1 /*
2  *  linux/drivers/video/sa1100fb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas
5  *   Based on acornfb.c Copyright (C) Russell King.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file COPYING in the main directory of this archive for
9  * more details.
10  *
11  *	        StrongARM 1100 LCD Controller Frame Buffer Driver
12  *
13  * Please direct your questions and comments on this driver to the following
14  * email address:
15  *
16  *	linux-arm-kernel@lists.arm.linux.org.uk
17  *
18  * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19  * following web page for more information:
20  *
21  *	http://www.arm.linux.org.uk/developer/patches/info.shtml
22  *
23  * Thank you.
24  *
25  * Known problems:
26  *	- With the Neponset plugged into an Assabet, LCD powerdown
27  *	  doesn't work (LCD stays powered up).  Therefore we shouldn't
28  *	  blank the screen.
29  *	- We don't limit the CPU clock rate nor the mode selection
30  *	  according to the available SDRAM bandwidth.
31  *
32  * Other notes:
33  *	- Linear grayscale palettes and the kernel.
34  *	  Such code does not belong in the kernel.  The kernel frame buffer
35  *	  drivers do not expect a linear colourmap, but a colourmap based on
36  *	  the VT100 standard mapping.
37  *
38  *	  If your _userspace_ requires a linear colourmap, then the setup of
39  *	  such a colourmap belongs _in userspace_, not in the kernel.  Code
40  *	  to set the colourmap correctly from user space has been sent to
41  *	  David Neuer.  It's around 8 lines of C code, plus another 4 to
42  *	  detect if we are using grayscale.
43  *
44  *	- The following must never be specified in a panel definition:
45  *	     LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46  *
47  *	- The following should be specified:
48  *	     either LCCR0_Color or LCCR0_Mono
49  *	     either LCCR0_Sngl or LCCR0_Dual
50  *	     either LCCR0_Act or LCCR0_Pas
51  *	     either LCCR3_OutEnH or LCCD3_OutEnL
52  *	     either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53  *	     either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54  *
55  * Code Status:
56  * 1999/04/01:
57  *	- Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58  *	  resolutions are working, but only the 8bpp mode is supported.
59  *	  Changes need to be made to the palette encode and decode routines
60  *	  to support 4 and 16 bpp modes.
61  *	  Driver is not designed to be a module.  The FrameBuffer is statically
62  *	  allocated since dynamic allocation of a 300k buffer cannot be
63  *	  guaranteed.
64  *
65  * 1999/06/17:
66  *	- FrameBuffer memory is now allocated at run-time when the
67  *	  driver is initialized.
68  *
69  * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70  *	- Big cleanup for dynamic selection of machine type at run time.
71  *
72  * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73  *	- Support for Bitsy aka Compaq iPAQ H3600 added.
74  *
75  * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76  *	       Jeff Sutherland <jsutherland@accelent.com>
77  *	- Resolved an issue caused by a change made to the Assabet's PLD
78  *	  earlier this year which broke the framebuffer driver for newer
79  *	  Phase 4 Assabets.  Some other parameters were changed to optimize
80  *	  for the Sharp display.
81  *
82  * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83  *	- XP860 support added
84  *
85  * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86  *	- Allows standard options to be passed on the kernel command line
87  *	  for most common passive displays.
88  *
89  * 2000/08/29:
90  *	- s/save_flags_cli/local_irq_save/
91  *	- remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92  *
93  * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94  *	- Updated LART stuff. Fixed some minor bugs.
95  *
96  * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97  *	- Pangolin support added
98  *
99  * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100  *	- Huw Webpanel support added
101  *
102  * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103  *	- Freebird add
104  *
105  * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106  *	       Cliff Brake <cbrake@accelent.com>
107  *	- Added PM callback
108  *
109  * 2001/05/26: <rmk@arm.linux.org.uk>
110  *	- Fix 16bpp so that (a) we use the right colours rather than some
111  *	  totally random colour depending on what was in page 0, and (b)
112  *	  we don't de-reference a NULL pointer.
113  *	- remove duplicated implementation of consistent_alloc()
114  *	- convert dma address types to dma_addr_t
115  *	- remove unused 'montype' stuff
116  *	- remove redundant zero inits of init_var after the initial
117  *	  memset.
118  *	- remove allow_modeset (acornfb idea does not belong here)
119  *
120  * 2001/05/28: <rmk@arm.linux.org.uk>
121  *	- massive cleanup - move machine dependent data into structures
122  *	- I've left various #warnings in - if you see one, and know
123  *	  the hardware concerned, please get in contact with me.
124  *
125  * 2001/05/31: <rmk@arm.linux.org.uk>
126  *	- Fix LCCR1 HSW value, fix all machine type specifications to
127  *	  keep values in line.  (Please check your machine type specs)
128  *
129  * 2001/06/10: <rmk@arm.linux.org.uk>
130  *	- Fiddle with the LCD controller from task context only; mainly
131  *	  so that we can run with interrupts on, and sleep.
132  *	- Convert #warnings into #errors.  No pain, no gain. ;)
133  *
134  * 2001/06/14: <rmk@arm.linux.org.uk>
135  *	- Make the palette BPS value for 12bpp come out correctly.
136  *	- Take notice of "greyscale" on any colour depth.
137  *	- Make truecolor visuals use the RGB channel encoding information.
138  *
139  * 2001/07/02: <rmk@arm.linux.org.uk>
140  *	- Fix colourmap problems.
141  *
142  * 2001/07/13: <abraham@2d3d.co.za>
143  *	- Added support for the ICP LCD-Kit01 on LART. This LCD is
144  *	  manufactured by Prime View, model no V16C6448AB
145  *
146  * 2001/07/23: <rmk@arm.linux.org.uk>
147  *	- Hand merge version from handhelds.org CVS tree.  See patch
148  *	  notes for 595/1 for more information.
149  *	- Drop 12bpp (it's 16bpp with different colour register mappings).
150  *	- This hardware can not do direct colour.  Therefore we don't
151  *	  support it.
152  *
153  * 2001/07/27: <rmk@arm.linux.org.uk>
154  *	- Halve YRES on dual scan LCDs.
155  *
156  * 2001/08/22: <rmk@arm.linux.org.uk>
157  *	- Add b/w iPAQ pixclock value.
158  *
159  * 2001/10/12: <rmk@arm.linux.org.uk>
160  *	- Add patch 681/1 and clean up stork definitions.
161  */
162 
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/platform_device.h>
177 #include <linux/dma-mapping.h>
178 #include <linux/mutex.h>
179 #include <linux/io.h>
180 
181 #include <mach/hardware.h>
182 #include <asm/mach-types.h>
183 #include <mach/assabet.h>
184 #include <mach/shannon.h>
185 
186 /*
187  * debugging?
188  */
189 #define DEBUG 0
190 /*
191  * Complain if VAR is out of range.
