1 /*
2  * spi_bitbang.c - polling/bitbanging SPI master controller driver utilities
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17  */
18 
19 #include <linux/init.h>
20 #include <linux/spinlock.h>
21 #include <linux/workqueue.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi_bitbang.h>
30 
31 
32 /*----------------------------------------------------------------------*/
33 
34 /*
35  * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
36  * Use this for GPIO or shift-register level hardware APIs.
37  *
38  * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
39  * to glue code.  These bitbang setup() and cleanup() routines are always
40  * used, though maybe they're called from controller-aware code.
41  *
42  * chipselect() and friends may use use spi_device->controller_data and
43  * controller registers as appropriate.
44  *
45  *
46  * NOTE:  SPI controller pins can often be used as GPIO pins instead,
47  * which means you could use a bitbang driver either to get hardware
48  * working quickly, or testing for differences that aren't speed related.
49  */
50 
51 struct spi_bitbang_cs {
52 	unsigned	nsecs;	/* (clock cycle time)/2 */
53 	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
54 					u32 word, u8 bits);
55 	unsigned	(*txrx_bufs)(struct spi_device *,
56 					u32 (*txrx_word)(
57 						struct spi_device *spi,
58 						unsigned nsecs,
59 						u32 word, u8 bits),
60 					unsigned, struct spi_transfer *);
61 };
62 
bitbang_txrx_8(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits),unsigned ns,struct spi_transfer * t)63 static unsigned bitbang_txrx_8(
64 	struct spi_device	*spi,
65 	u32			(*txrx_word)(struct spi_device *spi,
66 					unsigned nsecs,
67 					u32 word, u8 bits),
68 	unsigned		ns,
69 	struct spi_transfer	*t
70 ) {
71 	unsigned		bits = spi->bits_per_word;
72 	unsigned		count = t->len;
73 	const u8		*tx = t->tx_buf;
74 	u8			*rx = t->rx_buf;
75 
76 	while (likely(count > 0)) {
77 		u8		word = 0;
78 
79 		if (tx)
80 			word = *tx++;
81 		word = txrx_word(spi, ns, word, bits);
82 		if (rx)
83 			*rx++ = word;
84 		count -= 1;
85 	}
86 	return t->len - count;
87 }
88 
bitbang_txrx_16(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits),unsigned ns,struct spi_transfer * t)89 static unsigned bitbang_txrx_16(
90 	struct spi_device	*spi,
91 	u32			(*txrx_word)(struct spi_device *spi,
92 					unsigned nsecs,
93 					u32 word, u8 bits),
94 	unsigned		ns,
95 	struct spi_transfer	*t
96 ) {
97 	unsigned		bits = spi->bits_per_word;
98 	unsigned		count = t->len;
99 	const u16		*tx = t->tx_buf;
100 	u16			*rx = t->rx_buf;
101 
102 	while (likely(count > 1)) {
103 		u16		word = 0;
104 
105 		if (tx)
106 			word = *tx++;
107 		word = txrx_word(spi, ns, word, bits);
108 		if (rx)
109 			*rx++ = word;
110 		count -= 2;
111 	}
112 	return t->len - count;
113 }
114 
bitbang_txrx_32(struct spi_device * spi,u32 (* txrx_word)(struct spi_device * spi,unsigned nsecs,u32 word,u8 bits),unsigned ns,struct spi_transfer * t)115 static unsigned bitbang_txrx_32(
116 	struct spi_device	*spi,
117 	u32			(*txrx_word)(struct spi_device *spi,
118 					unsigned nsecs,
119 					u32 word, u8 bits),
120 	unsigned		ns,
121 	struct spi_transfer	*t
122 ) {
123 	unsigned		bits = spi->bits_per_word;
124 	unsigned		count = t->len;
125 	const u32		*tx = t->tx_buf;
126 	u32			*rx = t->rx_buf;
127 
128 	while (likely(count > 3)) {
129 		u32		word = 0;
130 
131 		if (tx)
132 			word = *tx++;
133 		word = txrx_word(spi, ns, word, bits);
134 		if (rx)
135 			*rx++ = word;
136 		count -= 4;
137 	}
138 	return t->len - count;
139 }
140 
