1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  */
22 
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/usb.h>
27 #include <linux/jiffies.h>
28 #include <net/ieee80211_radiotap.h>
29 
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
34 
35 struct zd_reg_alpha2_map {
36 	u32 reg;
37 	char alpha2[2];
38 };
39 
40 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
41 	{ ZD_REGDOMAIN_FCC, "US" },
42 	{ ZD_REGDOMAIN_IC, "CA" },
43 	{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
44 	{ ZD_REGDOMAIN_JAPAN, "JP" },
45 	{ ZD_REGDOMAIN_JAPAN_2, "JP" },
46 	{ ZD_REGDOMAIN_JAPAN_3, "JP" },
47 	{ ZD_REGDOMAIN_SPAIN, "ES" },
48 	{ ZD_REGDOMAIN_FRANCE, "FR" },
49 };
50 
51 /* This table contains the hardware specific values for the modulation rates. */
52 static const struct ieee80211_rate zd_rates[] = {
53 	{ .bitrate = 10,
54 	  .hw_value = ZD_CCK_RATE_1M, },
55 	{ .bitrate = 20,
56 	  .hw_value = ZD_CCK_RATE_2M,
57 	  .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
58 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
59 	{ .bitrate = 55,
60 	  .hw_value = ZD_CCK_RATE_5_5M,
61 	  .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
62 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
63 	{ .bitrate = 110,
64 	  .hw_value = ZD_CCK_RATE_11M,
65 	  .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
66 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
67 	{ .bitrate = 60,
68 	  .hw_value = ZD_OFDM_RATE_6M,
69 	  .flags = 0 },
70 	{ .bitrate = 90,
71 	  .hw_value = ZD_OFDM_RATE_9M,
72 	  .flags = 0 },
73 	{ .bitrate = 120,
74 	  .hw_value = ZD_OFDM_RATE_12M,
75 	  .flags = 0 },
76 	{ .bitrate = 180,
77 	  .hw_value = ZD_OFDM_RATE_18M,
78 	  .flags = 0 },
79 	{ .bitrate = 240,
80 	  .hw_value = ZD_OFDM_RATE_24M,
81 	  .flags = 0 },
82 	{ .bitrate = 360,
83 	  .hw_value = ZD_OFDM_RATE_36M,
84 	  .flags = 0 },
85 	{ .bitrate = 480,
86 	  .hw_value = ZD_OFDM_RATE_48M,
87 	  .flags = 0 },
88 	{ .bitrate = 540,
89 	  .hw_value = ZD_OFDM_RATE_54M,
90 	  .flags = 0 },
91 };
92 
93 /*
94  * Zydas retry rates table. Each line is listed in the same order as
95  * in zd_rates[] and contains all the rate used when a packet is sent
96  * starting with a given rates. Let's consider an example :
97  *
98  * "11 Mbits : 4, 3, 2, 1, 0" means :
99  * - packet is sent using 4 different rates
100  * - 1st rate is index 3 (ie 11 Mbits)
101  * - 2nd rate is index 2 (ie 5.5 Mbits)
102  * - 3rd rate is index 1 (ie 2 Mbits)
103  * - 4th rate is index 0 (ie 1 Mbits)
104  */
105 
106 static const struct tx_retry_rate zd_retry_rates[] = {
107 	{ /*  1 Mbits */	1, { 0 }},
108 	{ /*  2 Mbits */	2, { 1,  0 }},
109 	{ /*  5.5 Mbits */	3, { 2,  1, 0 }},
110 	{ /* 11 Mbits */	4, { 3,  2, 1, 0 }},
111 	{ /*  6 Mbits */	5, { 4,  3, 2, 1, 0 }},
112 	{ /*  9 Mbits */	6, { 5,  4, 3, 2, 1, 0}},
113 	{ /* 12 Mbits */	5, { 6,  3, 2, 1, 0 }},
114 	{ /* 18 Mbits */	6, { 7,  6, 3, 2, 1, 0 }},
115 	{ /* 24 Mbits */	6, { 8,  6, 3, 2, 1, 0 }},
116 	{ /* 36 Mbits */	7, { 9,  8, 6, 3, 2, 1, 0 }},
117 	{ /* 48 Mbits */	8, {10,  9, 8, 6, 3, 2, 1, 0 }},
118 	{ /* 54 Mbits */	9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
119 };
120 
121 static const struct ieee80211_channel zd_channels[] = {
122 	{ .center_freq = 2412, .hw_value = 1 },
123 	{ .center_freq = 2417, .hw_value = 2 },
124 	{ .center_freq = 2422, .hw_value = 3 },
125 	{ .center_freq = 2427, .hw_value = 4 },
126 	{ .center_freq = 2432, .hw_value = 5 },
127 	{ .center_freq = 2437, .hw_value = 6 },
128 	{ .center_freq = 2442, .hw_value = 7 },
129 	{ .center_freq = 2447, .hw_value = 8 },
130 	{ .center_freq = 2452, .hw_value = 9 },
131 	{ .center_freq = 2457, .hw_value = 10 },
132 	{ .center_freq = 2462, .hw_value = 11 },
133 	{ .center_freq = 2467, .hw_value = 12 },
134 	{ .center_freq = 2472, .hw_value = 13 },
135 	{ .center_freq = 2484, .hw_value = 14 },
136 };
137 
138 static void housekeeping_init(struct zd_mac *mac);
139 static void housekeeping_enable(struct zd_mac *mac);
140 static void housekeeping_disable(struct zd_mac *mac);
141 static void beacon_init(struct zd_mac *mac);
142 static void beacon_enable(struct zd_mac *mac);
143 static void beacon_disable(struct zd_mac *mac);
144 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
145 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
146 				struct sk_buff *beacon);
147 
zd_reg2alpha2(u8 regdomain,char * alpha2)148 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
149 {
150 	unsigned int i;
151 	struct zd_reg_alpha2_map *reg_map;
152 	for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
153 		reg_map = &reg_alpha2_map[i];
154 		if (regdomain == reg_map->reg) {