192  */
193 #define DEBUG_VAR 1
194 
195 #undef ASSABET_PAL_VIDEO
196 
197 #include "sa1100fb.h"
198 
199 extern void (*sa1100fb_backlight_power)(int on);
200 extern void (*sa1100fb_lcd_power)(int on);
201 
202 static struct sa1100fb_rgb rgb_4 = {
203 	.red	= { .offset = 0,  .length = 4, },
204 	.green	= { .offset = 0,  .length = 4, },
205 	.blue	= { .offset = 0,  .length = 4, },
206 	.transp	= { .offset = 0,  .length = 0, },
207 };
208 
209 static struct sa1100fb_rgb rgb_8 = {
210 	.red	= { .offset = 0,  .length = 8, },
211 	.green	= { .offset = 0,  .length = 8, },
212 	.blue	= { .offset = 0,  .length = 8, },
213 	.transp	= { .offset = 0,  .length = 0, },
214 };
215 
216 static struct sa1100fb_rgb def_rgb_16 = {
217 	.red	= { .offset = 11, .length = 5, },
218 	.green	= { .offset = 5,  .length = 6, },
219 	.blue	= { .offset = 0,  .length = 5, },
220 	.transp	= { .offset = 0,  .length = 0, },
221 };
222 
223 #ifdef CONFIG_SA1100_ASSABET
224 #ifndef ASSABET_PAL_VIDEO
225 /*
226  * The assabet uses a sharp LQ039Q2DS54 LCD module.  It is actually
227  * takes an RGB666 signal, but we provide it with an RGB565 signal
228  * instead (def_rgb_16).
229  */
230 static struct sa1100fb_mach_info lq039q2ds54_info __initdata = {
231 	.pixclock	= 171521,	.bpp		= 16,
232 	.xres		= 320,		.yres		= 240,
233 
234 	.hsync_len	= 5,		.vsync_len	= 1,
235 	.left_margin	= 61,		.upper_margin	= 3,
236 	.right_margin	= 9,		.lower_margin	= 0,
237 
238 	.sync		= FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
239 
240 	.lccr0		= LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
241 	.lccr3		= LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
242 };
243 #else
244 static struct sa1100fb_mach_info pal_info __initdata = {
245 	.pixclock	= 67797,	.bpp		= 16,
246 	.xres		= 640,		.yres		= 512,
247 
248 	.hsync_len	= 64,		.vsync_len	= 6,
249 	.left_margin	= 125,		.upper_margin	= 70,
250 	.right_margin	= 115,		.lower_margin	= 36,
251 
252 	.lccr0		= LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
253 	.lccr3		= LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
254 };
255 #endif
256 #endif
257 
258 #ifdef CONFIG_SA1100_H3600
259 static struct sa1100fb_mach_info h3600_info __initdata = {
260 	.pixclock	= 174757, 	.bpp		= 16,
261 	.xres		= 320,		.yres		= 240,
262 
263 	.hsync_len	= 3,		.vsync_len	= 3,
264 	.left_margin	= 12,		.upper_margin	= 10,
265 	.right_margin	= 17,		.lower_margin	= 1,
266 
267 	.cmap_static	= 1,
268 
269 	.lccr0		= LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
270 	.lccr3		= LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
271 };
272 
273 static struct sa1100fb_rgb h3600_rgb_16 = {
274 	.red	= { .offset = 12, .length = 4, },
275 	.green	= { .offset = 7,  .length = 4, },
276 	.blue	= { .offset = 1,  .length = 4, },
277 	.transp	= { .offset = 0,  .length = 0, },
278 };
279 #endif
280 
281 #ifdef CONFIG_SA1100_H3100
282 static struct sa1100fb_mach_info h3100_info __initdata = {
283 	.pixclock	= 406977, 	.bpp		= 4,
284 	.xres		= 320,		.yres		= 240,
285 
286 	.hsync_len	= 26,		.vsync_len	= 41,
287 	.left_margin	= 4,		.upper_margin	= 0,
288 	.right_margin	= 4,		.lower_margin	= 0,
289 
290 	.sync		= FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
291 	.cmap_greyscale	= 1,
292 	.cmap_inverse	= 1,
293 
294 	.lccr0		= LCCR0_Mono | LCCR0_4PixMono | LCCR0_Sngl | LCCR0_Pas,
295 	.lccr3		= LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
296 };
297 #endif
298 
299 #ifdef CONFIG_SA1100_COLLIE
300 static struct sa1100fb_mach_info collie_info __initdata = {
301 	.pixclock	= 171521,	.bpp		= 16,
302 	.xres		= 320,		.yres		= 240,
303 
304 	.hsync_len	= 5,		.vsync_len	= 1,
305 	.left_margin	= 11,		.upper_margin	= 2,
306 	.right_margin	= 30,		.lower_margin	= 0,
307 
308 	.sync		= FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
309 
310 	.lccr0		= LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
311 	.lccr3		= LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(2),
312 };
313 #endif
314 
315 #ifdef LART_GREY_LCD
316 static struct sa1100fb_mach_info lart_grey_info __initdata = {
317 	.pixclock	= 150000,	.bpp		= 4,
318 	.xres		= 320,		.yres		= 240,
319 
320 	.hsync_len	= 1,		.vsync_len	= 1,
321 	.left_margin	= 4,		.upper_margin	= 0,
322 	.right_margin	= 2,		.lower_margin	= 0,
323 
324 	.cmap_greyscale	= 1,
325 	.sync		= FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
326 
327 	.lccr0		= LCCR0_Mono | LCCR0_Sngl | LCCR0_Pas | LCCR0_4PixMono,
328 	.lccr3		= LCCR3_OutEnH | LCCR3_PixRsEdg | LCCR3_ACBsDiv(512),
329 };
330 #endif
331 #ifdef LART_COLOR_LCD
332 static struct sa1100fb_mach_info lart_color_info __initdata = {
333 	.pixclock	= 150000,	.bpp		= 16,
334 	.xres		= 320,		.yres		= 240,
335 
336 	.hsync_len	= 2,		.vsync_len	= 3,
337 	.left_margin	= 69,		.upper_margin	= 14,
338 	.right_margin	= 8,		.lower_margin	= 4,
339 
340 	.lccr0		= LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
341 	.lccr3		= LCCR3_OutEnH | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
342 };
343 #endif
344 #ifdef LART_VIDEO_OUT
345 static struct sa1100fb_mach_info lart_video_info __initdata = {
346 	.pixclock	= 39721,	.bpp		= 16,
347 	.xres		= 640,		.yres		= 480,
348 
349 	.hsync_len	= 95,		.vsync_len	= 2,
350 	.left_margin	= 40,		.upper_margin	= 32,
351 	.right_margin	= 24,		.lower_margin	= 11,
352 
353 	.sync		= FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
354 
355 	.lccr0		= LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
356 	.lccr3		= LCCR3_OutEnL | LCCR3_PixFlEdg | LCCR3_ACBsDiv(512),
357 };
358 #endif
359 
360 #ifdef LART_KIT01_LCD
361 static struct sa1100fb_mach_info lart_kit01_info __initdata = {
362 	.pixclock	= 63291,	.bpp		= 16,
363 	.xres		= 640,		.yres		= 480,
364 
365 	.hsync_len	= 64,		.vsync_len	= 3,
366 	.left_margin	= 122,		.upper_margin	= 45,
367 	.right_margin	= 10,		.lower_margin	= 10,
368 
369 	.lccr0		= LCCR0_Color | LCCR0_Sngl | LCCR0_Act,
370 	.lccr3		= LCCR3_OutEnH | LCCR3_PixFlEdg
371 };
372 #endif
373 
374 #ifdef CONFIG_SA1100_SHANNON
375 static struct sa1100fb_mach_info shannon_info __initdata = {
376 	.pixclock	= 152500,	.bpp		= 8,
377 	.xres		= 640,		.yres		= 480,
378 
379 	.hsync_len	= 4,		.vsync_len	= 3,
380 	.left_margin	= 2,		.upper_margin	= 0,
381 	.right_margin	= 1,		.lower_margin	= 0,
382 
