1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, write to the
17 	Free Software Foundation, Inc.,
18 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22 	Module: rt2500usb
23 	Abstract: rt2500usb device specific routines.
24 	Supported chipsets: RT2570.
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
34 
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
38 
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45 
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2500usb_register_read and rt2500usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * If the csr_mutex is already held then the _lock variants must
59  * be used instead.
60  */
rt2500usb_register_read(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 * value)61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62 					   const unsigned int offset,
63 					   u16 *value)
64 {
65 	__le16 reg;
66 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67 				      USB_VENDOR_REQUEST_IN, offset,
68 				      &reg, sizeof(reg), REGISTER_TIMEOUT);
69 	*value = le16_to_cpu(reg);
70 }
71 
rt2500usb_register_read_lock(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 * value)72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73 						const unsigned int offset,
74 						u16 *value)
75 {
76 	__le16 reg;
77 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78 				       USB_VENDOR_REQUEST_IN, offset,
79 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
80 	*value = le16_to_cpu(reg);
81 }
82 
rt2500usb_register_multiread(struct rt2x00_dev * rt2x00dev,const unsigned int offset,void * value,const u16 length)83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84 						const unsigned int offset,
85 						void *value, const u16 length)
86 {
87 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88 				      USB_VENDOR_REQUEST_IN, offset,
89 				      value, length,
90 				      REGISTER_TIMEOUT16(length));
91 }
92 
rt2500usb_register_write(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 value)93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94 					    const unsigned int offset,
95 					    u16 value)
96 {
97 	__le16 reg = cpu_to_le16(value);
98 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99 				      USB_VENDOR_REQUEST_OUT, offset,
100 				      &reg, sizeof(reg), REGISTER_TIMEOUT);
101 }
102 
rt2500usb_register_write_lock(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u16 value)103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104 						 const unsigned int offset,
105 						 u16 value)
106 {
107 	__le16 reg = cpu_to_le16(value);
108 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109 				       USB_VENDOR_REQUEST_OUT, offset,
110 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
111 }
112 
rt2500usb_register_multiwrite(struct rt2x00_dev * rt2x00dev,const unsigned int offset,void * value,const u16 length)113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114 						 const unsigned int offset,
115 						 void *value, const u16 length)
116 {
117 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118 				      USB_VENDOR_REQUEST_OUT, offset,
119 				      value, length,
120 				      REGISTER_TIMEOUT16(length));
121 }
122 
rt2500usb_regbusy_read(struct rt2x00_dev * rt2x00dev,const unsigned int offset,struct rt2x00_field16 field,u16 * reg)123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124 				  const unsigned int offset,
125 				  struct rt2x00_field16 field,
126 				  u16 *reg)
127 {
128 	unsigned int i;
129 
130 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131 		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132 		if (!rt2x00_get_field16(*reg, field))
133 			return 1;
134 		udelay(REGISTER_BUSY_DELAY);
135 	}
136 
137 	ERROR(rt2x00dev, "Indirect register access failed: "
138 	      "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139 	*reg = ~0;
140 
141 	return 0;
142 }
143 
144 #define WAIT_FOR_BBP(__dev, __reg) \
145 	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147 	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148 
rt2500usb_bbp_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u8 value)149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150 				const unsigned int word, const u8 value)
151 {
152 	u16 reg;
153 
154 	mutex_lock(&rt2x00dev->csr_mutex);
155 
156 	/*
157 	 * Wait until the BBP becomes available, afterwards we
158 	 * can safely write the new data into the register.
159 	 */
160 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161 		reg = 0;
162 		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165 
166 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167 	}
168 
169 	mutex_unlock(&rt2x00dev->csr_mutex);
170 }
171 
rt2500usb_bbp_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u8 * value)172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173 			       const unsigned int word, u8 *value)
174 {
175 	u16 reg;
176 
177 	mutex_lock(&rt2x00dev->csr_mutex);
178 
179 	/*
180 	 * Wait until the BBP becomes available, afterwards we
181 	 * can safely write the read request into the register.
182 	 * After the data has been written, we wait until hardware
183 	 * returns the correct value, if at any time the register
184 	 * doesn't become available in time, reg will be 0xffffffff
185 	 * which means we return 0xff to the caller.
