1 /*
2  * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver
3  *
4  * Copyright (c) 2008-2009 USI Co., Ltd.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  * 3. Neither the names of the above-listed copyright holders nor the names
19  *    of any contributors may be used to endorse or promote products derived
20  *    from this software without specific prior written permission.
21  *
22  * Alternatively, this software may be distributed under the terms of the
23  * GNU General Public License ("GPL") version 2 as published by the Free
24  * Software Foundation.
25  *
26  * NO WARRANTY
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
35  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
36  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGES.
38  *
39  */
40 
41 #include <linux/slab.h>
42 #include "pm8001_sas.h"
43 
44 /**
45  * pm8001_find_tag - from sas task to find out  tag that belongs to this task
46  * @task: the task sent to the LLDD
47  * @tag: the found tag associated with the task
48  */
pm8001_find_tag(struct sas_task * task,u32 * tag)49 static int pm8001_find_tag(struct sas_task *task, u32 *tag)
50 {
51 	if (task->lldd_task) {
52 		struct pm8001_ccb_info *ccb;
53 		ccb = task->lldd_task;
54 		*tag = ccb->ccb_tag;
55 		return 1;
56 	}
57 	return 0;
58 }
59 
60 /**
61   * pm8001_tag_clear - clear the tags bitmap
62   * @pm8001_ha: our hba struct
63   * @tag: the found tag associated with the task
64   */
pm8001_tag_clear(struct pm8001_hba_info * pm8001_ha,u32 tag)65 static void pm8001_tag_clear(struct pm8001_hba_info *pm8001_ha, u32 tag)
66 {
67 	void *bitmap = pm8001_ha->tags;
68 	clear_bit(tag, bitmap);
69 }
70 
pm8001_tag_free(struct pm8001_hba_info * pm8001_ha,u32 tag)71 static void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag)
72 {
73 	pm8001_tag_clear(pm8001_ha, tag);
74 }
75 
pm8001_tag_set(struct pm8001_hba_info * pm8001_ha,u32 tag)76 static void pm8001_tag_set(struct pm8001_hba_info *pm8001_ha, u32 tag)
77 {
78 	void *bitmap = pm8001_ha->tags;
79 	set_bit(tag, bitmap);
80 }
81 
82 /**
83   * pm8001_tag_alloc - allocate a empty tag for task used.
84   * @pm8001_ha: our hba struct
85   * @tag_out: the found empty tag .
86   */
pm8001_tag_alloc(struct pm8001_hba_info * pm8001_ha,u32 * tag_out)87 inline int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out)
88 {
89 	unsigned int index, tag;
90 	void *bitmap = pm8001_ha->tags;
91 
92 	index = find_first_zero_bit(bitmap, pm8001_ha->tags_num);
93 	tag = index;
94 	if (tag >= pm8001_ha->tags_num)
95 		return -SAS_QUEUE_FULL;
96 	pm8001_tag_set(pm8001_ha, tag);
97 	*tag_out = tag;
98 	return 0;
99 }
100 
pm8001_tag_init(struct pm8001_hba_info * pm8001_ha)101 void pm8001_tag_init(struct pm8001_hba_info *pm8001_ha)
102 {
103 	int i;
104 	for (i = 0; i < pm8001_ha->tags_num; ++i)
105 		pm8001_tag_clear(pm8001_ha, i);
106 }
107 
108  /**
109   * pm8001_mem_alloc - allocate memory for pm8001.
110   * @pdev: pci device.
111   * @virt_addr: the allocated virtual address
112   * @pphys_addr_hi: the physical address high byte address.
113   * @pphys_addr_lo: the physical address low byte address.
114   * @mem_size: memory size.
115   */
pm8001_mem_alloc(struct pci_dev * pdev,void ** virt_addr,dma_addr_t * pphys_addr,u32 * pphys_addr_hi,u32 * pphys_addr_lo,u32 mem_size,u32 align)116 int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr,
117 	dma_addr_t *pphys_addr, u32 *pphys_addr_hi,
118 	u32 *pphys_addr_lo, u32 mem_size, u32 align)
119 {
120 	caddr_t mem_virt_alloc;
121 	dma_addr_t mem_dma_handle;
122 	u64 phys_align;
123 	u64 align_offset = 0;
124 	if (align)
125 		align_offset = (dma_addr_t)align - 1;
126 	mem_virt_alloc =
127 		pci_alloc_consistent(pdev, mem_size + align, &mem_dma_handle);
128 	if (!mem_virt_alloc) {
129 		pm8001_printk("memory allocation error\n");
130 		return -1;
131 	}
132 	memset((void *)mem_virt_alloc, 0, mem_size+align);
133 	*pphys_addr = mem_dma_handle;
134 	phys_align = (*pphys_addr + align_offset) & ~align_offset;
135 	*virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr;
136 	*pphys_addr_hi = upper_32_bits(phys_align);
137 	*pphys_addr_lo = lower_32_bits(phys_align);
138 	return 0;
139 }
140 /**
141   * pm8001_find_ha_by_dev - from domain device which come from sas layer to
142   * find out our hba struct.
143   * @dev: the domain device which from sas layer.
144   */
145 static
pm8001_find_ha_by_dev(struct domain_device * dev)146 struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev)
147 {
148 	struct sas_ha_struct *sha = dev->port->ha;
149 	struct pm8001_hba_info *pm8001_ha = sha->lldd_ha;
150 	return pm8001_ha;
151 }
152 
153 /**
154   * pm8001_phy_control - this function should be registered to
155   * sas_domain_function_template to provide libsas used, note: this is just
156   * control the HBA phy rather than other expander phy if you want control
157   * other phy, you should use SMP command.
158   * @sas_phy: which phy in HBA phys.
159   * @func: the operation.
160   * @funcdata: always NULL.