383 	.sync		= FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
384 
385 	.lccr0		= LCCR0_Color | LCCR0_Dual | LCCR0_Pas,
386 	.lccr3		= LCCR3_ACBsDiv(512),
387 };
388 #endif
389 
390 
391 
392 static struct sa1100fb_mach_info * __init
sa1100fb_get_machine_info(struct sa1100fb_info * fbi)393 sa1100fb_get_machine_info(struct sa1100fb_info *fbi)
394 {
395 	struct sa1100fb_mach_info *inf = NULL;
396 
397 	/*
398 	 *            R        G       B       T
399 	 * default  {11,5}, { 5,6}, { 0,5}, { 0,0}
400 	 * h3600    {12,4}, { 7,4}, { 1,4}, { 0,0}
401 	 * freebird { 8,4}, { 4,4}, { 0,4}, {12,4}
402 	 */
403 #ifdef CONFIG_SA1100_ASSABET
404 	if (machine_is_assabet()) {
405 #ifndef ASSABET_PAL_VIDEO
406 		inf = &lq039q2ds54_info;
407 #else
408 		inf = &pal_info;
409 #endif
410 	}
411 #endif
412 #ifdef CONFIG_SA1100_H3100
413 	if (machine_is_h3100()) {
414 		inf = &h3100_info;
415 	}
416 #endif
417 #ifdef CONFIG_SA1100_H3600
418 	if (machine_is_h3600()) {
419 		inf = &h3600_info;
420 		fbi->rgb[RGB_16] = &h3600_rgb_16;
421 	}
422 #endif
423 #ifdef CONFIG_SA1100_COLLIE
424 	if (machine_is_collie()) {
425 		inf = &collie_info;
426 	}
427 #endif
428 #ifdef CONFIG_SA1100_LART
429 	if (machine_is_lart()) {
430 #ifdef LART_GREY_LCD
431 		inf = &lart_grey_info;
432 #endif
433 #ifdef LART_COLOR_LCD
434 		inf = &lart_color_info;
435 #endif
436 #ifdef LART_VIDEO_OUT
437 		inf = &lart_video_info;
438 #endif
439 #ifdef LART_KIT01_LCD
440 		inf = &lart_kit01_info;
441 #endif
442 	}
443 #endif
444 #ifdef CONFIG_SA1100_SHANNON
445 	if (machine_is_shannon()) {
446 		inf = &shannon_info;
447 	}
448 #endif
449 	return inf;
450 }
451 
452 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
453 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
454 
sa1100fb_schedule_work(struct sa1100fb_info * fbi,u_int state)455 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
456 {
457 	unsigned long flags;
458 
459 	local_irq_save(flags);
460 	/*
461 	 * We need to handle two requests being made at the same time.
462 	 * There are two important cases:
463 	 *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
464 	 *     We must perform the unblanking, which will do our REENABLE for us.
465 	 *  2. When we are blanking, but immediately unblank before we have
466 	 *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
467 	 */
468 	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
469 		state = (u_int) -1;
470 	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
471 		state = C_REENABLE;
472 
473 	if (state != (u_int)-1) {
474 		fbi->task_state = state;
475 		schedule_work(&fbi->task);
476 	}
477 	local_irq_restore(flags);
478 }
479 
chan_to_field(u_int chan,struct fb_bitfield * bf)480 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
481 {
482 	chan &= 0xffff;
483 	chan >>= 16 - bf->length;
484 	return chan << bf->offset;
485 }
486 
487 /*
488  * Convert bits-per-pixel to a hardware palette PBS value.
489  */
palette_pbs(struct fb_var_screeninfo * var)490 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
491 {
492 	int ret = 0;
493 	switch (var->bits_per_pixel) {
494 	case 4:  ret = 0 << 12;	break;
495 	case 8:  ret = 1 << 12; break;
496 	case 16: ret = 2 << 12; break;
497 	}
498 	return ret;
499 }
500 
501 static int
sa1100fb_setpalettereg(u_int regno,u_int red,u_int green,u_int blue,u_int trans,struct fb_info * info)502 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
503 		       u_int trans, struct fb_info *info)
504 {
505 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
506 	u_int val, ret = 1;
507 
508 	if (regno < fbi->palette_size) {
509 		val = ((red >> 4) & 0xf00);
510 		val |= ((green >> 8) & 0x0f0);
511 		val |= ((blue >> 12) & 0x00f);
512 
513 		if (regno == 0)
514 			val |= palette_pbs(&fbi->fb.var);
515 
516 		fbi->palette_cpu[regno] = val;
517 		ret = 0;
518 	}
519 	return ret;
520 }
521 
522 static int
sa1100fb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int trans,struct fb_info * info)523 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
524 		   u_int trans, struct fb_info *info)
525 {
526 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
527 	unsigned int val;
528 	int ret = 1;
529 
530 	/*
531 	 * If inverse mode was selected, invert all the colours
532 	 * rather than the register number.  The register number
533 	 * is what you poke into the framebuffer to produce the
534 	 * colour you requested.
535 	 */
536 	if (fbi->cmap_inverse) {
537 		red   = 0xffff - red;
538 		green = 0xffff - green;
539 		blue  = 0xffff - blue;
540 	}
541 
542 	/*
543 	 * If greyscale is true, then we convert the RGB value
544 	 * to greyscale no mater what visual we are using.
545 	 */
546 	if (fbi->fb.var.grayscale)
547 		red = green = blue = (19595 * red + 38470 * green +
548 					7471 * blue) >> 16;
549 
550 	switch (fbi->fb.fix.visual) {
551 	case FB_VISUAL_TRUECOLOR:
552 		/*
553 		 * 12 or 16-bit True Colour.  We encode the RGB value
554 		 * according to the RGB bitfield information.
555 		 */
556 		if (regno < 16) {
557 			u32 *pal = fbi->fb.pseudo_palette;
558 
559 			val  = chan_to_field(red, &fbi->fb.var.red);
560 			val |= chan_to_field(green, &fbi->fb.var.green);
561 			val |= chan_to_field(blue, &fbi->fb.var.blue);
562 
563 			pal[regno] = val;
564 			ret = 0;
565 		}
566 		break;
567 
568 	case FB_VISUAL_STATIC_PSEUDOCOLOR:
569 	case FB_VISUAL_PSEUDOCOLOR:
570 		ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
571 		break;
572 	}
573 
574 	return ret;
575 }
576 
577 #ifdef CONFIG_CPU_FREQ
578 /*
579  *  sa1100fb_display_dma_period()
580  *    Calculate the minimum period (in picoseconds) between two DMA
581  *    requests for the LCD controller.  If we hit this, it means we're
582  *    doing nothing but LCD DMA.
583  */
sa1100fb_display_dma_period(struct fb_var_screeninfo * var)584 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
585 {
586 	/*
587 	 * Period = pixclock * bits_per_byte * bytes_per_transfer
588 	 *		/ memory_bits_per_pixel;
589 	 */
590 	return var->pixclock * 8 * 16 / var->bits_per_pixel;
591 }
592 #endif
593 
594 /*
595  *  sa1100fb_check_var():
596  *    Round up in the following order: bits_per_pixel, xres,
597  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
598  *    bitfields, horizontal timing, vertical timing.