186 	 */
187 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188 		reg = 0;
189 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191 
192 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193 
194 		if (WAIT_FOR_BBP(rt2x00dev, &reg))
195 			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196 	}
197 
198 	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199 
200 	mutex_unlock(&rt2x00dev->csr_mutex);
201 }
202 
rt2500usb_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u32 value)203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204 			       const unsigned int word, const u32 value)
205 {
206 	u16 reg;
207 
208 	mutex_lock(&rt2x00dev->csr_mutex);
209 
210 	/*
211 	 * Wait until the RF becomes available, afterwards we
212 	 * can safely write the new data into the register.
213 	 */
214 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215 		reg = 0;
216 		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218 
219 		reg = 0;
220 		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221 		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222 		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223 		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
224 
225 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226 		rt2x00_rf_write(rt2x00dev, word, value);
227 	}
228 
229 	mutex_unlock(&rt2x00dev->csr_mutex);
230 }
231 
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
_rt2500usb_register_read(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u32 * value)233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234 				     const unsigned int offset,
235 				     u32 *value)
236 {
237 	rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 }
239 
_rt2500usb_register_write(struct rt2x00_dev * rt2x00dev,const unsigned int offset,u32 value)240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241 				      const unsigned int offset,
242 				      u32 value)
243 {
244 	rt2500usb_register_write(rt2x00dev, offset, value);
245 }
246 
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248 	.owner	= THIS_MODULE,
249 	.csr	= {
250 		.read		= _rt2500usb_register_read,
251 		.write		= _rt2500usb_register_write,
252 		.flags		= RT2X00DEBUGFS_OFFSET,
253 		.word_base	= CSR_REG_BASE,
254 		.word_size	= sizeof(u16),
255 		.word_count	= CSR_REG_SIZE / sizeof(u16),
256 	},
257 	.eeprom	= {
258 		.read		= rt2x00_eeprom_read,
259 		.write		= rt2x00_eeprom_write,
260 		.word_base	= EEPROM_BASE,
261 		.word_size	= sizeof(u16),
262 		.word_count	= EEPROM_SIZE / sizeof(u16),
263 	},
264 	.bbp	= {
265 		.read		= rt2500usb_bbp_read,
266 		.write		= rt2500usb_bbp_write,
267 		.word_base	= BBP_BASE,
268 		.word_size	= sizeof(u8),
269 		.word_count	= BBP_SIZE / sizeof(u8),
270 	},
271 	.rf	= {
272 		.read		= rt2x00_rf_read,
273 		.write		= rt2500usb_rf_write,
274 		.word_base	= RF_BASE,
275 		.word_size	= sizeof(u32),
276 		.word_count	= RF_SIZE / sizeof(u32),
277 	},
278 };
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280 
rt2500usb_rfkill_poll(struct rt2x00_dev * rt2x00dev)281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283 	u16 reg;
284 
285 	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286 	return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287 }
288 
289 #ifdef CONFIG_RT2X00_LIB_LEDS
rt2500usb_brightness_set(struct led_classdev * led_cdev,enum led_brightness brightness)290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291 				     enum led_brightness brightness)
292 {
293 	struct rt2x00_led *led =
294 	    container_of(led_cdev, struct rt2x00_led, led_dev);
295 	unsigned int enabled = brightness != LED_OFF;
296 	u16 reg;
297 
298 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299 
300 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301 		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302 	else if (led->type == LED_TYPE_ACTIVITY)
303 		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304 
305 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306 }
307 
rt2500usb_blink_set(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309 			       unsigned long *delay_on,
310 			       unsigned long *delay_off)
311 {
312 	struct rt2x00_led *led =
313 	    container_of(led_cdev, struct rt2x00_led, led_dev);
314 	u16 reg;
315 
316 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317 	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318 	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320 
321 	return 0;
322 }
323 
rt2500usb_init_led(struct rt2x00_dev * rt2x00dev,struct rt2x00_led * led,enum led_type type)324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325 			       struct rt2x00_led *led,
326 			       enum led_type type)
327 {
328 	led->rt2x00dev = rt2x00dev;
329 	led->type = type;
330 	led->led_dev.brightness_set = rt2500usb_brightness_set;
331 	led->led_dev.blink_set = rt2500usb_blink_set;
332 	led->flags = LED_INITIALIZED;
333 }
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
335 
336 /*
337  * Configuration handlers.
338  */
339 
340 /*
341  * rt2500usb does not differentiate between shared and pairwise
342  * keys, so we should use the same function for both key types.