161   */
pm8001_phy_control(struct asd_sas_phy * sas_phy,enum phy_func func,void * funcdata)162 int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func,
163 	void *funcdata)
164 {
165 	int rc = 0, phy_id = sas_phy->id;
166 	struct pm8001_hba_info *pm8001_ha = NULL;
167 	struct sas_phy_linkrates *rates;
168 	DECLARE_COMPLETION_ONSTACK(completion);
169 	pm8001_ha = sas_phy->ha->lldd_ha;
170 	pm8001_ha->phy[phy_id].enable_completion = &completion;
171 	switch (func) {
172 	case PHY_FUNC_SET_LINK_RATE:
173 		rates = funcdata;
174 		if (rates->minimum_linkrate) {
175 			pm8001_ha->phy[phy_id].minimum_linkrate =
176 				rates->minimum_linkrate;
177 		}
178 		if (rates->maximum_linkrate) {
179 			pm8001_ha->phy[phy_id].maximum_linkrate =
180 				rates->maximum_linkrate;
181 		}
182 		if (pm8001_ha->phy[phy_id].phy_state == 0) {
183 			PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
184 			wait_for_completion(&completion);
185 		}
186 		PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
187 					      PHY_LINK_RESET);
188 		break;
189 	case PHY_FUNC_HARD_RESET:
190 		if (pm8001_ha->phy[phy_id].phy_state == 0) {
191 			PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
192 			wait_for_completion(&completion);
193 		}
194 		PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
195 					      PHY_HARD_RESET);
196 		break;
197 	case PHY_FUNC_LINK_RESET:
198 		if (pm8001_ha->phy[phy_id].phy_state == 0) {
199 			PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id);
200 			wait_for_completion(&completion);
201 		}
202 		PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
203 					      PHY_LINK_RESET);
204 		break;
205 	case PHY_FUNC_RELEASE_SPINUP_HOLD:
206 		PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id,
207 					      PHY_LINK_RESET);
208 		break;
209 	case PHY_FUNC_DISABLE:
210 		PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id);
211 		break;
212 	default:
213 		rc = -EOPNOTSUPP;
214 	}
215 	msleep(300);
216 	return rc;
217 }
218 
pm8001_slave_alloc(struct scsi_device * scsi_dev)219 int pm8001_slave_alloc(struct scsi_device *scsi_dev)
220 {
221 	struct domain_device *dev = sdev_to_domain_dev(scsi_dev);
222 	if (dev_is_sata(dev)) {
223 		/* We don't need to rescan targets
224 		* if REPORT_LUNS request is failed
225 		*/
226 		if (scsi_dev->lun > 0)
227 			return -ENXIO;
228 		scsi_dev->tagged_supported = 1;
229 	}
230 	return sas_slave_alloc(scsi_dev);
231 }
232 
233 /**
234   * pm8001_scan_start - we should enable all HBA phys by sending the phy_start
235   * command to HBA.
236   * @shost: the scsi host data.
237   */
pm8001_scan_start(struct Scsi_Host * shost)238 void pm8001_scan_start(struct Scsi_Host *shost)
239 {
240 	int i;
241 	struct pm8001_hba_info *pm8001_ha;
242 	struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
243 	pm8001_ha = sha->lldd_ha;
244 	PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha);
245 	for (i = 0; i < pm8001_ha->chip->n_phy; ++i)
246 		PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i);
247 }
248 
pm8001_scan_finished(struct Scsi_Host * shost,unsigned long time)249 int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time)
250 {
251 	/* give the phy enabling interrupt event time to come in (1s
252 	* is empirically about all it takes) */
253 	if (time < HZ)
254 		return 0;
255 	/* Wait for discovery to finish */
256 	scsi_flush_work(shost);
257 	return 1;
258 }
259 
260 /**
261   * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task
262   * @pm8001_ha: our hba card information
263   * @ccb: the ccb which attached to smp task
264   */
pm8001_task_prep_smp(struct pm8001_hba_info * pm8001_ha,struct pm8001_ccb_info * ccb)265 static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha,
266 	struct pm8001_ccb_info *ccb)
267 {
268 	return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb);
269 }
270 
pm8001_get_ncq_tag(struct sas_task * task,u32 * tag)271 u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag)
272 {
273 	struct ata_queued_cmd *qc = task->uldd_task;
274 	if (qc) {
275 		if (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
276 			qc->tf.command == ATA_CMD_FPDMA_READ) {
277 			*tag = qc->tag;
278 			return 1;
279 		}
280 	}
281 	return 0;
282 }
283 
284 /**
285   * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task
286   * @pm8001_ha: our hba card information
287   * @ccb: the ccb which attached to sata task
288   */
pm8001_task_prep_ata(struct pm8001_hba_info * pm8001_ha,struct pm8001_ccb_info * ccb)289 static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha,
290 	struct pm8001_ccb_info *ccb)
291 {
292 	return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb);
293 }
294 
295 /**
296   * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data
297   * @pm8001_ha: our hba card information
298   * @ccb: the ccb which attached to TM
299   * @tmf: the task management IU
300   */
pm8001_task_prep_ssp_tm(struct pm8001_hba_info * pm8001_ha,struct pm8001_ccb_info * ccb,struct pm8001_tmf_task * tmf)301 static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha,
302 	struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf)
303 {
304 	return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf);
305 }
306 
307 /**
308   * pm8001_task_prep_ssp - the dispatcher function,prepare ssp data for ssp task
309   * @pm8001_ha: our hba card information
310   * @ccb: the ccb which attached to ssp task
311   */
pm8001_task_prep_ssp(struct pm8001_hba_info * pm8001_ha,struct pm8001_ccb_info * ccb)312 static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha,
313 	struct pm8001_ccb_info *ccb)
314 {
315 	return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb);
316 }
pm8001_slave_configure(struct scsi_device * sdev)317 int pm8001_slave_configure(struct scsi_device *sdev)
318 {
319 	struct domain_device *dev = sdev_to_domain_dev(sdev);
320 	int ret = sas_slave_configure(sdev);
321 	if (ret)
322 		return ret;
323 	if (dev_is_sata(dev)) {
324 	#ifdef PM8001_DISABLE_NCQ
325 		struct ata_port *ap = dev->sata_dev.ap;
326 		struct ata_device *adev = ap->link.device;
327 		adev->flags |= ATA_DFLAG_NCQ_OFF;
328 		scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, 1);
329 	#endif
330 	}
331 	return 0;
332 }
333  /* Find the local port id that's attached to this device */
sas_find_local_port_id(struct domain_device * dev)334 static int sas_find_local_port_id(struct domain_device *dev)
335 {
336 	struct domain_device *pdev = dev->parent;
337 
338 	/* Directly attached device */
339 	if (!pdev)
340 		return dev->port->id;
341 	while (pdev) {
342 		struct domain_device *pdev_p = pdev->parent;
343 		if (!pdev_p)
344 			return pdev->port->id;
345 		pdev = pdev->parent;
346 	}
347 	return 0;
348 }
349 
350 /**
351   * pm8001_task_exec - queue the task(ssp, smp && ata) to the hardware.