599  */
600 static int
sa1100fb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)601 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
602 {
603 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
604 	int rgbidx;
605 
606 	if (var->xres < MIN_XRES)
607 		var->xres = MIN_XRES;
608 	if (var->yres < MIN_YRES)
609 		var->yres = MIN_YRES;
610 	if (var->xres > fbi->max_xres)
611 		var->xres = fbi->max_xres;
612 	if (var->yres > fbi->max_yres)
613 		var->yres = fbi->max_yres;
614 	var->xres_virtual = max(var->xres_virtual, var->xres);
615 	var->yres_virtual = max(var->yres_virtual, var->yres);
616 
617 	DPRINTK("var->bits_per_pixel=%d\n", var->bits_per_pixel);
618 	switch (var->bits_per_pixel) {
619 	case 4:
620 		rgbidx = RGB_4;
621 		break;
622 	case 8:
623 		rgbidx = RGB_8;
624 		break;
625 	case 16:
626 		rgbidx = RGB_16;
627 		break;
628 	default:
629 		return -EINVAL;
630 	}
631 
632 	/*
633 	 * Copy the RGB parameters for this display
634 	 * from the machine specific parameters.
635 	 */
636 	var->red    = fbi->rgb[rgbidx]->red;
637 	var->green  = fbi->rgb[rgbidx]->green;
638 	var->blue   = fbi->rgb[rgbidx]->blue;
639 	var->transp = fbi->rgb[rgbidx]->transp;
640 
641 	DPRINTK("RGBT length = %d:%d:%d:%d\n",
642 		var->red.length, var->green.length, var->blue.length,
643 		var->transp.length);
644 
645 	DPRINTK("RGBT offset = %d:%d:%d:%d\n",
646 		var->red.offset, var->green.offset, var->blue.offset,
647 		var->transp.offset);
648 
649 #ifdef CONFIG_CPU_FREQ
650 	printk(KERN_DEBUG "dma period = %d ps, clock = %d kHz\n",
651 		sa1100fb_display_dma_period(var),
652 		cpufreq_get(smp_processor_id()));
653 #endif
654 
655 	return 0;
656 }
657 
sa1100fb_set_truecolor(u_int is_true_color)658 static inline void sa1100fb_set_truecolor(u_int is_true_color)
659 {
660 	if (machine_is_assabet()) {
661 #if 1		// phase 4 or newer Assabet's
662 		if (is_true_color)
663 			ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
664 		else
665 			ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
666 #else
667 		// older Assabet's
668 		if (is_true_color)
669 			ASSABET_BCR_clear(ASSABET_BCR_LCD_12RGB);
670 		else
671 			ASSABET_BCR_set(ASSABET_BCR_LCD_12RGB);
672 #endif
673 	}
674 }
675 
676 /*
677  * sa1100fb_set_par():
678  *	Set the user defined part of the display for the specified console
679  */
sa1100fb_set_par(struct fb_info * info)680 static int sa1100fb_set_par(struct fb_info *info)
681 {
682 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
683 	struct fb_var_screeninfo *var = &info->var;
684 	unsigned long palette_mem_size;
685 
686 	DPRINTK("set_par\n");
687 
688 	if (var->bits_per_pixel == 16)
689 		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
690 	else if (!fbi->cmap_static)
691 		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
692 	else {
693 		/*
694 		 * Some people have weird ideas about wanting static
695 		 * pseudocolor maps.  I suspect their user space
696 		 * applications are broken.
697 		 */
698 		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
699 	}
700 
701 	fbi->fb.fix.line_length = var->xres_virtual *
702 				  var->bits_per_pixel / 8;
703 	fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
704 
705 	palette_mem_size = fbi->palette_size * sizeof(u16);
706 
707 	DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size);
708 
709 	fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
710 	fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
711 
712 	/*
713 	 * Set (any) board control register to handle new color depth
714 	 */
715 	sa1100fb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
716 	sa1100fb_activate_var(var, fbi);
717 
718 	return 0;
719 }
720 
721 #if 0
722 static int
723 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
724 		  struct fb_info *info)
725 {
726 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
727 
728 	/*
729 	 * Make sure the user isn't doing something stupid.
730 	 */
731 	if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->cmap_static))
732 		return -EINVAL;
733 
734 	return gen_set_cmap(cmap, kspc, con, info);
735 }
736 #endif
737 
738 /*
739  * Formal definition of the VESA spec:
740  *  On
741  *  	This refers to the state of the display when it is in full operation
742  *  Stand-By
743  *  	This defines an optional operating state of minimal power reduction with
744  *  	the shortest recovery time
745  *  Suspend
746  *  	This refers to a level of power management in which substantial power
747  *  	reduction is achieved by the display.  The display can have a longer
748  *  	recovery time from this state than from the Stand-by state
749  *  Off
750  *  	This indicates that the display is consuming the lowest level of power
751  *  	and is non-operational. Recovery from this state may optionally require
752  *  	the user to manually power on the monitor
753  *
754  *  Now, the fbdev driver adds an additional state, (blank), where they
755  *  turn off the video (maybe by colormap tricks), but don't mess with the
756  *  video itself: think of it semantically between on and Stand-By.
757  *
758  *  So here's what we should do in our fbdev blank routine:
759  *
760  *  	VESA_NO_BLANKING (mode 0)	Video on,  front/back light on
761  *  	VESA_VSYNC_SUSPEND (mode 1)  	Video on,  front/back light off
762  *  	VESA_HSYNC_SUSPEND (mode 2)  	Video on,  front/back light off
763  *  	VESA_POWERDOWN (mode 3)		Video off, front/back light off
764  *
765  *  This will match the matrox implementation.
766  */
767 /*
768  * sa1100fb_blank():
769  *	Blank the display by setting all palette values to zero.  Note, the
770  * 	12 and 16 bpp modes don't really use the palette, so this will not
771  *      blank the display in all modes.