343  */
rt2500usb_config_key(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_crypto * crypto,struct ieee80211_key_conf * key)344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345 				struct rt2x00lib_crypto *crypto,
346 				struct ieee80211_key_conf *key)
347 {
348 	u32 mask;
349 	u16 reg;
350 	enum cipher curr_cipher;
351 
352 	if (crypto->cmd == SET_KEY) {
353 		/*
354 		 * Disallow to set WEP key other than with index 0,
355 		 * it is known that not work at least on some hardware.
356 		 * SW crypto will be used in that case.
357 		 */
358 		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
359 		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
360 		    key->keyidx != 0)
361 			return -EOPNOTSUPP;
362 
363 		/*
364 		 * Pairwise key will always be entry 0, but this
365 		 * could collide with a shared key on the same
366 		 * position...
367 		 */
368 		mask = TXRX_CSR0_KEY_ID.bit_mask;
369 
370 		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
371 		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
372 		reg &= mask;
373 
374 		if (reg && reg == mask)
375 			return -ENOSPC;
376 
377 		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
378 
379 		key->hw_key_idx += reg ? ffz(reg) : 0;
380 		/*
381 		 * Hardware requires that all keys use the same cipher
382 		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
383 		 * If this is not the first key, compare the cipher with the
384 		 * first one and fall back to SW crypto if not the same.
385 		 */
386 		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
387 			return -EOPNOTSUPP;
388 
389 		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
390 					      crypto->key, sizeof(crypto->key));
391 
392 		/*
393 		 * The driver does not support the IV/EIV generation
394 		 * in hardware. However it demands the data to be provided
395 		 * both separately as well as inside the frame.
396 		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
397 		 * to ensure rt2x00lib will not strip the data from the
398 		 * frame after the copy, now we must tell mac80211
399 		 * to generate the IV/EIV data.
400 		 */
401 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
402 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
403 	}
404 
405 	/*
406 	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
407 	 * a particular key is valid.
408 	 */
409 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
410 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
411 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
412 
413 	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
414 	if (crypto->cmd == SET_KEY)
415 		mask |= 1 << key->hw_key_idx;
416 	else if (crypto->cmd == DISABLE_KEY)
417 		mask &= ~(1 << key->hw_key_idx);
418 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
419 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
420 
421 	return 0;
422 }
423 
rt2500usb_config_filter(struct rt2x00_dev * rt2x00dev,const unsigned int filter_flags)424 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
425 				    const unsigned int filter_flags)
426 {
427 	u16 reg;
428 
429 	/*
430 	 * Start configuration steps.
431 	 * Note that the version error will always be dropped
432 	 * and broadcast frames will always be accepted since
433 	 * there is no filter for it at this time.
434 	 */
435 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
436 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
437 			   !(filter_flags & FIF_FCSFAIL));
438 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
439 			   !(filter_flags & FIF_PLCPFAIL));
440 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
441 			   !(filter_flags & FIF_CONTROL));
442 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
443 			   !(filter_flags & FIF_PROMISC_IN_BSS));
444 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
445 			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
446 			   !rt2x00dev->intf_ap_count);
447 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
448 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
449 			   !(filter_flags & FIF_ALLMULTI));
450 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
451 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
452 }
453 
rt2500usb_config_intf(struct rt2x00_dev * rt2x00dev,struct rt2x00_intf * intf,struct rt2x00intf_conf * conf,const unsigned int flags)454 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
455 				  struct rt2x00_intf *intf,
456 				  struct rt2x00intf_conf *conf,
457 				  const unsigned int flags)
458 {
459 	unsigned int bcn_preload;
460 	u16 reg;
461 
462 	if (flags & CONFIG_UPDATE_TYPE) {
463 		/*
464 		 * Enable beacon config
465 		 */
466 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
467 		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
468 		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
469 		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
470 				   2 * (conf->type != NL80211_IFTYPE_STATION));
471 		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
472 
473 		/*
474 		 * Enable synchronisation.
