NULL;
1851 	shdr4extnum->sh_size = elf->e_shnum;
1852 	shdr4extnum->sh_link = elf->e_shstrndx;
1853 	shdr4extnum->sh_info = segs;
1854 }
1855 
elf_core_vma_data_size(struct vm_area_struct * gate_vma,unsigned long mm_flags)1856 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
1857 				     unsigned long mm_flags)
1858 {
1859 	struct vm_area_struct *vma;
1860 	size_t size = 0;
1861 
1862 	for (vma = first_vma(current, gate_vma); vma != NULL;
1863 	     vma = next_vma(vma, gate_vma))
1864 		size += vma_dump_size(vma, mm_flags);
1865 	return size;
1866 }
1867 
1868 /*
1869  * Actual dumper
1870  *
1871  * This is a two-pass process; first we find the offsets of the bits,
1872  * and then they are actually written out.  If we run out of core limit
1873  * we just truncate.
1874  */
elf_core_dump(struct coredump_params * cprm)1875 static int elf_core_dump(struct coredump_params *cprm)
1876 {
1877 	int has_dumped = 0;
1878 	mm_segment_t fs;
1879 	int segs;
1880 	size_t size = 0;
1881 	struct vm_area_struct *vma, *gate_vma;
1882 	struct elfhdr *elf = NULL;
1883 	loff_t offset = 0, dataoff, foffset;
1884 	struct elf_note_info info;
1885 	struct elf_phdr *phdr4note = NULL;
1886 	struct elf_shdr *shdr4extnum = NULL;
1887 	Elf_Half e_phnum;
1888 	elf_addr_t e_shoff;
1889 
1890 	/*
1891 	 * We no longer stop all VM operations.
1892 	 *
1893 	 * This is because those proceses that could possibly change map_count
1894 	 * or the mmap / vma pages are now blocked in do_exit on current
1895 	 * finishing this core dump.
1896 	 *
1897 	 * Only ptrace can touch these memory addresses, but it doesn't change
1898 	 * the map_count or the pages allocated. So no possibility of crashing
1899 	 * exists while dumping the mm->vm_next areas to the core file.
1900 	 */
1901 
1902 	/* alloc memory for large data structures: too large to be on stack */
1903 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
1904 	if (!elf)
1905 		goto out;
1906 	/*
1907 	 * The number of segs are recored into ELF header as 16bit value.
1908 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1909 	 */
1910 	segs = current->mm->map_count;
1911 	segs += elf_core_extra_phdrs();
1912 
1913 	gate_vma = get_gate_vma(current->mm);
1914 	if (gate_vma != NULL)
1915 		segs++;
1916 
1917 	/* for notes section */
1918 	segs++;
1919 
1920 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1921 	 * this, kernel supports extended numbering. Have a look at
1922 	 * include/linux/elf.h for further information. */
1923 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1924 
1925 	/*
1926 	 * Collect all the non-memory information about the process for the
1927 	 * notes.  This also sets up the file header.