772  */
sa1100fb_blank(int blank,struct fb_info * info)773 static int sa1100fb_blank(int blank, struct fb_info *info)
774 {
775 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
776 	int i;
777 
778 	DPRINTK("sa1100fb_blank: blank=%d\n", blank);
779 
780 	switch (blank) {
781 	case FB_BLANK_POWERDOWN:
782 	case FB_BLANK_VSYNC_SUSPEND:
783 	case FB_BLANK_HSYNC_SUSPEND:
784 	case FB_BLANK_NORMAL:
785 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
786 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
787 			for (i = 0; i < fbi->palette_size; i++)
788 				sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
789 		sa1100fb_schedule_work(fbi, C_DISABLE);
790 		break;
791 
792 	case FB_BLANK_UNBLANK:
793 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
794 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
795 			fb_set_cmap(&fbi->fb.cmap, info);
796 		sa1100fb_schedule_work(fbi, C_ENABLE);
797 	}
798 	return 0;
799 }
800 
sa1100fb_mmap(struct fb_info * info,struct vm_area_struct * vma)801 static int sa1100fb_mmap(struct fb_info *info,
802 			 struct vm_area_struct *vma)
803 {
804 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
805 	unsigned long start, len, off = vma->vm_pgoff << PAGE_SHIFT;
806 
807 	if (off < info->fix.smem_len) {
808 		vma->vm_pgoff += 1; /* skip over the palette */
809 		return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
810 					     fbi->map_dma, fbi->map_size);
811 	}
812 
813 	start = info->fix.mmio_start;
814 	len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.mmio_len);
815 
816 	if ((vma->vm_end - vma->vm_start + off) > len)
817 		return -EINVAL;
818 
819 	off += start & PAGE_MASK;
820 	vma->vm_pgoff = off >> PAGE_SHIFT;
821 	vma->vm_flags |= VM_IO;
822 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
823 	return io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
824 				   vma->vm_end - vma->vm_start,
825 				   vma->vm_page_prot);
826 }
827 
828 static struct fb_ops sa1100fb_ops = {
829 	.owner		= THIS_MODULE,
830 	.fb_check_var	= sa1100fb_check_var,
831 	.fb_set_par	= sa1100fb_set_par,
832 //	.fb_set_cmap	= sa1100fb_set_cmap,
833 	.fb_setcolreg	= sa1100fb_setcolreg,
834 	.fb_fillrect	= cfb_fillrect,
835 	.fb_copyarea	= cfb_copyarea,
836 	.fb_imageblit	= cfb_imageblit,
837 	.fb_blank	= sa1100fb_blank,
838 	.fb_mmap	= sa1100fb_mmap,
839 };
840 
841 /*
842  * Calculate the PCD value from the clock rate (in picoseconds).
843  * We take account of the PPCR clock setting.
844  */
get_pcd(unsigned int pixclock,unsigned int cpuclock)845 static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
846 {
847 	unsigned int pcd = cpuclock / 100;
848 
849 	pcd *= pixclock;
850 	pcd /= 10000000;
851 
852 	return pcd + 1;	/* make up for integer math truncations */
853 }
854 
855 /*
856  * sa1100fb_activate_var():
857  *	Configures LCD Controller based on entries in var parameter.  Settings are
858  *	only written to the controller if changes were made.
859  */
sa1100fb_activate_var(struct fb_var_screeninfo * var,struct sa1100fb_info * fbi)860 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
861 {
862 	struct sa1100fb_lcd_reg new_regs;
863 	u_int half_screen_size, yres, pcd;
864 	u_long flags;
865 
866 	DPRINTK("Configuring SA1100 LCD\n");
867 
868 	DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n",
869 		var->xres, var->hsync_len,
870 		var->left_margin, var->right_margin);
871 	DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n",
872 		var->yres, var->vsync_len,
873 		var->upper_margin, var->lower_margin);
874 
875 #if DEBUG_VAR
876 	if (var->xres < 16        || var->xres > 1024)
877 		printk(KERN_ERR "%s: invalid xres %d\n",
878 			fbi->fb.fix.id, var->xres);
879 	if (var->hsync_len < 1    || var->hsync_len > 64)
880 		printk(KERN_ERR "%s: invalid hsync_len %d\n",
881 			fbi->fb.fix.id, var->hsync_len);
882 	if (var->left_margin < 1  || var->left_margin > 255)
883 		printk(KERN_ERR "%s: invalid left_margin %d\n",
884 			fbi->fb.fix.id, var->left_margin);
885 	if (var->right_margin < 1 || var->right_margin > 255)
886 		printk(KERN_ERR "%s: invalid right_margin %d\n",
887 			fbi->fb.fix.id, var->right_margin);
888 	if (var->yres < 1         || var->yres > 1024)
889 		printk(KERN_ERR "%s: invalid yres %d\n",
890 			fbi->fb.fix.id, var->yres);
891 	if (var->vsync_len < 1    || var->vsync_len > 64)
892 		printk(KERN_ERR "%s: invalid vsync_len %d\n",
893 			fbi->fb.fix.id, var->vsync_len);
894 	if (var->upper_margin < 0 || var->upper_margin > 255)
895 		printk(KERN_ERR "%s: invalid upper_margin %d\n",
896 			fbi->fb.fix.id, var->upper_margin);
897 	if (var->lower_margin < 0 || var->lower_margin > 255)
898 		printk(KERN_ERR "%s: invalid lower_margin %d\n",
899 			fbi->fb.fix.id, var->lower_margin);
900 #endif
901 
902 	new_regs.lccr0 = fbi->lccr0 |
903 		LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
904 		LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
905 
906 	new_regs.lccr1 =
907 		LCCR1_DisWdth(var->xres) +
908 		LCCR1_HorSnchWdth(var->hsync_len) +
909 		LCCR1_BegLnDel(var->left_margin) +
910 		LCCR1_EndLnDel(var->right_margin);
911 
912 	/*
913 	 * If we have a dual scan LCD, then we need to halve
914 	 * the YRES parameter.
915 	 */
916 	yres = var->yres;
917 	if (fbi->lccr0 & LCCR0_Dual)
918 		yres /= 2;
919 
920 	new_regs.lccr2 =
921 		LCCR2_DisHght(yres) +
922 		LCCR2_VrtSnchWdth(var->vsync_len) +
923 		LCCR2_BegFrmDel(var->upper_margin) +
924 		LCCR2_EndFrmDel(var->lower_margin);
925 
926 	pcd = get_pcd(var->pixclock, cpufreq_get(0));
927 	new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->lccr3 |
928 		(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
929 		(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
930 
931 	DPRINTK("nlccr0 = 0x%08lx\n", new_regs.lccr0);
932 	DPRINTK("nlccr1 = 0x%08lx\n", new_regs.lccr1);
933 	DPRINTK("nlccr2 = 0x%08lx\n", new_regs.lccr2);
934 	DPRINTK("nlccr3 = 0x%08lx\n", new_regs.lccr3);
935 
936 	half_screen_size = var->bits_per_pixel;
937 	half_screen_size = half_screen_size * var->xres * var->yres / 16;
938 
939 	/* Update shadow copy atomically */
940 	local_irq_save(flags);
941 	fbi->dbar1 = fbi->palette_dma;
942 	fbi->dbar2 = fbi->screen_dma + half_screen_size;
943 
944 	fbi->reg_lccr0 = new_regs.lccr0;
945 	fbi->reg_lccr1 = new_regs.lccr1;
946 	fbi->reg_lccr2 = new_regs.lccr2;
947 	fbi->reg_lccr3 = new_regs.lccr3;
948 	local_irq_restore(flags);
949 
950 	/*
951 	 * Only update the registers if the controller is enabled
952 	 * and something has changed.
953 	 */
954 	if ((LCCR0 != fbi->reg_lccr0)       || (LCCR1 != fbi->reg_lccr1) ||
955 	    (LCCR2 != fbi->reg_lccr2)       || (LCCR3 != fbi->reg_lccr3) ||
956 	    (DBAR1 != fbi->dbar1) || (DBAR2 != fbi->dbar2))
957 		sa1100fb_schedule_work(fbi, C_REENABLE);
958 
959 	return 0;
960 }
961 
962 /*
963  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
964  * Do not call them directly; set_ctrlr_state does the correct serialisation
965  * to ensure that things happen in the right way 100% of time time.