spi_bitbang_setup_transfer(struct spi_device * spi,struct spi_transfer * t)141 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
142 {
143 	struct spi_bitbang_cs	*cs = spi->controller_state;
144 	u8			bits_per_word;
145 	u32			hz;
146 
147 	if (t) {
148 		bits_per_word = t->bits_per_word;
149 		hz = t->speed_hz;
150 	} else {
151 		bits_per_word = 0;
152 		hz = 0;
153 	}
154 
155 	/* spi_transfer level calls that work per-word */
156 	if (!bits_per_word)
157 		bits_per_word = spi->bits_per_word;
158 	if (bits_per_word <= 8)
159 		cs->txrx_bufs = bitbang_txrx_8;
160 	else if (bits_per_word <= 16)
161 		cs->txrx_bufs = bitbang_txrx_16;
162 	else if (bits_per_word <= 32)
163 		cs->txrx_bufs = bitbang_txrx_32;
164 	else
165 		return -EINVAL;
166 
167 	/* nsecs = (clock period)/2 */
168 	if (!hz)
169 		hz = spi->max_speed_hz;
170 	if (hz) {
171 		cs->nsecs = (1000000000/2) / hz;
172 		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
173 			return -EINVAL;
174 	}
175 
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
179 
180 /**
181  * spi_bitbang_setup - default setup for per-word I/O loops
182  */
spi_bitbang_setup(struct spi_device * spi)183 int spi_bitbang_setup(struct spi_device *spi)
184 {
185 	struct spi_bitbang_cs	*cs = spi->controller_state;
186 	struct spi_bitbang	*bitbang;
187 	int			retval;
188 	unsigned long		flags;
189 
190 	bitbang = spi_master_get_devdata(spi->master);
191 
192 	if (!cs) {
193 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
194 		if (!cs)
195 			return -ENOMEM;
196 		spi->controller_state = cs;
197 	}
198 
199 	/* per-word shift register access, in hardware or bitbanging */
200 	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
201 	if (!cs->txrx_word)
202 		return -EINVAL;
203 
204 	retval = bitbang->setup_transfer(spi, NULL);
205 	if (retval < 0)
206 		return retval;
207 
208 	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
209 
210 	/* NOTE we _need_ to call chipselect() early, ideally with adapter
211 	 * setup, unless the hardware defaults cooperate to avoid confusion
212 	 * between normal (active low) and inverted chipselects.
213 	 */
214 
215 	/* deselect chip (low or high) */
216 	spin_lock_irqsave(&bitbang->lock, flags);
217 	if (!bitbang->busy) {
218 		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
219 		ndelay(cs->nsecs);
220 	}
221 	spin_unlock_irqrestore(&bitbang->lock, flags);
222 
223 	return 0;
224 }
225 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
226 
227 /**
228  * spi_bitbang_cleanup - default cleanup for per-word I/O loops
229  */
spi_bitbang_cleanup(struct spi_device * spi)230 void spi_bitbang_cleanup(struct spi_device *spi)
231 {
232 	kfree(spi->controller_state);
233 }
234 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
235 
spi_bitbang_bufs(struct spi_device * spi,struct spi_transfer * t)236 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
237 {
238 	struct spi_bitbang_cs	*cs = spi->controller_state;
239 	unsigned		nsecs = cs->nsecs;
240 
241 	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
242 }
243 
244 /*----------------------------------------------------------------------*/
245 
246 /*
247  * SECOND PART ... simple transfer queue runner.
248  *
249  * This costs a task context per controller, running the queue by
250  * performing each transfer in sequence.  Smarter hardware can queue
251  * several DMA transfers at once, and process several controller queues
252  * in parallel; this driver doesn't match such hardware very well.
253  *
254  * Drivers can provide word-at-a-time i/o primitives, or provide
255  * transfer-at-a-time ones to leverage dma or fifo hardware.