155 			alpha2[0] = reg_map->alpha2[0];
156 			alpha2[1] = reg_map->alpha2[1];
157 			return 0;
158 		}
159 	}
160 	return 1;
161 }
162 
zd_mac_preinit_hw(struct ieee80211_hw * hw)163 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
164 {
165 	int r;
166 	u8 addr[ETH_ALEN];
167 	struct zd_mac *mac = zd_hw_mac(hw);
168 
169 	r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
170 	if (r)
171 		return r;
172 
173 	SET_IEEE80211_PERM_ADDR(hw, addr);
174 
175 	return 0;
176 }
177 
zd_mac_init_hw(struct ieee80211_hw * hw)178 int zd_mac_init_hw(struct ieee80211_hw *hw)
179 {
180 	int r;
181 	struct zd_mac *mac = zd_hw_mac(hw);
182 	struct zd_chip *chip = &mac->chip;
183 	char alpha2[2];
184 	u8 default_regdomain;
185 
186 	r = zd_chip_enable_int(chip);
187 	if (r)
188 		goto out;
189 	r = zd_chip_init_hw(chip);
190 	if (r)
191 		goto disable_int;
192 
193 	ZD_ASSERT(!irqs_disabled());
194 
195 	r = zd_read_regdomain(chip, &default_regdomain);
196 	if (r)
197 		goto disable_int;
198 	spin_lock_irq(&mac->lock);
199 	mac->regdomain = mac->default_regdomain = default_regdomain;
200 	spin_unlock_irq(&mac->lock);
201 
202 	/* We must inform the device that we are doing encryption/decryption in
203 	 * software at the moment. */
204 	r = zd_set_encryption_type(chip, ENC_SNIFFER);
205 	if (r)
206 		goto disable_int;
207 
208 	r = zd_reg2alpha2(mac->regdomain, alpha2);
209 	if (r)
210 		goto disable_int;
211 
212 	r = regulatory_hint(hw->wiphy, alpha2);
213 disable_int:
214 	zd_chip_disable_int(chip);
215 out:
216 	return r;
217 }
218 
zd_mac_clear(struct zd_mac * mac)219 void zd_mac_clear(struct zd_mac *mac)
220 {
221 	flush_workqueue(zd_workqueue);
222 	zd_chip_clear(&mac->chip);
223 	ZD_ASSERT(!spin_is_locked(&mac->lock));
224 	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
225 }
226 
set_rx_filter(struct zd_mac * mac)227 static int set_rx_filter(struct zd_mac *mac)
228 {
229 	unsigned long flags;
230 	u32 filter = STA_RX_FILTER;
231 
232 	spin_lock_irqsave(&mac->lock, flags);
233 	if (mac->pass_ctrl)
234 		filter |= RX_FILTER_CTRL;
235 	spin_unlock_irqrestore(&mac->lock, flags);
236 
237 	return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
238 }
239 
set_mac_and_bssid(struct zd_mac * mac)240 static int set_mac_and_bssid(struct zd_mac *mac)
241 {
242 	int r;
243 
244 	if (!mac->vif)
245 		return -1;
246 
247 	r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
248 	if (r)
249 		return r;
250 
251 	/* Vendor driver after setting MAC either sets BSSID for AP or
252 	 * filter for other modes.
253 	 */
254 	if (mac->type != NL80211_IFTYPE_AP)
255 		return set_rx_filter(mac);
256 	else
257 		return zd_write_bssid(&mac->chip, mac->vif->addr);
258 }
259 
set_mc_hash(struct zd_mac * mac)260 static int set_mc_hash(struct zd_mac *mac)
261 {
262 	struct zd_mc_hash hash;
263 	zd_mc_clear(&hash);
264 	return zd_chip_set_multicast_hash(&mac->chip, &hash);
265 }
266 
zd_op_start(struct ieee80211_hw * hw)267 int zd_op_start(struct ieee80211_hw *hw)
268 {
269 	struct zd_mac *mac = zd_hw_mac(hw);
270 	struct zd_chip *chip = &mac->chip;
271 	struct zd_usb *usb = &chip->usb;
272 	int r;
273 
274 	if (!usb->initialized) {
275 		r = zd_usb_init_hw(usb);
276 		if (r)
277 			goto out;
278 	}
279 
280 	r = zd_chip_enable_int(chip);
281 	if (r < 0)
282 		goto out;
283 
284 	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
285 	if (r < 0)
286 		goto disable_int;
287 	r = set_rx_filter(mac);
288 	if (r)
289 		goto disable_int;
290 	r = set_mc_hash(mac);
291 	if (r)
292 		goto disable_int;
293 	r = zd_chip_switch_radio_on(chip);
294 	if (r < 0)
295 		goto disable_int;
296 	r = zd_chip_enable_rxtx(chip);
297 	if (r < 0)
298 		goto disable_radio;
299 	r = zd_chip_enable_hwint(chip);
300 	if (r < 0)
301 		goto disable_rxtx;
302 
303 	housekeeping_enable(mac);
304 	beacon_enable(mac);
305 	set_bit(ZD_DEVICE_RUNNING, &mac->flags);
306 	return 0;
307 disable_rxtx:
308 	zd_chip_disable_rxtx(chip);
309 disable_radio:
310 	zd_chip_switch_radio_off(chip);
311 disable_int:
312 	zd_chip_disable_int(chip);
313 out:
314 	return r;
315 }
316 
zd_op_stop(struct ieee80211_hw * hw)317 void zd_op_stop(struct ieee80211_hw *hw)
318 {
319 	struct zd_mac *mac = zd_hw_mac(hw);
320 	struct zd_chip *chip = &mac->chip;
321 	struct sk_buff *skb;
322 	struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
323 
324 	clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
325 
326 	/* The order here deliberately is a little different from the open()
327 	 * method, since we need to make sure there is no opportunity for RX
328 	 * frames to be processed by mac80211 after we have stopped it.