352   * @task: the task to be execute.
353   * @num: if can_queue great than 1, the task can be queued up. for SMP task,
354   * we always execute one one time.
355   * @gfp_flags: gfp_flags.
356   * @is_tmf: if it is task management task.
357   * @tmf: the task management IU
358   */
359 #define DEV_IS_GONE(pm8001_dev)	\
360 	((!pm8001_dev || (pm8001_dev->dev_type == NO_DEVICE)))
pm8001_task_exec(struct sas_task * task,const int num,gfp_t gfp_flags,int is_tmf,struct pm8001_tmf_task * tmf)361 static int pm8001_task_exec(struct sas_task *task, const int num,
362 	gfp_t gfp_flags, int is_tmf, struct pm8001_tmf_task *tmf)
363 {
364 	struct domain_device *dev = task->dev;
365 	struct pm8001_hba_info *pm8001_ha;
366 	struct pm8001_device *pm8001_dev;
367 	struct pm8001_port *port = NULL;
368 	struct sas_task *t = task;
369 	struct pm8001_ccb_info *ccb;
370 	u32 tag = 0xdeadbeef, rc, n_elem = 0;
371 	u32 n = num;
372 	unsigned long flags = 0, flags_libsas = 0;
373 
374 	if (!dev->port) {
375 		struct task_status_struct *tsm = &t->task_status;
376 		tsm->resp = SAS_TASK_UNDELIVERED;
377 		tsm->stat = SAS_PHY_DOWN;
378 		if (dev->dev_type != SATA_DEV)
379 			t->task_done(t);
380 		return 0;
381 	}
382 	pm8001_ha = pm8001_find_ha_by_dev(task->dev);
383 	PM8001_IO_DBG(pm8001_ha, pm8001_printk("pm8001_task_exec device \n "));
384 	spin_lock_irqsave(&pm8001_ha->lock, flags);
385 	do {
386 		dev = t->dev;
387 		pm8001_dev = dev->lldd_dev;
388 		if (DEV_IS_GONE(pm8001_dev)) {
389 			if (pm8001_dev) {
390 				PM8001_IO_DBG(pm8001_ha,
391 					pm8001_printk("device %d not ready.\n",
392 					pm8001_dev->device_id));
393 			} else {
394 				PM8001_IO_DBG(pm8001_ha,
395 					pm8001_printk("device %016llx not "
396 					"ready.\n", SAS_ADDR(dev->sas_addr)));
397 			}
398 			rc = SAS_PHY_DOWN;
399 			goto out_done;
400 		}
401 		port = &pm8001_ha->port[sas_find_local_port_id(dev)];
402 		if (!port->port_attached) {
403 			if (sas_protocol_ata(t->task_proto)) {
404 				struct task_status_struct *ts = &t->task_status;
405 				ts->resp = SAS_TASK_UNDELIVERED;
406 				ts->stat = SAS_PHY_DOWN;
407 
408 				spin_unlock_irqrestore(&pm8001_ha->lock, flags);
409 				spin_unlock_irqrestore(dev->sata_dev.ap->lock,
410 						flags_libsas);
411 				t->task_done(t);
412 				spin_lock_irqsave(dev->sata_dev.ap->lock,
413 					flags_libsas);
414 				spin_lock_irqsave(&pm8001_ha->lock, flags);
415 				if (n > 1)
416 					t = list_entry(t->list.next,
417 							struct sas_task, list);
418 				continue;
419 			} else {
420 				struct task_status_struct *ts = &t->task_status;
421 				ts->resp = SAS_TASK_UNDELIVERED;
422 				ts->stat = SAS_PHY_DOWN;
423 				t->task_done(t);
424 				if (n > 1)
425 					t = list_entry(t->list.next,
426 							struct sas_task, list);
427 				continue;
428 			}
429 		}
430 		rc = pm8001_tag_alloc(pm8001_ha, &tag);
431 		if (rc)
432 			goto err_out;
433 		ccb = &pm8001_ha->ccb_info[tag];
434 
435 		if (!sas_protocol_ata(t->task_proto)) {
436 			if (t->num_scatter) {
437 				n_elem = dma_map_sg(pm8001_ha->dev,
438 					t->scatter,
439 					t->num_scatter,
440 					t->data_dir);
441 				if (!n_elem) {
442 					rc = -ENOMEM;
443 					goto err_out_tag;
444 				}
445 			}
446 		} else {
447 			n_elem = t->num_scatter;
448 		}
449 
450 		t->lldd_task = ccb;
451 		ccb->n_elem = n_elem;
452 		ccb->ccb_tag = tag;
453 		ccb->task = t;
454 		switch (t->task_proto) {
455 		case SAS_PROTOCOL_SMP:
456 			rc = pm8001_task_prep_smp(pm8001_ha, ccb);
457 			break;
458 		case SAS_PROTOCOL_SSP:
459 			if (is_tmf)
460 				rc = pm8001_task_prep_ssp_tm(pm8001_ha,
461 					ccb, tmf);
462 			else
463 				rc = pm8001_task_prep_ssp(pm8001_ha, ccb);
464 			break;
465 		case SAS_PROTOCOL_SATA:
466 		case SAS_PROTOCOL_STP:
467 		case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
468 			rc = pm8001_task_prep_ata(pm8001_ha, ccb);
469 			break;
470 		default:
471 			dev_printk(KERN_ERR, pm8001_ha->dev,
472 				"unknown sas_task proto: 0x%x\n",
473 				t->task_proto);
474 			rc = -EINVAL;
475 			break;
476 		}
477 
478 		if (rc) {
479 			PM8001_IO_DBG(pm8001_ha,
480 				pm8001_printk("rc is %x\n", rc));
481 			goto err_out_tag;
482 		}
483 		/* TODO: select normal or high priority */
484 		spin_lock(&t->task_state_lock);
485 		t->task_state_flags |= SAS_TASK_AT_INITIATOR;