475 		 */
476 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
477 		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
478 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
479 
480 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
481 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
482 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
483 	}
484 
485 	if (flags & CONFIG_UPDATE_MAC)
486 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
487 					      (3 * sizeof(__le16)));
488 
489 	if (flags & CONFIG_UPDATE_BSSID)
490 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
491 					      (3 * sizeof(__le16)));
492 }
493 
rt2500usb_config_erp(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_erp * erp,u32 changed)494 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
495 				 struct rt2x00lib_erp *erp,
496 				 u32 changed)
497 {
498 	u16 reg;
499 
500 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
501 		rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
502 		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
503 				   !!erp->short_preamble);
504 		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
505 	}
506 
507 	if (changed & BSS_CHANGED_BASIC_RATES)
508 		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
509 					 erp->basic_rates);
510 
511 	if (changed & BSS_CHANGED_BEACON_INT) {
512 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
513 		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
514 				   erp->beacon_int * 4);
515 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
516 	}
517 
518 	if (changed & BSS_CHANGED_ERP_SLOT) {
519 		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
520 		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
521 		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
522 	}
523 }
524 
rt2500usb_config_ant(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)525 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
526 				 struct antenna_setup *ant)
527 {
528 	u8 r2;
529 	u8 r14;
530 	u16 csr5;
531 	u16 csr6;
532 
533 	/*
534 	 * We should never come here because rt2x00lib is supposed
535 	 * to catch this and send us the correct antenna explicitely.
536 	 */
537 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
538 	       ant->tx == ANTENNA_SW_DIVERSITY);
539 
540 	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
541 	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
542 	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
543 	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
544 
545 	/*
546 	 * Configure the TX antenna.
547 	 */
548 	switch (ant->tx) {
549 	case ANTENNA_HW_DIVERSITY:
550 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
551 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
552 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
553 		break;
554 	case ANTENNA_A:
555 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
556 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
557 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
558 		break;
559 	case ANTENNA_B:
560 	default:
561 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
562 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
563 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
564 		break;
565 	}
566 
567 	/*
568 	 * Configure the RX antenna.
569 	 */
570 	switch (ant->rx) {
571 	case ANTENNA_HW_DIVERSITY:
572 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
573 		break;
574 	case ANTENNA_A:
575 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
576 		break;
577 	case ANTENNA_B:
578 	default:
579 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
580 		break;
581 	}
582 
583 	/*
584 	 * RT2525E and RT5222 need to flip TX I/Q
585 	 */
586 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
587 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
588 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
589 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
590 
591 		/*
592 		 * RT2525E does not need RX I/Q Flip.
593 		 */
594 		if (rt2x00_rf(rt2x00dev, RF2525E))
595 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
596 	} else {
597 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
598 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
599 	}
600 
601 	rt2500usb_bbp_write(rt2x00dev, 2, r2);
602 	rt2500usb_bbp_write(rt2x00dev, 14, r14);
603 	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
604 	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
605 }
606 
rt2500usb_config_channel(struct rt2x00_dev * rt2x00dev,struct rf_channel * rf,const int txpower)607 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
608 				     struct rf_channel *rf, const int txpower)
609 {
610 	/*
611 	 * Set TXpower.
612 	 */
613 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
614 
615 	/*
616 	 * For RT2525E we should first set the channel to half band higher.
617 	 */
618 	if (rt2x00_rf(rt2x00dev, RF2525E)) {
619 		static const u32 vals[] = {
620 			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
621 			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
622 			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
623 			0x00000902, 0x00000906
624 		};
625 
626 		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
627 		if (rf->rf4)
628 			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
629 	}
630 
631 	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
632 	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
633 	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
634 	if (rf->rf4)
635 		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
636 }
637 
rt2500usb_config_txpower(struct rt2x00_dev * rt2x00dev,const int txpower)638 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
639 				     const int txpower)
640 {
641 	u32 rf3;
642 
643 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
644 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
645 	rt2500usb_rf_write(rt2x00dev, 3, rf3);
646 }
647 
rt2500usb_config_ps(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)648 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
649 				struct rt2x00lib_conf *libconf)
650 {
651 	enum dev_state state =
652 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
653 		STATE_SLEEP : STATE_AWAKE;
654 	u16 reg;
655 
656 	if (state == STATE_SLEEP) {
657 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
658 		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
659 				   rt2x00dev->beacon_int - 20);
660 		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
661 				   libconf->conf->listen_interval - 1);
662 
663 		/* We must first disable autowake before it can be enabled */
664 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
665 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666 
667 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
668 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
669 	} else {
670 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
671 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
672 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
673 	}
674 
675 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
676 }
677 
rt2500usb_config(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf,const unsigned int flags)678 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
679 			     struct rt2x00lib_conf *libconf,
680 			     const unsigned int flags)
681 {
682 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
683 		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
684 					 libconf->conf->power_level);
685 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
686 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
687 		rt2500usb_config_txpower(rt2x00dev,
688 					 libconf->conf->power_level);
689 	if (flags & IEEE80211_CONF_CHANGE_PS)
690 		rt2500usb_config_ps(rt2x00dev, libconf);
691 }
692 
693 /*
694  * Link tuning
695  */
rt2500usb_link_stats(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)696 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
697 				 struct link_qual *qual)
698 {
699 	u16 reg;
700 
701 	/*
702 	 * Update FCS error count from register.