329 	 */
330 
331 	zd_chip_disable_rxtx(chip);
332 	beacon_disable(mac);
333 	housekeeping_disable(mac);
334 	flush_workqueue(zd_workqueue);
335 
336 	zd_chip_disable_hwint(chip);
337 	zd_chip_switch_radio_off(chip);
338 	zd_chip_disable_int(chip);
339 
340 
341 	while ((skb = skb_dequeue(ack_wait_queue)))
342 		dev_kfree_skb_any(skb);
343 }
344 
zd_restore_settings(struct zd_mac * mac)345 int zd_restore_settings(struct zd_mac *mac)
346 {
347 	struct sk_buff *beacon;
348 	struct zd_mc_hash multicast_hash;
349 	unsigned int short_preamble;
350 	int r, beacon_interval, beacon_period;
351 	u8 channel;
352 
353 	dev_dbg_f(zd_mac_dev(mac), "\n");
354 
355 	spin_lock_irq(&mac->lock);
356 	multicast_hash = mac->multicast_hash;
357 	short_preamble = mac->short_preamble;
358 	beacon_interval = mac->beacon.interval;
359 	beacon_period = mac->beacon.period;
360 	channel = mac->channel;
361 	spin_unlock_irq(&mac->lock);
362 
363 	r = set_mac_and_bssid(mac);
364 	if (r < 0) {
365 		dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
366 		return r;
367 	}
368 
369 	r = zd_chip_set_channel(&mac->chip, channel);
370 	if (r < 0) {
371 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
372 			  r);
373 		return r;
374 	}
375 
376 	set_rts_cts(mac, short_preamble);
377 
378 	r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
379 	if (r < 0) {
380 		dev_dbg_f(zd_mac_dev(mac),
381 			  "zd_chip_set_multicast_hash failed, %d\n", r);
382 		return r;
383 	}
384 
385 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
386 	    mac->type == NL80211_IFTYPE_ADHOC ||
387 	    mac->type == NL80211_IFTYPE_AP) {
388 		if (mac->vif != NULL) {
389 			beacon = ieee80211_beacon_get(mac->hw, mac->vif);
390 			if (beacon) {
391 				zd_mac_config_beacon(mac->hw, beacon);
392 				kfree_skb(beacon);
393 			}
394 		}
395 
396 		zd_set_beacon_interval(&mac->chip, beacon_interval,
397 					beacon_period, mac->type);
398 
399 		spin_lock_irq(&mac->lock);
400 		mac->beacon.last_update = jiffies;
401 		spin_unlock_irq(&mac->lock);
402 	}
403 
404 	return 0;
405 }
406 
407 /**
408  * zd_mac_tx_status - reports tx status of a packet if required
409  * @hw - a &struct ieee80211_hw pointer
410  * @skb - a sk-buffer
411  * @flags: extra flags to set in the TX status info
412  * @ackssi: ACK signal strength
413  * @success - True for successful transmission of the frame
414  *
415  * This information calls ieee80211_tx_status_irqsafe() if required by the
416  * control information. It copies the control information into the status
417  * information.
418  *
419  * If no status information has been requested, the skb is freed.
420  */
zd_mac_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb,int ackssi,struct tx_status * tx_status)421 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
422 		      int ackssi, struct tx_status *tx_status)
423 {
424 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
425 	int i;
426 	int success = 1, retry = 1;
427 	int first_idx;
428 	const struct tx_retry_rate *retries;
429 
430 	ieee80211_tx_info_clear_status(info);
431 
432 	if (tx_status) {
433 		success = !tx_status->failure;
434 		retry = tx_status->retry + success;
435 	}
436 
437 	if (success) {
438 		/* success */
439 		info->flags |= IEEE80211_TX_STAT_ACK;
440 	} else {
441 		/* failure */
442 		info->flags &= ~IEEE80211_TX_STAT_ACK;
443 	}
444 
445 	first_idx = info->status.rates[0].idx;
446 	ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
447 	retries = &zd_retry_rates[first_idx];
448 	ZD_ASSERT(1 <= retry && retry <= retries->count);
449 
450 	info->status.rates[0].idx = retries->rate[0];
451 	info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
452 
453 	for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
454 		info->status.rates[i].idx = retries->rate[i];
455 		info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
456 	}
457 	for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
458 		info->status.rates[i].idx = retries->rate[retry - 1];
459 		info->status.rates[i].count = 1; // (success ? 1:2);
460 	}
461 	if (i<IEEE80211_TX_MAX_RATES)
462 		info->status.rates[i].idx = -1; /* terminate */
463 
464 	info->status.ack_signal = ackssi;
465 	ieee80211_tx_status_irqsafe(hw, skb);
466 }
467 
468 /**
469  * zd_mac_tx_failed - callback for failed frames
470  * @dev: the mac80211 wireless device
471  *
472  * This function is called if a frame couldn't be successfully
473  * transferred. The first frame from the tx queue, will be selected and
474  * reported as error to the upper layers.
475  */
zd_mac_tx_failed(struct urb * urb)476 void zd_mac_tx_failed(struct urb *urb)
477 {
478 	struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
479 	struct zd_mac *mac = zd_hw_mac(hw);
480 	struct sk_buff_head *q = &mac->ack_wait_queue;
481 	struct sk_buff *skb;
482 	struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
483 	unsigned long flags;
484 	int success = !tx_status->failure;
485 	int retry = tx_status->retry + success;
486 	int found = 0;
487 	int i, position = 0;
488 
489 	q = &mac->ack_wait_queue;
490 	spin_lock_irqsave(&q->lock, flags);
491 
492 	skb_queue_walk(q, skb) {
493 		struct ieee80211_hdr *tx_hdr;
494 		struct ieee80211_tx_info *info;
495 		int first_idx, final_idx;
496 		const struct tx_retry_rate *retries;
497 		u8 final_rate;
498 
499 		position ++;
500 
501 		/* if the hardware reports a failure and we had a 802.11 ACK
502 		 * pending, then we skip the first skb when searching for a
503 		 * matching frame */
504 		if (tx_status->failure && mac->ack_pending &&
505 		    skb_queue_is_first(q, skb)) {
506 			continue;
507 		}
508 
509 		tx_hdr = (struct ieee80211_hdr *)skb->data;
510 
511 		/* we skip all frames not matching the reported destination */
512 		if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
513 			continue;
514 		}
515 
516 		/* we skip all frames not matching the reported final rate */
517 
518 		info = IEEE80211_SKB_CB(skb);
519 		first_idx = info->status.rates[0].idx;
520 		ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
521 		retries = &zd_retry_rates[first_idx];
522 		if (retry <= 0 || retry > retries->count)
523 			continue;
524 
525 		final_idx = retries->rate[retry - 1];
526 		final_rate = zd_rates[final_idx].hw_value;
527 
528 		if (final_rate != tx_status->rate) {
529 			continue;
530 		}
531 
532 		found = 1;
533 		break;
534 	}
535 
536 	if (found) {
537 		for (i=1; i<=position; i++) {
538 			skb = __skb_dequeue(q);
539 			zd_mac_tx_status(hw, skb,
540 					 mac->ack_pending ? mac->ack_signal : 0,
541 					 i == position ? tx_status : NULL);
542 			mac->ack_pending = 0;
543 		}
544 	}
545 
546 	spin_unlock_irqrestore(&q->lock, flags);
547 }
548 
549 /**
550  * zd_mac_tx_to_dev - callback for USB layer
551  * @skb: a &sk_buff pointer
552  * @error: error value, 0 if transmission successful
553  *
554  * Informs the MAC layer that the frame has successfully transferred to the
555  * device. If an ACK is required and the transfer to the device has been
556  * successful, the packets are put on the @ack_wait_queue with
557  * the control set removed.