486 		spin_unlock(&t->task_state_lock);
487 		pm8001_dev->running_req++;
488 		if (n > 1)
489 			t = list_entry(t->list.next, struct sas_task, list);
490 	} while (--n);
491 	rc = 0;
492 	goto out_done;
493 
494 err_out_tag:
495 	pm8001_tag_free(pm8001_ha, tag);
496 err_out:
497 	dev_printk(KERN_ERR, pm8001_ha->dev, "pm8001 exec failed[%d]!\n", rc);
498 	if (!sas_protocol_ata(t->task_proto))
499 		if (n_elem)
500 			dma_unmap_sg(pm8001_ha->dev, t->scatter, n_elem,
501 				t->data_dir);
502 out_done:
503 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
504 	return rc;
505 }
506 
507 /**
508   * pm8001_queue_command - register for upper layer used, all IO commands sent
509   * to HBA are from this interface.
510   * @task: the task to be execute.
511   * @num: if can_queue great than 1, the task can be queued up. for SMP task,
512   * we always execute one one time
513   * @gfp_flags: gfp_flags
514   */
pm8001_queue_command(struct sas_task * task,const int num,gfp_t gfp_flags)515 int pm8001_queue_command(struct sas_task *task, const int num,
516 		gfp_t gfp_flags)
517 {
518 	return pm8001_task_exec(task, num, gfp_flags, 0, NULL);
519 }
520 
pm8001_ccb_free(struct pm8001_hba_info * pm8001_ha,u32 ccb_idx)521 void pm8001_ccb_free(struct pm8001_hba_info *pm8001_ha, u32 ccb_idx)
522 {
523 	pm8001_tag_clear(pm8001_ha, ccb_idx);
524 }
525 
526 /**
527   * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb.
528   * @pm8001_ha: our hba card information
529   * @ccb: the ccb which attached to ssp task
530   * @task: the task to be free.
531   * @ccb_idx: ccb index.
532   */
pm8001_ccb_task_free(struct pm8001_hba_info * pm8001_ha,struct sas_task * task,struct pm8001_ccb_info * ccb,u32 ccb_idx)533 void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha,
534 	struct sas_task *task, struct pm8001_ccb_info *ccb, u32 ccb_idx)
535 {
536 	if (!ccb->task)
537 		return;
538 	if (!sas_protocol_ata(task->task_proto))
539 		if (ccb->n_elem)
540 			dma_unmap_sg(pm8001_ha->dev, task->scatter,
541 				task->num_scatter, task->data_dir);
542 
543 	switch (task->task_proto) {
544 	case SAS_PROTOCOL_SMP:
545 		dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1,
546 			PCI_DMA_FROMDEVICE);
547 		dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1,
548 			PCI_DMA_TODEVICE);
549 		break;
550 
551 	case SAS_PROTOCOL_SATA:
552 	case SAS_PROTOCOL_STP:
553 	case SAS_PROTOCOL_SSP:
554 	default:
555 		/* do nothing */
556 		break;
557 	}
558 	task->lldd_task = NULL;
559 	ccb->task = NULL;
560 	ccb->ccb_tag = 0xFFFFFFFF;
561 	pm8001_ccb_free(pm8001_ha, ccb_idx);
562 }
563 
564  /**
565   * pm8001_alloc_dev - find a empty pm8001_device
566   * @pm8001_ha: our hba card information
567   */
pm8001_alloc_dev(struct pm8001_hba_info * pm8001_ha)568 struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha)
569 {
570 	u32 dev;
571 	for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) {
572 		if (pm8001_ha->devices[dev].dev_type == NO_DEVICE) {
573 			pm8001_ha->devices[dev].id = dev;
574 			return &pm8001_ha->devices[dev];
575 		}
576 	}
577 	if (dev == PM8001_MAX_DEVICES) {
578 		PM8001_FAIL_DBG(pm8001_ha,
579 			pm8001_printk("max support %d devices, ignore ..\n",
580 			PM8001_MAX_DEVICES));
581 	}
582 	return NULL;
583 }
584 
pm8001_free_dev(struct pm8001_device * pm8001_dev)585 static void pm8001_free_dev(struct pm8001_device *pm8001_dev)
586 {
587 	u32 id = pm8001_dev->id;
588 	memset(pm8001_dev, 0, sizeof(*pm8001_dev));
589 	pm8001_dev->id = id;
590 	pm8001_dev->dev_type = NO_DEVICE;
591 	pm8001_dev->device_id = PM8001_MAX_DEVICES;
592 	pm8001_dev->sas_device = NULL;
593 }
594 
595 /**
596   * pm8001_dev_found_notify - libsas notify a device is found.
597   * @dev: the device structure which sas layer used.
598   *
599   * when libsas find a sas domain device, it should tell the LLDD that
600   * device is found, and then LLDD register this device to HBA firmware
601   * by the command "OPC_INB_REG_DEV", after that the HBA will assign a
602   * device ID(according to device's sas address) and returned it to LLDD. From
603   * now on, we communicate with HBA FW with the device ID which HBA assigned
604   * rather than sas address. it is the necessary step for our HBA but it is
605   * the optional for other HBA driver.