703 	 */
704 	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
705 	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
706 
707 	/*
708 	 * Update False CCA count from register.
709 	 */
710 	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
711 	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
712 }
713 
rt2500usb_reset_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)714 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
715 				  struct link_qual *qual)
716 {
717 	u16 eeprom;
718 	u16 value;
719 
720 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
721 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
722 	rt2500usb_bbp_write(rt2x00dev, 24, value);
723 
724 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
725 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
726 	rt2500usb_bbp_write(rt2x00dev, 25, value);
727 
728 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
729 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
730 	rt2500usb_bbp_write(rt2x00dev, 61, value);
731 
732 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
733 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
734 	rt2500usb_bbp_write(rt2x00dev, 17, value);
735 
736 	qual->vgc_level = value;
737 }
738 
739 /*
740  * Queue handlers.
741  */
rt2500usb_start_queue(struct data_queue * queue)742 static void rt2500usb_start_queue(struct data_queue *queue)
743 {
744 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
745 	u16 reg;
746 
747 	switch (queue->qid) {
748 	case QID_RX:
749 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
750 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
751 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
752 		break;
753 	case QID_BEACON:
754 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
755 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
756 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
757 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
758 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
759 		break;
760 	default:
761 		break;
762 	}
763 }
764 
rt2500usb_stop_queue(struct data_queue * queue)765 static void rt2500usb_stop_queue(struct data_queue *queue)
766 {
767 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
768 	u16 reg;
769 
770 	switch (queue->qid) {
771 	case QID_RX:
772 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
773 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
774 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
775 		break;
776 	case QID_BEACON:
777 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
778 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
779 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
780 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
781 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
782 		break;
783 	default:
784 		break;
785 	}
786 }
787 
788 /*
789  * Initialization functions.
790  */
rt2500usb_init_registers(struct rt2x00_dev * rt2x00dev)791 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
792 {
793 	u16 reg;
794 
795 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
796 				    USB_MODE_TEST, REGISTER_TIMEOUT);
797 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
798 				    0x00f0, REGISTER_TIMEOUT);
799 
800 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
801 	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
802 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
803 
804 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
805 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
806 
807 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
808 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
809 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
810 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
811 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
812 
813 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
814 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
815 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
816 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
817 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
818 
819 	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
820 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
821 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
822 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
823 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
824 	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
825 
826 	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
827 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
828 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
829 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
830 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
831 	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
832 
833 	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
834 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
835 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
836 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
837 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
838 	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
839 
840 	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
841 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
842 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
843 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
844 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
845 	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
846 
847 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
848 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
849 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
850 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
851 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
852 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
853 
854 	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
855 	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
856 
857 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
858 		return -EBUSY;
859 
860 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
861 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
862 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
863 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
864 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
865 
866 	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
867 		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
868 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
869 	} else {
870 		reg = 0;
871 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
872 		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
873 	}
874 	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
875 
876 	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
877 	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
878 	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
879 	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
880 
881 	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
882 	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
883 			   rt2x00dev->rx->data_size);
884 	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
885 
886 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
887 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
888 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
889 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
890 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
891 
892 	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
893 	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
894 	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
895 
896 	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
897 	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
898 	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
899 
900 	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
901 	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
902 	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
903 
904 	return 0;
905 }
906 
rt2500usb_wait_bbp_ready(struct rt2x00_dev * rt2x00dev)907 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
908 {
909 	unsigned int i;
910 	u8 value;
911 
912 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
913 		rt2500usb_bbp_read(rt2x00dev, 0, &value);
914 		if ((value != 0xff) && (value != 0x00))
915 			return 0;
916 		udelay(REGISTER_BUSY_DELAY);
917 	}
918 
919 	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
920 	return -EACCES;
921 }
922 
rt2500usb_init_bbp(struct rt2x00_dev * rt2x00dev)923 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
924 {
925 	unsigned int i;
926 	u16 eeprom;
927 	u8 value;
928 	u8 reg_id;
929 
930 	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
931 		return -EACCES;
932 
933 	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
934 	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
935 	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
936 	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
937 	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
938 	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
939 	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
940 	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
941 	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
942 	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
943 	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
944 	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
945 	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
946 	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
947 	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
948 	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
949 	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
950 	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
951 	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
952 	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
953 	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
954 	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
955 	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
956 	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
957 	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
958 	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
959 	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
960 	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
961 	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
962 	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
963 	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
964 
965 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
966 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
967 
968 		if (eeprom != 0xffff && eeprom != 0x0000) {
969 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
970 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
971 			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
972 		}
973 	}
974 
975 	return 0;
976 }
977 
978 /*
979  * Device state switch handlers.