558  */
zd_mac_tx_to_dev(struct sk_buff * skb,int error)559 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
560 {
561 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
562 	struct ieee80211_hw *hw = info->rate_driver_data[0];
563 	struct zd_mac *mac = zd_hw_mac(hw);
564 
565 	ieee80211_tx_info_clear_status(info);
566 
567 	skb_pull(skb, sizeof(struct zd_ctrlset));
568 	if (unlikely(error ||
569 	    (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
570 		/*
571 		 * FIXME : do we need to fill in anything ?
572 		 */
573 		ieee80211_tx_status_irqsafe(hw, skb);
574 	} else {
575 		struct sk_buff_head *q = &mac->ack_wait_queue;
576 
577 		skb_queue_tail(q, skb);
578 		while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
579 			zd_mac_tx_status(hw, skb_dequeue(q),
580 					 mac->ack_pending ? mac->ack_signal : 0,
581 					 NULL);
582 			mac->ack_pending = 0;
583 		}
584 	}
585 }
586 
zd_calc_tx_length_us(u8 * service,u8 zd_rate,u16 tx_length)587 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
588 {
589 	/* ZD_PURE_RATE() must be used to remove the modulation type flag of
590 	 * the zd-rate values.
591 	 */
592 	static const u8 rate_divisor[] = {
593 		[ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
594 		[ZD_PURE_RATE(ZD_CCK_RATE_2M)]	 =  2,
595 		/* Bits must be doubled. */
596 		[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
597 		[ZD_PURE_RATE(ZD_CCK_RATE_11M)]	 = 11,
598 		[ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
599 		[ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
600 		[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
601 		[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
602 		[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
603 		[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
604 		[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
605 		[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
606 	};
607 
608 	u32 bits = (u32)tx_length * 8;
609 	u32 divisor;
610 
611 	divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
612 	if (divisor == 0)
613 		return -EINVAL;
614 
615 	switch (zd_rate) {
616 	case ZD_CCK_RATE_5_5M:
617 		bits = (2*bits) + 10; /* round up to the next integer */
618 		break;
619 	case ZD_CCK_RATE_11M:
620 		if (service) {
621 			u32 t = bits % 11;
622 			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
623 			if (0 < t && t <= 3) {
624 				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
625 			}
626 		}
627 		bits += 10; /* round up to the next integer */
628 		break;
629 	}
630 
631 	return bits/divisor;
632 }
633 
cs_set_control(struct zd_mac * mac,struct zd_ctrlset * cs,struct ieee80211_hdr * header,struct ieee80211_tx_info * info)634 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
635 	                   struct ieee80211_hdr *header,
636 	                   struct ieee80211_tx_info *info)
637 {
638 	/*
639 	 * CONTROL TODO:
640 	 * - if backoff needed, enable bit 0
641 	 * - if burst (backoff not needed) disable bit 0
642 	 */
643 
644 	cs->control = 0;
645 
646 	/* First fragment */
647 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
648 		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
649 
650 	/* No ACK expected (multicast, etc.) */
651 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
652 		cs->control |= ZD_CS_NO_ACK;
653 
654 	/* PS-POLL */
655 	if (ieee80211_is_pspoll(header->frame_control))
656 		cs->control |= ZD_CS_PS_POLL_FRAME;
657 
658 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
659 		cs->control |= ZD_CS_RTS;
660 
661 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
662 		cs->control |= ZD_CS_SELF_CTS;
663 
664 	/* FIXME: Management frame? */
665 }
666 
zd_mac_config_beacon(struct ieee80211_hw * hw,struct sk_buff * beacon)667 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
668 {
669 	struct zd_mac *mac = zd_hw_mac(hw);
670 	int r, ret, num_cmds, req_pos = 0;
671 	u32 tmp, j = 0;
672 	/* 4 more bytes for tail CRC */
673 	u32 full_len = beacon->len + 4;
674 	unsigned long end_jiffies, message_jiffies;
675 	struct zd_ioreq32 *ioreqs;
676 
677 	/* Alloc memory for full beacon write at once. */
678 	num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
679 	ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
680 	if (!ioreqs)
681 		return -ENOMEM;
682 
683 	mutex_lock(&mac->chip.mutex);
684 
685 	r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
686 	if (r < 0)
687 		goto out;
688 	r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
689 	if (r < 0)
690 		goto release_sema;
691 
692 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
693 	message_jiffies = jiffies + HZ / 10; /*~100ms*/
694 	while (tmp & 0x2) {
695 		r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
696 		if (r < 0)
697 			goto release_sema;
698 		if (time_is_before_eq_jiffies(message_jiffies)) {
699 			message_jiffies = jiffies + HZ / 10;
700 			dev_err(zd_mac_dev(mac),
701 					"CR_BCN_FIFO_SEMAPHORE not ready\n");
702 			if (time_is_before_eq_jiffies(end_jiffies))  {
703 				dev_err(zd_mac_dev(mac),
704 						"Giving up beacon config.\n");
705 				r = -ETIMEDOUT;
706 				goto reset_device;
707 			}
708 		}
709 		msleep(20);
710 	}
711 
712 	ioreqs[req_pos].addr = CR_BCN_FIFO;
713 	ioreqs[req_pos].value = full_len - 1;
714 	req_pos++;
715 	if (zd_chip_is_zd1211b(&mac->chip)) {
716 		ioreqs[req_pos].addr = CR_BCN_LENGTH;
717 		ioreqs[req_pos].value = full_len - 1;
718 		req_pos++;
719 	}
720 
721 	for (j = 0 ; j < beacon->len; j++) {
722 		ioreqs[req_pos].addr = CR_BCN_FIFO;
723 		ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
724 		req_pos++;
725 	}
726 
727 	for (j = 0; j < 4; j++) {
728 		ioreqs[req_pos].addr = CR_BCN_FIFO;
729 		ioreqs[req_pos].value = 0x0;
730 		req_pos++;
731 	}
732 
733 	BUG_ON(req_pos != num_cmds);
734 
735 	r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
736 
737 release_sema:
738 	/*
739 	 * Try very hard to release device beacon semaphore, as otherwise
740 	 * device/driver can be left in unusable state.