606   */
pm8001_dev_found_notify(struct domain_device * dev)607 static int pm8001_dev_found_notify(struct domain_device *dev)
608 {
609 	unsigned long flags = 0;
610 	int res = 0;
611 	struct pm8001_hba_info *pm8001_ha = NULL;
612 	struct domain_device *parent_dev = dev->parent;
613 	struct pm8001_device *pm8001_device;
614 	DECLARE_COMPLETION_ONSTACK(completion);
615 	u32 flag = 0;
616 	pm8001_ha = pm8001_find_ha_by_dev(dev);
617 	spin_lock_irqsave(&pm8001_ha->lock, flags);
618 
619 	pm8001_device = pm8001_alloc_dev(pm8001_ha);
620 	if (!pm8001_device) {
621 		res = -1;
622 		goto found_out;
623 	}
624 	pm8001_device->sas_device = dev;
625 	dev->lldd_dev = pm8001_device;
626 	pm8001_device->dev_type = dev->dev_type;
627 	pm8001_device->dcompletion = &completion;
628 	if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) {
629 		int phy_id;
630 		struct ex_phy *phy;
631 		for (phy_id = 0; phy_id < parent_dev->ex_dev.num_phys;
632 		phy_id++) {
633 			phy = &parent_dev->ex_dev.ex_phy[phy_id];
634 			if (SAS_ADDR(phy->attached_sas_addr)
635 				== SAS_ADDR(dev->sas_addr)) {
636 				pm8001_device->attached_phy = phy_id;
637 				break;
638 			}
639 		}
640 		if (phy_id == parent_dev->ex_dev.num_phys) {
641 			PM8001_FAIL_DBG(pm8001_ha,
642 			pm8001_printk("Error: no attached dev:%016llx"
643 			" at ex:%016llx.\n", SAS_ADDR(dev->sas_addr),
644 				SAS_ADDR(parent_dev->sas_addr)));
645 			res = -1;
646 		}
647 	} else {
648 		if (dev->dev_type == SATA_DEV) {
649 			pm8001_device->attached_phy =
650 				dev->rphy->identify.phy_identifier;
651 				flag = 1; /* directly sata*/
652 		}
653 	} /*register this device to HBA*/
654 	PM8001_DISC_DBG(pm8001_ha, pm8001_printk("Found device \n"));
655 	PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag);
656 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
657 	wait_for_completion(&completion);
658 	if (dev->dev_type == SAS_END_DEV)
659 		msleep(50);
660 	pm8001_ha->flags |= PM8001F_RUN_TIME ;
661 	return 0;
662 found_out:
663 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
664 	return res;
665 }
666 
pm8001_dev_found(struct domain_device * dev)667 int pm8001_dev_found(struct domain_device *dev)
668 {
669 	return pm8001_dev_found_notify(dev);
670 }
671 
672 /**
673   * pm8001_alloc_task - allocate a task structure for TMF
674   */
pm8001_alloc_task(void)675 static struct sas_task *pm8001_alloc_task(void)
676 {
677 	struct sas_task *task = kzalloc(sizeof(*task), GFP_KERNEL);
678 	if (task) {
679 		INIT_LIST_HEAD(&task->list);
680 		spin_lock_init(&task->task_state_lock);
681 		task->task_state_flags = SAS_TASK_STATE_PENDING;
682 		init_timer(&task->timer);
683 		init_completion(&task->completion);
684 	}
685 	return task;
686 }
687 
pm8001_free_task(struct sas_task * task)688 static void pm8001_free_task(struct sas_task *task)
689 {
690 	if (task) {
691 		BUG_ON(!list_empty(&task->list));
692 		kfree(task);
693 	}
694 }
695 
pm8001_task_done(struct sas_task * task)696 static void pm8001_task_done(struct sas_task *task)
697 {
698 	if (!del_timer(&task->timer))
699 		return;
700 	complete(&task->completion);
701 }
702 
pm8001_tmf_timedout(unsigned long data)703 static void pm8001_tmf_timedout(unsigned long data)
704 {
705 	struct sas_task *task = (struct sas_task *)data;
706 
707 	task->task_state_flags |= SAS_TASK_STATE_ABORTED;
708 	complete(&task->completion);
709 }
710 
711 #define PM8001_TASK_TIMEOUT 20
712 /**
713   * pm8001_exec_internal_tmf_task - execute some task management commands.
714   * @dev: the wanted device.
715   * @tmf: which task management wanted to be take.
716   * @para_len: para_len.
717   * @parameter: ssp task parameter.
718   *
719   * when errors or exception happened, we may want to do something, for example
720   * abort the issued task which result in this execption, it is done by calling
721   * this function, note it is also with the task execute interface.