966  *	-- rmk
967  */
__sa1100fb_backlight_power(struct sa1100fb_info * fbi,int on)968 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
969 {
970 	DPRINTK("backlight o%s\n", on ? "n" : "ff");
971 
972 	if (sa1100fb_backlight_power)
973 		sa1100fb_backlight_power(on);
974 }
975 
__sa1100fb_lcd_power(struct sa1100fb_info * fbi,int on)976 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
977 {
978 	DPRINTK("LCD power o%s\n", on ? "n" : "ff");
979 
980 	if (sa1100fb_lcd_power)
981 		sa1100fb_lcd_power(on);
982 }
983 
sa1100fb_setup_gpio(struct sa1100fb_info * fbi)984 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
985 {
986 	u_int mask = 0;
987 
988 	/*
989 	 * Enable GPIO<9:2> for LCD use if:
990 	 *  1. Active display, or
991 	 *  2. Color Dual Passive display
992 	 *
993 	 * see table 11.8 on page 11-27 in the SA1100 manual
994 	 *   -- Erik.
995 	 *
996 	 * SA1110 spec update nr. 25 says we can and should
997 	 * clear LDD15 to 12 for 4 or 8bpp modes with active
998 	 * panels.
999 	 */
1000 	if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
1001 	    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
1002 		mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
1003 
1004 		if (fbi->fb.var.bits_per_pixel > 8 ||
1005 		    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
1006 			mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
1007 
1008 	}
1009 
1010 	if (mask) {
1011 		GPDR |= mask;
1012 		GAFR |= mask;
1013 	}
1014 }
1015 
sa1100fb_enable_controller(struct sa1100fb_info * fbi)1016 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
1017 {
1018 	DPRINTK("Enabling LCD controller\n");
1019 
1020 	/*
1021 	 * Make sure the mode bits are present in the first palette entry
1022 	 */
1023 	fbi->palette_cpu[0] &= 0xcfff;
1024 	fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
1025 
1026 	/* Sequence from 11.7.10 */
1027 	LCCR3 = fbi->reg_lccr3;
1028 	LCCR2 = fbi->reg_lccr2;
1029 	LCCR1 = fbi->reg_lccr1;
1030 	LCCR0 = fbi->reg_lccr0 & ~LCCR0_LEN;
1031 	DBAR1 = fbi->dbar1;
1032 	DBAR2 = fbi->dbar2;
1033 	LCCR0 |= LCCR0_LEN;
1034 
1035 	if (machine_is_shannon()) {
1036 		GPDR |= SHANNON_GPIO_DISP_EN;
1037 		GPSR |= SHANNON_GPIO_DISP_EN;
1038 	}
1039 
1040 	DPRINTK("DBAR1 = 0x%08x\n", DBAR1);
1041 	DPRINTK("DBAR2 = 0x%08x\n", DBAR2);
1042 	DPRINTK("LCCR0 = 0x%08x\n", LCCR0);
1043 	DPRINTK("LCCR1 = 0x%08x\n", LCCR1);
1044 	DPRINTK("LCCR2 = 0x%08x\n", LCCR2);
1045 	DPRINTK("LCCR3 = 0x%08x\n", LCCR3);
1046 }
1047 
sa1100fb_disable_controller(struct sa1100fb_info * fbi)1048 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
1049 {
1050 	DECLARE_WAITQUEUE(wait, current);
1051 
1052 	DPRINTK("Disabling LCD controller\n");
1053 
1054 	if (machine_is_shannon()) {
1055 		GPCR |= SHANNON_GPIO_DISP_EN;
1056 	}
1057 
1058 	set_current_state(TASK_UNINTERRUPTIBLE);
1059 	add_wait_queue(&fbi->ctrlr_wait, &wait);
1060 
1061 	LCSR = 0xffffffff;	/* Clear LCD Status Register */
1062 	LCCR0 &= ~LCCR0_LDM;	/* Enable LCD Disable Done Interrupt */
1063 	LCCR0 &= ~LCCR0_LEN;	/* Disable LCD Controller */
1064 
1065 	schedule_timeout(20 * HZ / 1000);
1066 	remove_wait_queue(&fbi->ctrlr_wait, &wait);
1067 }
1068 
1069 /*
1070  *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
1071  */
sa1100fb_handle_irq(int irq,void * dev_id)1072 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
1073 {
1074 	struct sa1100fb_info *fbi = dev_id;
1075 	unsigned int lcsr = LCSR;
1076 
1077 	if (lcsr & LCSR_LDD) {
1078 		LCCR0 |= LCCR0_LDM;
1079 		wake_up(&fbi->ctrlr_wait);
1080 	}
1081 
1082 	LCSR = lcsr;
1083 	return IRQ_HANDLED;
1084 }
1085 
1086 /*
1087  * This function must be called from task context only, since it will
1088  * sleep when disabling the LCD controller, or if we get two contending
1089  * processes trying to alter state.
1090  */
set_ctrlr_state(struct sa1100fb_info * fbi,u_int state)1091 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
1092 {
1093 	u_int old_state;
1094 
1095 	mutex_lock(&fbi->ctrlr_lock);
1096 
1097 	old_state = fbi->state;
1098 
1099 	/*
1100 	 * Hack around fbcon initialisation.
1101 	 */
1102 	if (old_state == C_STARTUP && state == C_REENABLE)
1103 		state = C_ENABLE;
1104 
1105 	switch (state) {
1106 	case C_DISABLE_CLKCHANGE:
1107 		/*
1108 		 * Disable controller for clock change.  If the
1109 		 * controller is already disabled, then do nothing.
1110 		 */
1111 		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1112 			fbi->state = state;
1113 			sa1100fb_disable_controller(fbi);
1114 		}
1115 		break;
1116 
1117 	case C_DISABLE_PM:
1118 	case C_DISABLE:
1119 		/*
1120 		 * Disable controller
1121 		 */
1122 		if (old_state != C_DISABLE) {
1123 			fbi->state = state;
1124 
1125 			__sa1100fb_backlight_power(fbi, 0);
1126 			if (old_state != C_DISABLE_CLKCHANGE)
1127 				sa1100fb_disable_controller(fbi);
1128 			__sa1100fb_lcd_power(fbi, 0);
1129 		}
1130 		break;
1131 
1132 	case C_ENABLE_CLKCHANGE:
1133 		/*
1134 		 * Enable the controller after clock change.  Only
1135 		 * do this if we were disabled for the clock change.
1136 		 */
1137 		if (old_state == C_DISABLE_CLKCHANGE) {
1138 			fbi->state = C_ENABLE;
1139 			sa1100fb_enable_controller(fbi);
1140 		}
1141 		break;
1142 
1143 	case C_REENABLE:
1144 		/*
1145 		 * Re-enable the controller only if it was already
1146 		 * enabled.  This is so we reprogram the control
1147 		 * registers.
1148 		 */
1149 		if (old_state == C_ENABLE) {
1150 			sa1100fb_disable_controller(fbi);
1151 			sa1100fb_setup_gpio(fbi);
1152 			sa1100fb_enable_controller(fbi);
1153 		}
1154 		break;
1155 
1156 	case C_ENABLE_PM:
1157 		/*
1158 		 * Re-enable the controller after PM.  This is not
1159 		 * perfect - think about the case where we were doing
1160 		 * a clock change, and we suspended half-way through.
1161 		 */
1162 		if (old_state != C_DISABLE_PM)
1163 			break;
1164 		/* fall through */
1165 
1166 	case C_ENABLE:
1167 		/*
1168 		 * Power up the LCD screen, enable controller, and
1169 		 * turn on the backlight.