741 	 */
742 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
743 	ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
744 	while (ret < 0) {
745 		if (time_is_before_eq_jiffies(end_jiffies)) {
746 			ret = -ETIMEDOUT;
747 			break;
748 		}
749 
750 		msleep(20);
751 		ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
752 	}
753 
754 	if (ret < 0)
755 		dev_err(zd_mac_dev(mac), "Could not release "
756 					 "CR_BCN_FIFO_SEMAPHORE!\n");
757 	if (r < 0 || ret < 0) {
758 		if (r >= 0)
759 			r = ret;
760 		goto out;
761 	}
762 
763 	/* 802.11b/g 2.4G CCK 1Mb
764 	 * 802.11a, not yet implemented, uses different values (see GPL vendor
765 	 * driver)
766 	 */
767 	r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
768 				CR_BCN_PLCP_CFG);
769 out:
770 	mutex_unlock(&mac->chip.mutex);
771 	kfree(ioreqs);
772 	return r;
773 
774 reset_device:
775 	mutex_unlock(&mac->chip.mutex);
776 	kfree(ioreqs);
777 
778 	/* semaphore stuck, reset device to avoid fw freeze later */
779 	dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
780 				  "reseting device...");
781 	usb_queue_reset_device(mac->chip.usb.intf);
782 
783 	return r;
784 }
785 
fill_ctrlset(struct zd_mac * mac,struct sk_buff * skb)786 static int fill_ctrlset(struct zd_mac *mac,
787 			struct sk_buff *skb)
788 {
789 	int r;
790 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
791 	unsigned int frag_len = skb->len + FCS_LEN;
792 	unsigned int packet_length;
793 	struct ieee80211_rate *txrate;
794 	struct zd_ctrlset *cs = (struct zd_ctrlset *)
795 		skb_push(skb, sizeof(struct zd_ctrlset));
796 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
797 
798 	ZD_ASSERT(frag_len <= 0xffff);
799 
800 	txrate = ieee80211_get_tx_rate(mac->hw, info);
801 
802 	cs->modulation = txrate->hw_value;
803 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
804 		cs->modulation = txrate->hw_value_short;
805 
806 	cs->tx_length = cpu_to_le16(frag_len);
807 
808 	cs_set_control(mac, cs, hdr, info);
809 
810 	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
811 	ZD_ASSERT(packet_length <= 0xffff);
812 	/* ZD1211B: Computing the length difference this way, gives us
813 	 * flexibility to compute the packet length.
814 	 */
815 	cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
816 			packet_length - frag_len : packet_length);
817 
818 	/*
819 	 * CURRENT LENGTH:
820 	 * - transmit frame length in microseconds
821 	 * - seems to be derived from frame length
822 	 * - see Cal_Us_Service() in zdinlinef.h
823 	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
824 	 *  - bTxBurstEnable is never set in the vendor driver
825 	 *
826 	 * SERVICE:
827 	 * - "for PLCP configuration"
828 	 * - always 0 except in some situations at 802.11b 11M
829 	 * - see line 53 of zdinlinef.h
830 	 */
831 	cs->service = 0;
832 	r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
833 		                 le16_to_cpu(cs->tx_length));
834 	if (r < 0)
835 		return r;
836 	cs->current_length = cpu_to_le16(r);
837 	cs->next_frame_length = 0;
838 
839 	return 0;
840 }
841 
842 /**
843  * zd_op_tx - transmits a network frame to the device
844  *
845  * @dev: mac80211 hardware device
846  * @skb: socket buffer
847  * @control: the control structure
848  *
849  * This function transmit an IEEE 802.11 network frame to the device. The
850  * control block of the skbuff will be initialized. If necessary the incoming
851  * mac80211 queues will be stopped.
852  */
zd_op_tx(struct ieee80211_hw * hw,struct sk_buff * skb)853 static void zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
854 {
855 	struct zd_mac *mac = zd_hw_mac(hw);
856 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
857 	int r;
858 
859 	r = fill_ctrlset(mac, skb);
860 	if (r)
861 		goto fail;
862 
863 	info->rate_driver_data[0] = hw;
864 
865 	r = zd_usb_tx(&mac->chip.usb, skb);
866 	if (r)
867 		goto fail;
868 	return;
869 
870 fail:
871 	dev_kfree_skb(skb);
872 }
873 
874 /**
875  * filter_ack - filters incoming packets for acknowledgements
876  * @dev: the mac80211 device
877  * @rx_hdr: received header
878  * @stats: the status for the received packet
879  *
880  * This functions looks for ACK packets and tries to match them with the
881  * frames in the tx queue. If a match is found the frame will be dequeued and
882  * the upper layers is informed about the successful transmission. If
883  * mac80211 queues have been stopped and the number of frames still to be
884  * transmitted is low the queues will be opened again.
885  *
886  * Returns 1 if the frame was an ACK, 0 if it was ignored.