1928 	 */
1929 	if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs))
1930 		goto cleanup;
1931 
1932 	has_dumped = 1;
1933 	current->flags |= PF_DUMPCORE;
1934 
1935 	fs = get_fs();
1936 	set_fs(KERNEL_DS);
1937 
1938 	offset += sizeof(*elf);				/* Elf header */
1939 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
1940 	foffset = offset;
1941 
1942 	/* Write notes phdr entry */
1943 	{
1944 		size_t sz = get_note_info_size(&info);
1945 
1946 		sz += elf_coredump_extra_notes_size();
1947 
1948 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
1949 		if (!phdr4note)
1950 			goto end_coredump;
1951 
1952 		fill_elf_note_phdr(phdr4note, sz, offset);
1953 		offset += sz;
1954 	}
1955 
1956 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
1957 
1958 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
1959 	offset += elf_core_extra_data_size();
1960 	e_shoff = offset;
1961 
1962 	if (e_phnum == PN_XNUM) {
1963 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
1964 		if (!shdr4extnum)
1965 			goto end_coredump;
1966 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
1967 	}
1968 
1969 	offset = dataoff;
1970 
1971 	size += sizeof(*elf);
1972 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf)))
1973 		goto end_coredump;
1974 
1975 	size += sizeof(*phdr4note);
1976 	if (size > cprm->limit
1977 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note)))
1978 		goto end_coredump;
1979 
1980 	/* Write program headers for segments dump */
1981 	for (vma = first_vma(current, gate_vma); vma != NULL;
1982 			vma = next_vma(vma, gate_vma)) {
1983 		struct elf_phdr phdr;
1984 
1985 		phdr.p_type = PT_LOAD;
1986 		phdr.p_offset = offset;
1987 		phdr.p_vaddr = vma->vm_start;
1988 		phdr.p_paddr = 0;
1989 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
1990 		phdr.p_memsz = vma->vm_end - vma->vm_start;
1991 		offset += phdr.p_filesz;
1992 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
1993 		if (vma->vm_flags & VM_WRITE)
1994 			phdr.p_flags |= PF_W;
1995 		if (vma->vm_flags & VM_EXEC)
1996 			phdr.p_flags |= PF_X;
1997 		phdr.p_align = ELF_EXEC_PAGESIZE;
1998 
1999 		size += sizeof(phdr);
2000 		if (size > cprm->limit
2001 		    || !dump_write(cprm->file, &phdr, sizeof(phdr)))
2002 			goto end_coredump;
2003 	}
2004 
2005 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit))
2006 		goto end_coredump;
2007 
2008  	/* write out the notes section */
2009 	if (!write_note_info(&info, cprm->file, &foffset))
2010 		goto end_coredump;
2011 
2012 	if (elf_coredump_extra_notes_write(cprm->file, &foffset))
2013 		goto end_coredump;
2014 
2015 	/* Align to page */
2016 	if (!dump_seek(cprm->file, dataoff - foffset))
2017 		goto end_coredump;
2018 
2019 	for (vma = first_vma(current, gate_vma); vma != NULL;
2020 			vma = next_vma(vma, gate_vma)) {
2021 		unsigned long addr;
2022 		unsigned long end;
2023 
2024 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2025 
2026 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2027 			struct page *page;
2028 			int stop;
2029 
2030 			page = get_dump_page(addr);
2031 			if (page) {
2032 				void *kaddr = kmap(page);
2033 				stop = ((size += PAGE_SIZE) > cprm->limit) ||
2034 					!dump_write(cprm->file, kaddr,
2035 						    PAGE_SIZE);
2036 				kunmap(page);
2037 				page_cache_release(page);
2038 			} else
2039 				stop = !dump_seek(cprm->file, PAGE_SIZE);
2040 			if (stop)
2041 				goto end_coredump;
2042 		}
2043 	}
2044 
2045 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit))
2046 		goto end_coredump;
2047 
2048 	if (e_phnum == PN_XNUM) {
2049 		size += sizeof(*shdr4extnum);
2050 		if (size > cprm->limit
2051 		    || !dump_write(cprm->file, shdr4extnum,
2052 				   sizeof(*shdr4extnum)))
2053 			goto end_coredump;
2054 	}
2055 
2056 end_coredump:
2057 	set_fs(fs);
2058 
2059 cleanup:
2060 	free_note_info(&info);
2061 	kfree(shdr4extnum);
2062 	kfree(phdr4note);
2063 	kfree(elf);
2064 out:
2065 	return has_dumped;
2066 }
2067 
2068 #endif		/* CONFIG_ELF_CORE */
2069 
init_elf_binfmt(void)2070 static int __init init_elf_binfmt(void)
2071 {
2072 	return register_binfmt(&elf_format);
2073 }
2074 
exit_elf_binfmt(void)2075 static void __exit exit_elf_binfmt(void)
2076 {
2077 	/* Remove the COFF and ELF loaders. */
2078 	unregister_binfmt(&elf_format);
2079 }
2080 
2081 core_initcall(init_elf_binfmt);
2082 module_exit(exit_elf_binfmt);
2083 MODULE_LICENSE("GPL");
2084