1170 		 */
1171 		if (old_state != C_ENABLE) {
1172 			fbi->state = C_ENABLE;
1173 			sa1100fb_setup_gpio(fbi);
1174 			__sa1100fb_lcd_power(fbi, 1);
1175 			sa1100fb_enable_controller(fbi);
1176 			__sa1100fb_backlight_power(fbi, 1);
1177 		}
1178 		break;
1179 	}
1180 	mutex_unlock(&fbi->ctrlr_lock);
1181 }
1182 
1183 /*
1184  * Our LCD controller task (which is called when we blank or unblank)
1185  * via keventd.
1186  */
sa1100fb_task(struct work_struct * w)1187 static void sa1100fb_task(struct work_struct *w)
1188 {
1189 	struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
1190 	u_int state = xchg(&fbi->task_state, -1);
1191 
1192 	set_ctrlr_state(fbi, state);
1193 }
1194 
1195 #ifdef CONFIG_CPU_FREQ
1196 /*
1197  * Calculate the minimum DMA period over all displays that we own.
1198  * This, together with the SDRAM bandwidth defines the slowest CPU
1199  * frequency that can be selected.
1200  */
sa1100fb_min_dma_period(struct sa1100fb_info * fbi)1201 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
1202 {
1203 #if 0
1204 	unsigned int min_period = (unsigned int)-1;
1205 	int i;
1206 
1207 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1208 		struct display *disp = &fb_display[i];
1209 		unsigned int period;
1210 
1211 		/*
1212 		 * Do we own this display?
1213 		 */
1214 		if (disp->fb_info != &fbi->fb)
1215 			continue;
1216 
1217 		/*
1218 		 * Ok, calculate its DMA period
1219 		 */
1220 		period = sa1100fb_display_dma_period(&disp->var);
1221 		if (period < min_period)
1222 			min_period = period;
1223 	}
1224 
1225 	return min_period;
1226 #else
1227 	/*
1228 	 * FIXME: we need to verify _all_ consoles.
1229 	 */
1230 	return sa1100fb_display_dma_period(&fbi->fb.var);
1231 #endif
1232 }
1233 
1234 /*
1235  * CPU clock speed change handler.  We need to adjust the LCD timing
1236  * parameters when the CPU clock is adjusted by the power management
1237  * subsystem.
1238  */
1239 static int
sa1100fb_freq_transition(struct notifier_block * nb,unsigned long val,void * data)1240 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1241 			 void *data)
1242 {
1243 	struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1244 	struct cpufreq_freqs *f = data;
1245 	u_int pcd;
1246 
1247 	switch (val) {
1248 	case CPUFREQ_PRECHANGE:
1249 		set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1250 		break;
1251 
1252 	case CPUFREQ_POSTCHANGE:
1253 		pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1254 		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1255 		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1256 		break;
1257 	}
1258 	return 0;
1259 }
1260 
1261 static int
sa1100fb_freq_policy(struct notifier_block * nb,unsigned long val,void * data)1262 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1263 		     void *data)
1264 {
1265 	struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1266 	struct cpufreq_policy *policy = data;
1267 
1268 	switch (val) {
1269 	case CPUFREQ_ADJUST:
1270 	case CPUFREQ_INCOMPATIBLE:
1271 		printk(KERN_DEBUG "min dma period: %d ps, "
1272 			"new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1273 			policy->max);
1274 		/* todo: fill in min/max values */
1275 		break;
1276 	case CPUFREQ_NOTIFY:
1277 		do {} while(0);
1278 		/* todo: panic if min/max values aren't fulfilled
1279 		 * [can't really happen unless there's a bug in the
1280 		 * CPU policy verififcation process *
1281 		 */
1282 		break;
1283 	}
1284 	return 0;
1285 }
1286 #endif
1287 
1288 #ifdef CONFIG_PM
1289 /*
1290  * Power management hooks.  Note that we won't be called from IRQ context,
1291  * unlike the blank functions above, so we may sleep.
1292  */
sa1100fb_suspend(struct platform_device * dev,pm_message_t state)1293 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1294 {
1295 	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1296 
1297 	set_ctrlr_state(fbi, C_DISABLE_PM);
1298 	return 0;
1299 }
1300 
sa1100fb_resume(struct platform_device * dev)1301 static int sa1100fb_resume(struct platform_device *dev)
1302 {
1303 	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1304 
1305 	set_ctrlr_state(fbi, C_ENABLE_PM);
1306 	return 0;
1307 }
1308 #else
1309 #define sa1100fb_suspend	NULL
1310 #define sa1100fb_resume		NULL
1311 #endif
1312 
1313 /*
1314  * sa1100fb_map_video_memory():
1315  *      Allocates the DRAM memory for the frame buffer.  This buffer is
1316  *	remapped into a non-cached, non-buffered, memory region to
1317  *      allow palette and pixel writes to occur without flushing the
1318  *      cache.  Once this area is remapped, all virtual memory
1319  *      access to the video memory should occur at the new region.
1320  */
sa1100fb_map_video_memory(struct sa1100fb_info * fbi)1321 static int __init sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1322 {
1323 	/*
1324 	 * We reserve one page for the palette, plus the size
1325 	 * of the framebuffer.
1326 	 */
1327 	fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1328 	fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1329 					      &fbi->map_dma, GFP_KERNEL);
1330 
1331 	if (fbi->map_cpu) {
1332 		fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1333 		fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1334 		/*
1335 		 * FIXME: this is actually the wrong thing to place in
1336 		 * smem_start.  But fbdev suffers from the problem that
1337 		 * it needs an API which doesn't exist (in this case,
1338 		 * dma_writecombine_mmap)
1339 		 */
1340 		fbi->fb.fix.smem_start = fbi->screen_dma;
1341 	}
1342 
1343 	return fbi->map_cpu ? 0 : -ENOMEM;
1344 }
1345 
1346 /* Fake monspecs to fill in fbinfo structure */
1347 static struct fb_monspecs monspecs __initdata = {
1348 	.hfmin	= 30000,
1349 	.hfmax	= 70000,
1350 	.vfmin	= 50,
1351 	.vfmax	= 65,
1352 };
1353 
1354 
sa1100fb_init_fbinfo(struct device * dev)1355 static struct sa1100fb_info * __init sa1100fb_init_fbinfo(struct device *dev)
1356 {
1357 	struct sa1100fb_mach_info *inf;
1358 	struct sa1100fb_info *fbi;
1359 
1360 	fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1361 		      GFP_KERNEL);
1362 	if (!fbi)
1363 		return NULL;
1364 
1365 	memset(fbi, 0, sizeof(struct sa1100fb_info));
1366 	fbi->dev = dev;
1367 
1368 	strcpy(fbi->fb.fix.id, SA1100_NAME);
1369 
1370 	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1371 	fbi->fb.fix.type_aux	= 0;
1372 	fbi->fb.fix.xpanstep	= 0;
1373 	fbi->fb.fix.ypanstep	= 0;
1374 	fbi->fb.fix.ywrapstep	= 0;
1375 	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1376 
1377 	fbi->fb.var.nonstd	= 0;
1378 	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1379 	fbi->fb.var.height	= -1;
1380 	fbi->fb.var.width	= -1;
1381 	fbi->fb.var.accel_flags	= 0;
1382 	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1383 
1384 	fbi->fb.fbops		= &sa1100fb_ops;
1385 	fbi->fb.flags		= FBINFO_DEFAULT;
1386 	fbi->fb.monspecs	= monspecs;
1387 	fbi->fb.pseudo_palette	= (fbi + 1);
1388 
1389 	fbi->rgb[RGB_4]		= &rgb_4;
1390 	fbi->rgb[RGB_8]		= &rgb_8;
1391 	fbi->rgb[RGB_16]	= &def_rgb_16;
1392 
1393 	inf = sa1100fb_get_machine_info(fbi);
1394 
1395 	/*
1396 	 * People just don't seem to get this.  We don't support
1397 	 * anything but correct entries now, so panic if someone
1398 	 * does something stupid.