887  */
filter_ack(struct ieee80211_hw * hw,struct ieee80211_hdr * rx_hdr,struct ieee80211_rx_status * stats)888 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
889 		      struct ieee80211_rx_status *stats)
890 {
891 	struct zd_mac *mac = zd_hw_mac(hw);
892 	struct sk_buff *skb;
893 	struct sk_buff_head *q;
894 	unsigned long flags;
895 	int found = 0;
896 	int i, position = 0;
897 
898 	if (!ieee80211_is_ack(rx_hdr->frame_control))
899 		return 0;
900 
901 	q = &mac->ack_wait_queue;
902 	spin_lock_irqsave(&q->lock, flags);
903 	skb_queue_walk(q, skb) {
904 		struct ieee80211_hdr *tx_hdr;
905 
906 		position ++;
907 
908 		if (mac->ack_pending && skb_queue_is_first(q, skb))
909 		    continue;
910 
911 		tx_hdr = (struct ieee80211_hdr *)skb->data;
912 		if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
913 		{
914 			found = 1;
915 			break;
916 		}
917 	}
918 
919 	if (found) {
920 		for (i=1; i<position; i++) {
921 			skb = __skb_dequeue(q);
922 			zd_mac_tx_status(hw, skb,
923 					 mac->ack_pending ? mac->ack_signal : 0,
924 					 NULL);
925 			mac->ack_pending = 0;
926 		}
927 
928 		mac->ack_pending = 1;
929 		mac->ack_signal = stats->signal;
930 
931 		/* Prevent pending tx-packet on AP-mode */
932 		if (mac->type == NL80211_IFTYPE_AP) {
933 			skb = __skb_dequeue(q);
934 			zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
935 			mac->ack_pending = 0;
936 		}
937 	}
938 
939 	spin_unlock_irqrestore(&q->lock, flags);
940 	return 1;
941 }
942 
zd_mac_rx(struct ieee80211_hw * hw,const u8 * buffer,unsigned int length)943 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
944 {
945 	struct zd_mac *mac = zd_hw_mac(hw);
946 	struct ieee80211_rx_status stats;
947 	const struct rx_status *status;
948 	struct sk_buff *skb;
949 	int bad_frame = 0;
950 	__le16 fc;
951 	int need_padding;
952 	int i;
953 	u8 rate;
954 
955 	if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
956 	             FCS_LEN + sizeof(struct rx_status))
957 		return -EINVAL;
958 
959 	memset(&stats, 0, sizeof(stats));
960 
961 	/* Note about pass_failed_fcs and pass_ctrl access below:
962 	 * mac locking intentionally omitted here, as this is the only unlocked
963 	 * reader and the only writer is configure_filter. Plus, if there were
964 	 * any races accessing these variables, it wouldn't really matter.
965 	 * If mac80211 ever provides a way for us to access filter flags
966 	 * from outside configure_filter, we could improve on this. Also, this
967 	 * situation may change once we implement some kind of DMA-into-skb
968 	 * RX path. */
969 
970 	/* Caller has to ensure that length >= sizeof(struct rx_status). */
971 	status = (struct rx_status *)
972 		(buffer + (length - sizeof(struct rx_status)));
973 	if (status->frame_status & ZD_RX_ERROR) {
974 		if (mac->pass_failed_fcs &&
975 				(status->frame_status & ZD_RX_CRC32_ERROR)) {
976 			stats.flag |= RX_FLAG_FAILED_FCS_CRC;
977 			bad_frame = 1;
978 		} else {
979 			return -EINVAL;
980 		}
981 	}
982 
983 	stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
984 	stats.band = IEEE80211_BAND_2GHZ;
985 	stats.signal = status->signal_strength;
986 
987 	rate = zd_rx_rate(buffer, status);
988 
989 	/* todo: return index in the big switches in zd_rx_rate instead */
990 	for (i = 0; i < mac->band.n_bitrates; i++)
991 		if (rate == mac->band.bitrates[i].hw_value)
992 			stats.rate_idx = i;
993 
994 	length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
995 	buffer += ZD_PLCP_HEADER_SIZE;
996 
997 	/* Except for bad frames, filter each frame to see if it is an ACK, in
998 	 * which case our internal TX tracking is updated. Normally we then
999 	 * bail here as there's no need to pass ACKs on up to the stack, but
1000 	 * there is also the case where the stack has requested us to pass
1001 	 * control frames on up (pass_ctrl) which we must consider. */
1002 	if (!bad_frame &&
1003 			filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1004 			&& !mac->pass_ctrl)
1005 		return 0;
1006 
1007 	fc = get_unaligned((__le16*)buffer);
1008 	need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1009 
1010 	skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1011 	if (skb == NULL)
1012 		return -ENOMEM;
1013 	if (need_padding) {
1014 		/* Make sure the payload data is 4 byte aligned. */
1015 		skb_reserve(skb, 2);
1016 	}
1017 
1018 	/* FIXME : could we avoid this big memcpy ? */
1019 	memcpy(skb_put(skb, length), buffer, length);
1020 
1021 	memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1022 	ieee80211_rx_irqsafe(hw, skb);
1023 	return 0;
1024 }
1025 
zd_op_add_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1026 static int zd_op_add_interface(struct ieee80211_hw *hw,
1027 				struct ieee80211_vif *vif)
1028 {
1029 	struct zd_mac *mac = zd_hw_mac(hw);
1030 
1031 	/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1032 	if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1033 		return -EOPNOTSUPP;
1034 
1035 	switch (vif->type) {
1036 	case NL80211_IFTYPE_MONITOR:
1037 	case NL80211_IFTYPE_MESH_POINT:
1038 	case NL80211_IFTYPE_STATION:
1039 	case NL80211_IFTYPE_ADHOC:
1040 	case NL80211_IFTYPE_AP:
1041 		mac->type = vif->type;
1042 		break;
1043 	default:
1044 		return -EOPNOTSUPP;
1045 	}
1046 
1047 	mac->vif = vif;
1048 
1049 	return set_mac_and_bssid(mac);
1050 }
1051 
zd_op_remove_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1052 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1053 				    struct ieee80211_vif *vif)
1054 {
1055 	struct zd_mac *mac = zd_hw_mac(hw);
1056 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1057 	mac->vif = NULL;
1058 	zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1059 	zd_write_mac_addr(&mac->chip, NULL);
1060 }
1061 
zd_op_config(struct ieee80211_hw * hw,u32 changed)1062 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1063 {
1064 	struct zd_mac *mac = zd_hw_mac(hw);
1065 	struct ieee80211_conf *conf = &hw->conf;
1066 
1067 	spin_lock_irq(&mac->lock);
1068 	mac->channel = conf->channel->hw_value;
1069 	spin_unlock_irq(&mac->lock);
1070 
1071 	return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
1072 }
1073 
zd_beacon_done(struct zd_mac * mac)1074 static void zd_beacon_done(struct zd_mac *mac)
1075 {
1076 	struct sk_buff *skb, *beacon;
1077 
1078 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1079 		return;
1080 	if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1081 		return;
1082 
1083 	/*
1084 	 * Send out buffered broad- and multicast frames.
1085 	 */
1086 	while (!ieee80211_queue_stopped(mac->hw, 0)) {
1087 		skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1088 		if (!skb)
1089 			break;
1090 		zd_op_tx(mac->hw, skb);
1091 	}
1092 
1093 	/*
1094 	 * Fetch next beacon so that tim_count is updated.