722   */
pm8001_exec_internal_tmf_task(struct domain_device * dev,void * parameter,u32 para_len,struct pm8001_tmf_task * tmf)723 static int pm8001_exec_internal_tmf_task(struct domain_device *dev,
724 	void *parameter, u32 para_len, struct pm8001_tmf_task *tmf)
725 {
726 	int res, retry;
727 	struct sas_task *task = NULL;
728 	struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
729 
730 	for (retry = 0; retry < 3; retry++) {
731 		task = pm8001_alloc_task();
732 		if (!task)
733 			return -ENOMEM;
734 
735 		task->dev = dev;
736 		task->task_proto = dev->tproto;
737 		memcpy(&task->ssp_task, parameter, para_len);
738 		task->task_done = pm8001_task_done;
739 		task->timer.data = (unsigned long)task;
740 		task->timer.function = pm8001_tmf_timedout;
741 		task->timer.expires = jiffies + PM8001_TASK_TIMEOUT*HZ;
742 		add_timer(&task->timer);
743 
744 		res = pm8001_task_exec(task, 1, GFP_KERNEL, 1, tmf);
745 
746 		if (res) {
747 			del_timer(&task->timer);
748 			PM8001_FAIL_DBG(pm8001_ha,
749 				pm8001_printk("Executing internal task "
750 				"failed\n"));
751 			goto ex_err;
752 		}
753 		wait_for_completion(&task->completion);
754 		res = -TMF_RESP_FUNC_FAILED;
755 		/* Even TMF timed out, return direct. */
756 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
757 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
758 				PM8001_FAIL_DBG(pm8001_ha,
759 					pm8001_printk("TMF task[%x]timeout.\n",
760 					tmf->tmf));
761 				goto ex_err;
762 			}
763 		}
764 
765 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
766 			task->task_status.stat == SAM_STAT_GOOD) {
767 			res = TMF_RESP_FUNC_COMPLETE;
768 			break;
769 		}
770 
771 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
772 		task->task_status.stat == SAS_DATA_UNDERRUN) {
773 			/* no error, but return the number of bytes of
774 			* underrun */
775 			res = task->task_status.residual;
776 			break;
777 		}
778 
779 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
780 			task->task_status.stat == SAS_DATA_OVERRUN) {
781 			PM8001_FAIL_DBG(pm8001_ha,
782 				pm8001_printk("Blocked task error.\n"));
783 			res = -EMSGSIZE;
784 			break;
785 		} else {
786 			PM8001_EH_DBG(pm8001_ha,
787 				pm8001_printk(" Task to dev %016llx response:"
788 				"0x%x status 0x%x\n",
789 				SAS_ADDR(dev->sas_addr),
790 				task->task_status.resp,
791 				task->task_status.stat));
792 			pm8001_free_task(task);
793 			task = NULL;
794 		}
795 	}
796 ex_err:
797 	BUG_ON(retry == 3 && task != NULL);
798 	if (task != NULL)
799 		pm8001_free_task(task);
800 	return res;
801 }
802 
803 static int
pm8001_exec_internal_task_abort(struct pm8001_hba_info * pm8001_ha,struct pm8001_device * pm8001_dev,struct domain_device * dev,u32 flag,u32 task_tag)804 pm8001_exec_internal_task_abort(struct pm8001_hba_info *pm8001_ha,
805 	struct pm8001_device *pm8001_dev, struct domain_device *dev, u32 flag,
806 	u32 task_tag)
807 {
808 	int res, retry;
809 	u32 ccb_tag;
810 	struct pm8001_ccb_info *ccb;
811 	struct sas_task *task = NULL;
812 
813 	for (retry = 0; retry < 3; retry++) {
814 		task = pm8001_alloc_task();
815 		if (!task)
816 			return -ENOMEM;
817 
818 		task->dev = dev;
819 		task->task_proto = dev->tproto;
820 		task->task_done = pm8001_task_done;
821 		task->timer.data = (unsigned long)task;
822 		task->timer.function = pm8001_tmf_timedout;
823 		task->timer.expires = jiffies + PM8001_TASK_TIMEOUT * HZ;
824 		add_timer(&task->timer);
825 
826 		res = pm8001_tag_alloc(pm8001_ha, &ccb_tag);
827 		if (res)
828 			return res;
829 		ccb = &pm8001_ha->ccb_info[ccb_tag];
830 		ccb->device = pm8001_dev;
831 		ccb->ccb_tag = ccb_tag;
832 		ccb->task = task;
833 
834 		res = PM8001_CHIP_DISP->task_abort(pm8001_ha,
835 			pm8001_dev, flag, task_tag, ccb_tag);
836 
837 		if (res) {
838 			del_timer(&task->timer);
839 			PM8001_FAIL_DBG(pm8001_ha,
840 				pm8001_printk("Executing internal task "
841 				"failed\n"));
842 			goto ex_err;
843 		}
844 		wait_for_completion(&task->completion);
845 		res = TMF_RESP_FUNC_FAILED;
846 		/* Even TMF timed out, return direct. */
847 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
848 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
849 				PM8001_FAIL_DBG(pm8001_ha,
850 					pm8001_printk("TMF task timeout.\n"));
851 				goto ex_err;
852 			}
853 		}
854 
855 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
856 			task->task_status.stat == SAM_STAT_GOOD) {
857 			res = TMF_RESP_FUNC_COMPLETE;
858 			break;
859 
860 		} else {
861 			PM8001_EH_DBG(pm8001_ha,
862 				pm8001_printk(" Task to dev %016llx response: "
863 					"0x%x status 0x%x\n",
864 				SAS_ADDR(dev->sas_addr),
865 				task->task_status.resp,
866 				task->task_status.stat));
867 			pm8001_free_task(task);
868 			task = NULL;
869 		}
870 	}
871 ex_err:
872 	BUG_ON(retry == 3 && task != NULL);
873 	if (task != NULL)
874 		pm8001_free_task(task);
875 	return res;
876 }
877 
878 /**
879   * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify"
880   * @dev: the device structure which sas layer used.