256  */
bitbang_work(struct work_struct * work)257 static void bitbang_work(struct work_struct *work)
258 {
259 	struct spi_bitbang	*bitbang =
260 		container_of(work, struct spi_bitbang, work);
261 	unsigned long		flags;
262 
263 	spin_lock_irqsave(&bitbang->lock, flags);
264 	bitbang->busy = 1;
265 	while (!list_empty(&bitbang->queue)) {
266 		struct spi_message	*m;
267 		struct spi_device	*spi;
268 		unsigned		nsecs;
269 		struct spi_transfer	*t = NULL;
270 		unsigned		tmp;
271 		unsigned		cs_change;
272 		int			status;
273 		int			do_setup = -1;
274 
275 		m = container_of(bitbang->queue.next, struct spi_message,
276 				queue);
277 		list_del_init(&m->queue);
278 		spin_unlock_irqrestore(&bitbang->lock, flags);
279 
280 		/* FIXME this is made-up ... the correct value is known to
281 		 * word-at-a-time bitbang code, and presumably chipselect()
282 		 * should enforce these requirements too?
283 		 */
284 		nsecs = 100;
285 
286 		spi = m->spi;
287 		tmp = 0;
288 		cs_change = 1;
289 		status = 0;
290 
291 		list_for_each_entry (t, &m->transfers, transfer_list) {
292 
293 			/* override speed or wordsize? */
294 			if (t->speed_hz || t->bits_per_word)
295 				do_setup = 1;
296 
297 			/* init (-1) or override (1) transfer params */
298 			if (do_setup != 0) {
299 				status = bitbang->setup_transfer(spi, t);
300 				if (status < 0)
301 					break;
302 				if (do_setup == -1)
303 					do_setup = 0;
304 			}
305 
306 			/* set up default clock polarity, and activate chip;
307 			 * this implicitly updates clock and spi modes as
308 			 * previously recorded for this device via setup().
309 			 * (and also deselects any other chip that might be
310 			 * selected ...)
311 			 */
312 			if (cs_change) {
313 				bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
314 				ndelay(nsecs);
315 			}
316 			cs_change = t->cs_change;
317 			if (!t->tx_buf && !t->rx_buf && t->len) {
318 				status = -EINVAL;
319 				break;
320 			}
321 
322 			/* transfer data.  the lower level code handles any
323 			 * new dma mappings it needs. our caller always gave
324 			 * us dma-safe buffers.
325 			 */
326 			if (t->len) {
327 				/* REVISIT dma API still needs a designated
328 				 * DMA_ADDR_INVALID; ~0 might be better.
329 				 */
330 				if (!m->is_dma_mapped)
331 					t->rx_dma = t->tx_dma = 0;
332 				status = bitbang->txrx_bufs(spi, t);
333 			}
334 			if (status > 0)
335 				m->actual_length += status;
336 			if (status != t->len) {
337 				/* always report some kind of error */
338 				if (status >= 0)
339 					status = -EREMOTEIO;
340 				break;
341 			}
342 			status = 0;
343 
344 			/* protocol tweaks before next transfer */
345 			if (t->delay_usecs)
346 				udelay(t->delay_usecs);
347 
348 			if (!cs_change)
349 				continue;
350 			if (t->transfer_list.next == &m->transfers)
351 				break;
352 
353 			/* sometimes a short mid-message deselect of the chip
354 			 * may be needed to terminate a mode or command
355 			 */
356 			ndelay(nsecs);
357 			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
358 			ndelay(nsecs);
359 		}
360 
361 		m->status = status;
362 		m->complete(m->context);
363 
364 		/* normally deactivate chipselect ... unless no error and
365 		 * cs_change has hinted that the next message will probably
366 		 * be for this chip too.