1399 	 */
1400 	if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1401 	    inf->pixclock == 0)
1402 		panic("sa1100fb error: invalid LCCR3 fields set or zero "
1403 			"pixclock.");
1404 
1405 	fbi->max_xres			= inf->xres;
1406 	fbi->fb.var.xres		= inf->xres;
1407 	fbi->fb.var.xres_virtual	= inf->xres;
1408 	fbi->max_yres			= inf->yres;
1409 	fbi->fb.var.yres		= inf->yres;
1410 	fbi->fb.var.yres_virtual	= inf->yres;
1411 	fbi->max_bpp			= inf->bpp;
1412 	fbi->fb.var.bits_per_pixel	= inf->bpp;
1413 	fbi->fb.var.pixclock		= inf->pixclock;
1414 	fbi->fb.var.hsync_len		= inf->hsync_len;
1415 	fbi->fb.var.left_margin		= inf->left_margin;
1416 	fbi->fb.var.right_margin	= inf->right_margin;
1417 	fbi->fb.var.vsync_len		= inf->vsync_len;
1418 	fbi->fb.var.upper_margin	= inf->upper_margin;
1419 	fbi->fb.var.lower_margin	= inf->lower_margin;
1420 	fbi->fb.var.sync		= inf->sync;
1421 	fbi->fb.var.grayscale		= inf->cmap_greyscale;
1422 	fbi->cmap_inverse		= inf->cmap_inverse;
1423 	fbi->cmap_static		= inf->cmap_static;
1424 	fbi->lccr0			= inf->lccr0;
1425 	fbi->lccr3			= inf->lccr3;
1426 	fbi->state			= C_STARTUP;
1427 	fbi->task_state			= (u_char)-1;
1428 	fbi->fb.fix.smem_len		= fbi->max_xres * fbi->max_yres *
1429 					  fbi->max_bpp / 8;
1430 
1431 	init_waitqueue_head(&fbi->ctrlr_wait);
1432 	INIT_WORK(&fbi->task, sa1100fb_task);
1433 	mutex_init(&fbi->ctrlr_lock);
1434 
1435 	return fbi;
1436 }
1437 
sa1100fb_probe(struct platform_device * pdev)1438 static int __devinit sa1100fb_probe(struct platform_device *pdev)
1439 {
1440 	struct sa1100fb_info *fbi;
1441 	int ret, irq;
1442 
1443 	irq = platform_get_irq(pdev, 0);
1444 	if (irq < 0)
1445 		return -EINVAL;
1446 
1447 	if (!request_mem_region(0xb0100000, 0x10000, "LCD"))
1448 		return -EBUSY;
1449 
1450 	fbi = sa1100fb_init_fbinfo(&pdev->dev);
1451 	ret = -ENOMEM;
1452 	if (!fbi)
1453 		goto failed;
1454 
1455 	/* Initialize video memory */
1456 	ret = sa1100fb_map_video_memory(fbi);
1457 	if (ret)
1458 		goto failed;
1459 
1460 	ret = request_irq(irq, sa1100fb_handle_irq, IRQF_DISABLED,
1461 			  "LCD", fbi);
1462 	if (ret) {
1463 		printk(KERN_ERR "sa1100fb: request_irq failed: %d\n", ret);
1464 		goto failed;
1465 	}
1466 
1467 #ifdef ASSABET_PAL_VIDEO
1468 	if (machine_is_assabet())
1469 		ASSABET_BCR_clear(ASSABET_BCR_LCD_ON);
1470 #endif
1471 
1472 	/*
1473 	 * This makes sure that our colour bitfield
1474 	 * descriptors are correctly initialised.
1475 	 */
1476 	sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1477 
1478 	platform_set_drvdata(pdev, fbi);
1479 
1480 	ret = register_framebuffer(&fbi->fb);
1481 	if (ret < 0)
1482 		goto err_free_irq;
1483 
1484 #ifdef CONFIG_CPU_FREQ
1485 	fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1486 	fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1487 	cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1488 	cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1489 #endif
1490 
1491 	/* This driver cannot be unloaded at the moment */
1492 	return 0;
1493 
1494  err_free_irq:
1495 	free_irq(irq, fbi);
1496  failed:
1497 	platform_set_drvdata(pdev, NULL);
1498 	kfree(fbi);
1499 	release_mem_region(0xb0100000, 0x10000);
1500 	return ret;
1501 }
1502 
1503 static struct platform_driver sa1100fb_driver = {
1504 	.probe		= sa1100fb_probe,
1505 	.suspend	= sa1100fb_suspend,
1506 	.resume		= sa1100fb_resume,
1507 	.driver		= {
1508 		.name	= "sa11x0-fb",
1509 	},
1510 };
1511 
sa1100fb_init(void)1512 int __init sa1100fb_init(void)
1513 {
1514 	if (fb_get_options("sa1100fb", NULL))
1515 		return -ENODEV;
1516 
1517 	return platform_driver_register(&sa1100fb_driver);
1518 }
1519 
sa1100fb_setup(char * options)1520 int __init sa1100fb_setup(char *options)
1521 {
1522 #if 0
1523 	char *this_opt;
1524 
1525 	if (!options || !*options)
1526 		return 0;
1527 
1528 	while ((this_opt = strsep(&options, ",")) != NULL) {
1529 
1530 		if (!strncmp(this_opt, "bpp:", 4))
1531 			current_par.max_bpp =
1532 			    simple_strtoul(this_opt + 4, NULL, 0);
1533 
1534 		if (!strncmp(this_opt, "lccr0:", 6))
1535 			lcd_shadow.lccr0 =
1536 			    simple_strtoul(this_opt + 6, NULL, 0);
1537 		if (!strncmp(this_opt, "lccr1:", 6)) {
1538 			lcd_shadow.lccr1 =
1539 			    simple_strtoul(this_opt + 6, NULL, 0);
1540 			current_par.max_xres =
1541 			    (lcd_shadow.lccr1 & 0x3ff) + 16;
1542 		}
1543 		if (!strncmp(this_opt, "lccr2:", 6)) {
1544 			lcd_shadow.lccr2 =
1545 			    simple_strtoul(this_opt + 6, NULL, 0);
1546 			current_par.max_yres =
1547 			    (lcd_shadow.
1548 			     lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1549 						    lccr2 & 0x3ff) +
1550 						   1) *
1551 			    2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1552 		}
1553 		if (!strncmp(this_opt, "lccr3:", 6))
1554 			lcd_shadow.lccr3 =
1555 			    simple_strtoul(this_opt + 6, NULL, 0);
1556 	}
1557 #endif
1558 	return 0;
1559 }
1560 
1561 module_init(sa1100fb_init);
1562 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1563 MODULE_LICENSE("GPL");
1564