881   */
pm8001_dev_gone_notify(struct domain_device * dev)882 static void pm8001_dev_gone_notify(struct domain_device *dev)
883 {
884 	unsigned long flags = 0;
885 	u32 tag;
886 	struct pm8001_hba_info *pm8001_ha;
887 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
888 
889 	pm8001_ha = pm8001_find_ha_by_dev(dev);
890 	spin_lock_irqsave(&pm8001_ha->lock, flags);
891 	pm8001_tag_alloc(pm8001_ha, &tag);
892 	if (pm8001_dev) {
893 		u32 device_id = pm8001_dev->device_id;
894 
895 		PM8001_DISC_DBG(pm8001_ha,
896 			pm8001_printk("found dev[%d:%x] is gone.\n",
897 			pm8001_dev->device_id, pm8001_dev->dev_type));
898 		if (pm8001_dev->running_req) {
899 			spin_unlock_irqrestore(&pm8001_ha->lock, flags);
900 			pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
901 				dev, 1, 0);
902 			spin_lock_irqsave(&pm8001_ha->lock, flags);
903 		}
904 		PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id);
905 		pm8001_free_dev(pm8001_dev);
906 	} else {
907 		PM8001_DISC_DBG(pm8001_ha,
908 			pm8001_printk("Found dev has gone.\n"));
909 	}
910 	dev->lldd_dev = NULL;
911 	spin_unlock_irqrestore(&pm8001_ha->lock, flags);
912 }
913 
pm8001_dev_gone(struct domain_device * dev)914 void pm8001_dev_gone(struct domain_device *dev)
915 {
916 	pm8001_dev_gone_notify(dev);
917 }
918 
pm8001_issue_ssp_tmf(struct domain_device * dev,u8 * lun,struct pm8001_tmf_task * tmf)919 static int pm8001_issue_ssp_tmf(struct domain_device *dev,
920 	u8 *lun, struct pm8001_tmf_task *tmf)
921 {
922 	struct sas_ssp_task ssp_task;
923 	if (!(dev->tproto & SAS_PROTOCOL_SSP))
924 		return TMF_RESP_FUNC_ESUPP;
925 
926 	strncpy((u8 *)&ssp_task.LUN, lun, 8);
927 	return pm8001_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task),
928 		tmf);
929 }
930 
931 /**
932   * Standard mandates link reset for ATA  (type 0) and hard reset for
933   * SSP (type 1) , only for RECOVERY
934   */
pm8001_I_T_nexus_reset(struct domain_device * dev)935 int pm8001_I_T_nexus_reset(struct domain_device *dev)
936 {
937 	int rc = TMF_RESP_FUNC_FAILED;
938 	struct pm8001_device *pm8001_dev;
939 	struct pm8001_hba_info *pm8001_ha;
940 	struct sas_phy *phy;
941 	if (!dev || !dev->lldd_dev)
942 		return -1;
943 
944 	pm8001_dev = dev->lldd_dev;
945 	pm8001_ha = pm8001_find_ha_by_dev(dev);
946 	phy = sas_find_local_phy(dev);
947 
948 	if (dev_is_sata(dev)) {
949 		DECLARE_COMPLETION_ONSTACK(completion_setstate);
950 		if (scsi_is_sas_phy_local(phy))
951 			return 0;
952 		rc = sas_phy_reset(phy, 1);
953 		msleep(2000);
954 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
955 			dev, 1, 0);
956 		pm8001_dev->setds_completion = &completion_setstate;
957 		rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
958 			pm8001_dev, 0x01);
959 		wait_for_completion(&completion_setstate);
960 	} else{
961 	rc = sas_phy_reset(phy, 1);
962 	msleep(2000);
963 	}
964 	PM8001_EH_DBG(pm8001_ha, pm8001_printk(" for device[%x]:rc=%d\n",
965 		pm8001_dev->device_id, rc));
966 	return rc;
967 }
968 
969 /* mandatory SAM-3, the task reset the specified LUN*/
pm8001_lu_reset(struct domain_device * dev,u8 * lun)970 int pm8001_lu_reset(struct domain_device *dev, u8 *lun)
971 {
972 	int rc = TMF_RESP_FUNC_FAILED;
973 	struct pm8001_tmf_task tmf_task;
974 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
975 	struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
976 	if (dev_is_sata(dev)) {
977 		struct sas_phy *phy = sas_find_local_phy(dev);
978 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev ,
979 			dev, 1, 0);
980 		rc = sas_phy_reset(phy, 1);
981 		rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha,
982 			pm8001_dev, 0x01);
983 		msleep(2000);
984 	} else {
985 		tmf_task.tmf = TMF_LU_RESET;
986 		rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
987 	}
988 	/* If failed, fall-through I_T_Nexus reset */
989 	PM8001_EH_DBG(pm8001_ha, pm8001_printk("for device[%x]:rc=%d\n",
990 		pm8001_dev->device_id, rc));
991 	return rc;
992 }
993 
994 /* optional SAM-3 */
pm8001_query_task(struct sas_task * task)995 int pm8001_query_task(struct sas_task *task)
996 {
997 	u32 tag = 0xdeadbeef;
998 	int i = 0;
999 	struct scsi_lun lun;
1000 	struct pm8001_tmf_task tmf_task;
1001 	int rc = TMF_RESP_FUNC_FAILED;
1002 	if (unlikely(!task || !task->lldd_task || !task->dev))
1003 		return rc;
1004 
1005 	if (task->task_proto & SAS_PROTOCOL_SSP) {
1006 		struct scsi_cmnd *cmnd = task->uldd_task;
1007 		struct domain_device *dev = task->dev;
1008 		struct pm8001_hba_info *pm8001_ha =
1009 			pm8001_find_ha_by_dev(dev);
1010 
1011 		int_to_scsilun(cmnd->device->lun, &lun);
1012 		rc = pm8001_find_tag(task, &tag);
1013 		if (rc == 0) {
1014 			rc = TMF_RESP_FUNC_FAILED;
1015 			return rc;
1016 		}
1017 		PM8001_EH_DBG(pm8001_ha, pm8001_printk("Query:["));
1018 		for (i = 0; i < 16; i++)
1019 			printk(KERN_INFO "%02x ", cmnd->cmnd[i]);