1095 	 */
1096 	beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1097 	if (beacon) {
1098 		zd_mac_config_beacon(mac->hw, beacon);
1099 		kfree_skb(beacon);
1100 	}
1101 
1102 	spin_lock_irq(&mac->lock);
1103 	mac->beacon.last_update = jiffies;
1104 	spin_unlock_irq(&mac->lock);
1105 }
1106 
zd_process_intr(struct work_struct * work)1107 static void zd_process_intr(struct work_struct *work)
1108 {
1109 	u16 int_status;
1110 	unsigned long flags;
1111 	struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1112 
1113 	spin_lock_irqsave(&mac->lock, flags);
1114 	int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1115 	spin_unlock_irqrestore(&mac->lock, flags);
1116 
1117 	if (int_status & INT_CFG_NEXT_BCN) {
1118 		/*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1119 		zd_beacon_done(mac);
1120 	} else {
1121 		dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1122 	}
1123 
1124 	zd_chip_enable_hwint(&mac->chip);
1125 }
1126 
1127 
zd_op_prepare_multicast(struct ieee80211_hw * hw,struct netdev_hw_addr_list * mc_list)1128 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1129 				   struct netdev_hw_addr_list *mc_list)
1130 {
1131 	struct zd_mac *mac = zd_hw_mac(hw);
1132 	struct zd_mc_hash hash;
1133 	struct netdev_hw_addr *ha;
1134 
1135 	zd_mc_clear(&hash);
1136 
1137 	netdev_hw_addr_list_for_each(ha, mc_list) {
1138 		dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1139 		zd_mc_add_addr(&hash, ha->addr);
1140 	}
1141 
1142 	return hash.low | ((u64)hash.high << 32);
1143 }
1144 
1145 #define SUPPORTED_FIF_FLAGS \
1146 	(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1147 	FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
zd_op_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * new_flags,u64 multicast)1148 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1149 			unsigned int changed_flags,
1150 			unsigned int *new_flags,
1151 			u64 multicast)
1152 {
1153 	struct zd_mc_hash hash = {
1154 		.low = multicast,
1155 		.high = multicast >> 32,
1156 	};
1157 	struct zd_mac *mac = zd_hw_mac(hw);
1158 	unsigned long flags;
1159 	int r;
1160 
1161 	/* Only deal with supported flags */
1162 	changed_flags &= SUPPORTED_FIF_FLAGS;
1163 	*new_flags &= SUPPORTED_FIF_FLAGS;
1164 
1165 	/*
1166 	 * If multicast parameter (as returned by zd_op_prepare_multicast)
1167 	 * has changed, no bit in changed_flags is set. To handle this
1168 	 * situation, we do not return if changed_flags is 0. If we do so,
1169 	 * we will have some issue with IPv6 which uses multicast for link
1170 	 * layer address resolution.
1171 	 */
1172 	if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
1173 		zd_mc_add_all(&hash);
1174 
1175 	spin_lock_irqsave(&mac->lock, flags);
1176 	mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1177 	mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1178 	mac->multicast_hash = hash;
1179 	spin_unlock_irqrestore(&mac->lock, flags);
1180 
1181 	zd_chip_set_multicast_hash(&mac->chip, &hash);
1182 
1183 	if (changed_flags & FIF_CONTROL) {
1184 		r = set_rx_filter(mac);
1185 		if (r)
1186 			dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1187 	}
1188 
1189 	/* no handling required for FIF_OTHER_BSS as we don't currently
1190 	 * do BSSID filtering */
1191 	/* FIXME: in future it would be nice to enable the probe response
1192 	 * filter (so that the driver doesn't see them) until
1193 	 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1194 	 * have to schedule work to enable prbresp reception, which might
1195 	 * happen too late. For now we'll just listen and forward them all the
1196 	 * time. */
1197 }
1198 
set_rts_cts(struct zd_mac * mac,unsigned int short_preamble)1199 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1200 {
1201 	mutex_lock(&mac->chip.mutex);
1202 	zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1203 	mutex_unlock(&mac->chip.mutex);
1204 }
1205 
zd_op_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changes)1206 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1207 				   struct ieee80211_vif *vif,
1208 				   struct ieee80211_bss_conf *bss_conf,
1209 				   u32 changes)
1210 {
1211 	struct zd_mac *mac = zd_hw_mac(hw);
1212 	int associated;
1213 
1214 	dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1215 
1216 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1217 	    mac->type == NL80211_IFTYPE_ADHOC ||
1218 	    mac->type == NL80211_IFTYPE_AP) {
1219 		associated = true;
1220 		if (changes & BSS_CHANGED_BEACON) {
1221 			struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1222 
1223 			if (beacon) {
1224 				zd_chip_disable_hwint(&mac->chip);
1225 				zd_mac_config_beacon(hw, beacon);
1226 				zd_chip_enable_hwint(&mac->chip);
1227 				kfree_skb(beacon);
1228 			}
1229 		}
1230 
1231 		if (changes & BSS_CHANGED_BEACON_ENABLED) {
1232 			u16 interval = 0;
1233 			u8 period = 0;
1234 
1235 			if (bss_conf->enable_beacon) {
1236 				period = bss_conf->dtim_period;
1237 				interval = bss_conf->beacon_int;
1238 			}
1239 
1240 			spin_lock_irq(&mac->lock);
1241 			mac->beacon.period = period;
1242 			mac->beacon.interval = interval;
1243 			mac->beacon.last_update = jiffies;
1244 			spin_unlock_irq(&mac->lock);
1245 
1246 			zd_set_beacon_interval(&mac->chip, interval, period,
1247 					       mac->type);
1248 		}
1249 	} else
1250 		associated = is_valid_ether_addr(bss_conf->bssid);
1251 
1252 	spin_lock_irq(&mac->lock);
1253 	mac->associated = associated;
1254 	spin_unlock_irq(&mac->lock);
1255 
1256 	/* TODO: do hardware bssid filtering */
1257 
1258 	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1259 		spin_lock_irq(&mac->lock);
1260 		mac->short_preamble = bss_conf->use_short_preamble;
1261 		spin_unlock_irq(&mac->lock);
1262 
1263 		set_rts_cts(mac, bss_conf->use_short_preamble);
1264 	}
1265 }
1266 
zd_op_get_tsf(struct ieee80211_hw * hw)1267 static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
1268 {
1269 	struct zd_mac *mac = zd_hw_mac(hw);
1270 	return zd_chip_get_tsf(&mac->chip);
1271 }
1272 