367 		 */
368 		if (!(status == 0 && cs_change)) {
369 			ndelay(nsecs);
370 			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
371 			ndelay(nsecs);
372 		}
373 
374 		spin_lock_irqsave(&bitbang->lock, flags);
375 	}
376 	bitbang->busy = 0;
377 	spin_unlock_irqrestore(&bitbang->lock, flags);
378 }
379 
380 /**
381  * spi_bitbang_transfer - default submit to transfer queue
382  */
spi_bitbang_transfer(struct spi_device * spi,struct spi_message * m)383 int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
384 {
385 	struct spi_bitbang	*bitbang;
386 	unsigned long		flags;
387 	int			status = 0;
388 
389 	m->actual_length = 0;
390 	m->status = -EINPROGRESS;
391 
392 	bitbang = spi_master_get_devdata(spi->master);
393 
394 	spin_lock_irqsave(&bitbang->lock, flags);
395 	if (!spi->max_speed_hz)
396 		status = -ENETDOWN;
397 	else {
398 		list_add_tail(&m->queue, &bitbang->queue);
399 		queue_work(bitbang->workqueue, &bitbang->work);
400 	}
401 	spin_unlock_irqrestore(&bitbang->lock, flags);
402 
403 	return status;
404 }
405 EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
406 
407 /*----------------------------------------------------------------------*/
408 
409 /**
410  * spi_bitbang_start - start up a polled/bitbanging SPI master driver
411  * @bitbang: driver handle
412  *
413  * Caller should have zero-initialized all parts of the structure, and then
414  * provided callbacks for chip selection and I/O loops.  If the master has
415  * a transfer method, its final step should call spi_bitbang_transfer; or,
416  * that's the default if the transfer routine is not initialized.  It should
417  * also set up the bus number and number of chipselects.
418  *
419  * For i/o loops, provide callbacks either per-word (for bitbanging, or for
420  * hardware that basically exposes a shift register) or per-spi_transfer
421  * (which takes better advantage of hardware like fifos or DMA engines).
422  *
423  * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
424  * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
425  * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
426  * routine isn't initialized.
427  *
428  * This routine registers the spi_master, which will process requests in a
429  * dedicated task, keeping IRQs unblocked most of the time.  To stop
430  * processing those requests, call spi_bitbang_stop().
431  */
spi_bitbang_start(struct spi_bitbang * bitbang)432 int spi_bitbang_start(struct spi_bitbang *bitbang)
433 {
434 	int	status;
435 
436 	if (!bitbang->master || !bitbang->chipselect)
437 		return -EINVAL;
438 
439 	INIT_WORK(&bitbang->work, bitbang_work);
440 	spin_lock_init(&bitbang->lock);
441 	INIT_LIST_HEAD(&bitbang->queue);
442 
443 	if (!bitbang->master->mode_bits)
444 		bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
445 
446 	if (!bitbang->master->transfer)
447 		bitbang->master->transfer = spi_bitbang_transfer;
448 	if (!bitbang->txrx_bufs) {
449 		bitbang->use_dma = 0;
450 		bitbang->txrx_bufs = spi_bitbang_bufs;
451 		if (!bitbang->master->setup) {
452 			if (!bitbang->setup_transfer)
453 				bitbang->setup_transfer =
454 					 spi_bitbang_setup_transfer;
455 			bitbang->master->setup = spi_bitbang_setup;
456 			bitbang->master->cleanup = spi_bitbang_cleanup;
457 		}
458 	} else if (!bitbang->master->setup)
459 		return -EINVAL;
460 	if (bitbang->master->transfer == spi_bitbang_transfer &&
461 			!bitbang->setup_transfer)
462 		return -EINVAL;
463 
464 	/* this task is the only thing to touch the SPI bits */
465 	bitbang->busy = 0;
466 	bitbang->workqueue = create_singlethread_workqueue(
467 			dev_name(bitbang->master->dev.parent));
468 	if (bitbang->workqueue == NULL) {
469 		status = -EBUSY;
470 		goto err1;
471 	}
472 
473 	/* driver may get busy before register() returns, especially
474 	 * if someone registered boardinfo for devices
475 	 */
476 	status = spi_register_master(bitbang->master);
477 	if (status < 0)
478 		goto err2;
479 
480 	return status;
481 
482 err2:
483 	destroy_workqueue(bitbang->workqueue);
484 err1:
485 	return status;
486 }
487 EXPORT_SYMBOL_GPL(spi_bitbang_start);
488 
489 /**
490  * spi_bitbang_stop - stops the task providing spi communication
491  */
spi_bitbang_stop(struct spi_bitbang * bitbang)492 int spi_bitbang_stop(struct spi_bitbang *bitbang)
493 {
494 	spi_unregister_master(bitbang->master);
495 
496 	WARN_ON(!list_empty(&bitbang->queue));
497 
498 	destroy_workqueue(bitbang->workqueue);
499 
500 	return 0;
501 }
502 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
503 
504 MODULE_LICENSE("GPL");
505 
506