1020 		printk(KERN_INFO "]\n");
1021 		tmf_task.tmf = 	TMF_QUERY_TASK;
1022 		tmf_task.tag_of_task_to_be_managed = tag;
1023 
1024 		rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
1025 		switch (rc) {
1026 		/* The task is still in Lun, release it then */
1027 		case TMF_RESP_FUNC_SUCC:
1028 			PM8001_EH_DBG(pm8001_ha,
1029 				pm8001_printk("The task is still in Lun \n"));
1030 		/* The task is not in Lun or failed, reset the phy */
1031 		case TMF_RESP_FUNC_FAILED:
1032 		case TMF_RESP_FUNC_COMPLETE:
1033 			PM8001_EH_DBG(pm8001_ha,
1034 			pm8001_printk("The task is not in Lun or failed,"
1035 			" reset the phy \n"));
1036 			break;
1037 		}
1038 	}
1039 	pm8001_printk(":rc= %d\n", rc);
1040 	return rc;
1041 }
1042 
1043 /*  mandatory SAM-3, still need free task/ccb info, abord the specified task */
pm8001_abort_task(struct sas_task * task)1044 int pm8001_abort_task(struct sas_task *task)
1045 {
1046 	unsigned long flags;
1047 	u32 tag = 0xdeadbeef;
1048 	u32 device_id;
1049 	struct domain_device *dev ;
1050 	struct pm8001_hba_info *pm8001_ha = NULL;
1051 	struct pm8001_ccb_info *ccb;
1052 	struct scsi_lun lun;
1053 	struct pm8001_device *pm8001_dev;
1054 	struct pm8001_tmf_task tmf_task;
1055 	int rc = TMF_RESP_FUNC_FAILED;
1056 	if (unlikely(!task || !task->lldd_task || !task->dev))
1057 		return rc;
1058 	spin_lock_irqsave(&task->task_state_lock, flags);
1059 	if (task->task_state_flags & SAS_TASK_STATE_DONE) {
1060 		spin_unlock_irqrestore(&task->task_state_lock, flags);
1061 		rc = TMF_RESP_FUNC_COMPLETE;
1062 		goto out;
1063 	}
1064 	spin_unlock_irqrestore(&task->task_state_lock, flags);
1065 	if (task->task_proto & SAS_PROTOCOL_SSP) {
1066 		struct scsi_cmnd *cmnd = task->uldd_task;
1067 		dev = task->dev;
1068 		ccb = task->lldd_task;
1069 		pm8001_dev = dev->lldd_dev;
1070 		pm8001_ha = pm8001_find_ha_by_dev(dev);
1071 		int_to_scsilun(cmnd->device->lun, &lun);
1072 		rc = pm8001_find_tag(task, &tag);
1073 		if (rc == 0) {
1074 			printk(KERN_INFO "No such tag in %s\n", __func__);
1075 			rc = TMF_RESP_FUNC_FAILED;
1076 			return rc;
1077 		}
1078 		device_id = pm8001_dev->device_id;
1079 		PM8001_EH_DBG(pm8001_ha,
1080 			pm8001_printk("abort io to deviceid= %d\n", device_id));
1081 		tmf_task.tmf = TMF_ABORT_TASK;
1082 		tmf_task.tag_of_task_to_be_managed = tag;
1083 		rc = pm8001_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task);
1084 		pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1085 			pm8001_dev->sas_device, 0, tag);
1086 	} else if (task->task_proto & SAS_PROTOCOL_SATA ||
1087 		task->task_proto & SAS_PROTOCOL_STP) {
1088 		dev = task->dev;
1089 		pm8001_dev = dev->lldd_dev;
1090 		pm8001_ha = pm8001_find_ha_by_dev(dev);
1091 		rc = pm8001_find_tag(task, &tag);
1092 		if (rc == 0) {
1093 			printk(KERN_INFO "No such tag in %s\n", __func__);
1094 			rc = TMF_RESP_FUNC_FAILED;
1095 			return rc;
1096 		}
1097 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1098 			pm8001_dev->sas_device, 0, tag);
1099 	} else if (task->task_proto & SAS_PROTOCOL_SMP) {
1100 		/* SMP */
1101 		dev = task->dev;
1102 		pm8001_dev = dev->lldd_dev;
1103 		pm8001_ha = pm8001_find_ha_by_dev(dev);
1104 		rc = pm8001_find_tag(task, &tag);
1105 		if (rc == 0) {
1106 			printk(KERN_INFO "No such tag in %s\n", __func__);
1107 			rc = TMF_RESP_FUNC_FAILED;
1108 			return rc;
1109 		}
1110 		rc = pm8001_exec_internal_task_abort(pm8001_ha, pm8001_dev,
1111 			pm8001_dev->sas_device, 0, tag);
1112 
1113 	}
1114 out:
1115 	if (rc != TMF_RESP_FUNC_COMPLETE)
1116 		pm8001_printk("rc= %d\n", rc);
1117 	return rc;
1118 }
1119 
pm8001_abort_task_set(struct domain_device * dev,u8 * lun)1120 int pm8001_abort_task_set(struct domain_device *dev, u8 *lun)
1121 {
1122 	int rc = TMF_RESP_FUNC_FAILED;
1123 	struct pm8001_tmf_task tmf_task;
1124 
1125 	tmf_task.tmf = TMF_ABORT_TASK_SET;
1126 	rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1127 	return rc;
1128 }
1129 
pm8001_clear_aca(struct domain_device * dev,u8 * lun)1130 int pm8001_clear_aca(struct domain_device *dev, u8 *lun)
1131 {
1132 	int rc = TMF_RESP_FUNC_FAILED;
1133 	struct pm8001_tmf_task tmf_task;
1134 
1135 	tmf_task.tmf = TMF_CLEAR_ACA;
1136 	rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1137 
1138 	return rc;
1139 }
1140 
pm8001_clear_task_set(struct domain_device * dev,u8 * lun)1141 int pm8001_clear_task_set(struct domain_device *dev, u8 *lun)
1142 {
1143 	int rc = TMF_RESP_FUNC_FAILED;
1144 	struct pm8001_tmf_task tmf_task;
1145 	struct pm8001_device *pm8001_dev = dev->lldd_dev;
1146 	struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev);
1147 
1148 	PM8001_EH_DBG(pm8001_ha,
1149 		pm8001_printk("I_T_L_Q clear task set[%x]\n",
1150 		pm8001_dev->device_id));
1151 	tmf_task.tmf = TMF_CLEAR_TASK_SET;
1152 	rc = pm8001_issue_ssp_tmf(dev, lun, &tmf_task);
1153 	return rc;
1154 }
1155 
1156