1273 static const struct ieee80211_ops zd_ops = {
1274 	.tx			= zd_op_tx,
1275 	.start			= zd_op_start,
1276 	.stop			= zd_op_stop,
1277 	.add_interface		= zd_op_add_interface,
1278 	.remove_interface	= zd_op_remove_interface,
1279 	.config			= zd_op_config,
1280 	.prepare_multicast	= zd_op_prepare_multicast,
1281 	.configure_filter	= zd_op_configure_filter,
1282 	.bss_info_changed	= zd_op_bss_info_changed,
1283 	.get_tsf		= zd_op_get_tsf,
1284 };
1285 
zd_mac_alloc_hw(struct usb_interface * intf)1286 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1287 {
1288 	struct zd_mac *mac;
1289 	struct ieee80211_hw *hw;
1290 
1291 	hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1292 	if (!hw) {
1293 		dev_dbg_f(&intf->dev, "out of memory\n");
1294 		return NULL;
1295 	}
1296 
1297 	mac = zd_hw_mac(hw);
1298 
1299 	memset(mac, 0, sizeof(*mac));
1300 	spin_lock_init(&mac->lock);
1301 	mac->hw = hw;
1302 
1303 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1304 
1305 	memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1306 	memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1307 	mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1308 	mac->band.bitrates = mac->rates;
1309 	mac->band.n_channels = ARRAY_SIZE(zd_channels);
1310 	mac->band.channels = mac->channels;
1311 
1312 	hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1313 
1314 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1315 		    IEEE80211_HW_SIGNAL_UNSPEC |
1316 		    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1317 
1318 	hw->wiphy->interface_modes =
1319 		BIT(NL80211_IFTYPE_MESH_POINT) |
1320 		BIT(NL80211_IFTYPE_STATION) |
1321 		BIT(NL80211_IFTYPE_ADHOC) |
1322 		BIT(NL80211_IFTYPE_AP);
1323 
1324 	hw->max_signal = 100;
1325 	hw->queues = 1;
1326 	hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1327 
1328 	/*
1329 	 * Tell mac80211 that we support multi rate retries
1330 	 */
1331 	hw->max_rates = IEEE80211_TX_MAX_RATES;
1332 	hw->max_rate_tries = 18;	/* 9 rates * 2 retries/rate */
1333 
1334 	skb_queue_head_init(&mac->ack_wait_queue);
1335 	mac->ack_pending = 0;
1336 
1337 	zd_chip_init(&mac->chip, hw, intf);
1338 	housekeeping_init(mac);
1339 	beacon_init(mac);
1340 	INIT_WORK(&mac->process_intr, zd_process_intr);
1341 
1342 	SET_IEEE80211_DEV(hw, &intf->dev);
1343 	return hw;
1344 }
1345 
1346 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1347 
beacon_watchdog_handler(struct work_struct * work)1348 static void beacon_watchdog_handler(struct work_struct *work)
1349 {
1350 	struct zd_mac *mac =
1351 		container_of(work, struct zd_mac, beacon.watchdog_work.work);
1352 	struct sk_buff *beacon;
1353 	unsigned long timeout;
1354 	int interval, period;
1355 
1356 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1357 		goto rearm;
1358 	if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1359 		goto rearm;
1360 
1361 	spin_lock_irq(&mac->lock);
1362 	interval = mac->beacon.interval;
1363 	period = mac->beacon.period;
1364 	timeout = mac->beacon.last_update + msecs_to_jiffies(interval) + HZ;
1365 	spin_unlock_irq(&mac->lock);
1366 
1367 	if (interval > 0 && time_is_before_jiffies(timeout)) {
1368 		dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1369 					   "restarting. "
1370 					   "(interval: %d, dtim: %d)\n",
1371 					   interval, period);
1372 
1373 		zd_chip_disable_hwint(&mac->chip);
1374 
1375 		beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1376 		if (beacon) {
1377 			zd_mac_config_beacon(mac->hw, beacon);
1378 			kfree_skb(beacon);
1379 		}
1380 
1381 		zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1382 
1383 		zd_chip_enable_hwint(&mac->chip);
1384 
1385 		spin_lock_irq(&mac->lock);
1386 		mac->beacon.last_update = jiffies;
1387 		spin_unlock_irq(&mac->lock);
1388 	}
1389 
1390 rearm:
1391 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1392 			   BEACON_WATCHDOG_DELAY);
1393 }
1394 
beacon_init(struct zd_mac * mac)1395 static void beacon_init(struct zd_mac *mac)
1396 {
1397 	INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1398 }
1399 
beacon_enable(struct zd_mac * mac)1400 static void beacon_enable(struct zd_mac *mac)
1401 {
1402 	dev_dbg_f(zd_mac_dev(mac), "\n");
1403 
1404 	mac->beacon.last_update = jiffies;
1405 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1406 			   BEACON_WATCHDOG_DELAY);
1407 }
1408 
beacon_disable(struct zd_mac * mac)1409 static void beacon_disable(struct zd_mac *mac)
1410 {
1411 	dev_dbg_f(zd_mac_dev(mac), "\n");
1412 	cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1413 }
1414 
1415 #define LINK_LED_WORK_DELAY HZ
1416 
link_led_handler(struct work_struct * work)1417 static void link_led_handler(struct work_struct *work)
1418 {
1419 	struct zd_mac *mac =
1420 		container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1421 	struct zd_chip *chip = &mac->chip;
1422 	int is_associated;
1423 	int r;
1424 
1425 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1426 		goto requeue;
1427 
1428 	spin_lock_irq(&mac->lock);
1429 	is_associated = mac->associated;
1430 	spin_unlock_irq(&mac->lock);
1431 
1432 	r = zd_chip_control_leds(chip,
1433 		                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1434 	if (r)
1435 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1436 
1437 requeue:
1438 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1439 		           LINK_LED_WORK_DELAY);
1440 }
1441 
housekeeping_init(struct zd_mac * mac)1442 static void housekeeping_init(struct zd_mac *mac)
1443 {
1444 	INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1445 }
1446 
housekeeping_enable(struct zd_mac * mac)1447 static void housekeeping_enable(struct zd_mac *mac)
1448 {
1449 	dev_dbg_f(zd_mac_dev(mac), "\n");
1450 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1451 			   0);
1452 }
1453 
housekeeping_disable(struct zd_mac * mac)1454 static void housekeeping_disable(struct zd_mac *mac)
1455 {
1456 	dev_dbg_f(zd_mac_dev(mac), "\n");
1457 	cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1458 	zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1459 }
1460