980  */
rt2500usb_enable_radio(struct rt2x00_dev * rt2x00dev)981 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
982 {
983 	/*
984 	 * Initialize all registers.
985 	 */
986 	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
987 		     rt2500usb_init_bbp(rt2x00dev)))
988 		return -EIO;
989 
990 	return 0;
991 }
992 
rt2500usb_disable_radio(struct rt2x00_dev * rt2x00dev)993 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
994 {
995 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
996 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
997 
998 	/*
999 	 * Disable synchronisation.
1000 	 */
1001 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1002 
1003 	rt2x00usb_disable_radio(rt2x00dev);
1004 }
1005 
rt2500usb_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1006 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1007 			       enum dev_state state)
1008 {
1009 	u16 reg;
1010 	u16 reg2;
1011 	unsigned int i;
1012 	char put_to_sleep;
1013 	char bbp_state;
1014 	char rf_state;
1015 
1016 	put_to_sleep = (state != STATE_AWAKE);
1017 
1018 	reg = 0;
1019 	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1020 	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1021 	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1022 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1023 	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1024 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1025 
1026 	/*
1027 	 * Device is not guaranteed to be in the requested state yet.
1028 	 * We must wait until the register indicates that the
1029 	 * device has entered the correct state.
1030 	 */
1031 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1032 		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1033 		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1034 		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1035 		if (bbp_state == state && rf_state == state)
1036 			return 0;
1037 		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1038 		msleep(30);
1039 	}
1040 
1041 	return -EBUSY;
1042 }
1043 
rt2500usb_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1044 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1045 				      enum dev_state state)
1046 {
1047 	int retval = 0;
1048 
1049 	switch (state) {
1050 	case STATE_RADIO_ON:
1051 		retval = rt2500usb_enable_radio(rt2x00dev);
1052 		break;
1053 	case STATE_RADIO_OFF:
1054 		rt2500usb_disable_radio(rt2x00dev);
1055 		break;
1056 	case STATE_RADIO_IRQ_ON:
1057 	case STATE_RADIO_IRQ_OFF:
1058 		/* No support, but no error either */
1059 		break;
1060 	case STATE_DEEP_SLEEP:
1061 	case STATE_SLEEP:
1062 	case STATE_STANDBY:
1063 	case STATE_AWAKE:
1064 		retval = rt2500usb_set_state(rt2x00dev, state);
1065 		break;
1066 	default:
1067 		retval = -ENOTSUPP;
1068 		break;
1069 	}
1070 
1071 	if (unlikely(retval))
1072 		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1073 		      state, retval);
1074 
1075 	return retval;
1076 }
1077 
1078 /*
1079  * TX descriptor initialization
1080  */
rt2500usb_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)1081 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1082 				    struct txentry_desc *txdesc)
1083 {
1084 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1085 	__le32 *txd = (__le32 *) entry->skb->data;
1086 	u32 word;
1087 
1088 	/*
1089 	 * Start writing the descriptor words.
1090 	 */
1091 	rt2x00_desc_read(txd, 0, &word);
1092 	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1093 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1094 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1095 	rt2x00_set_field32(&word, TXD_W0_ACK,
1096 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1097 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1098 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1099 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1100 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1101 	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1102 			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1103 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1104 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1105 	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1106 	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1107 	rt2x00_desc_write(txd, 0, word);
1108 
1109 	rt2x00_desc_read(txd, 1, &word);
1110 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1111 	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1112 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1113 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1114 	rt2x00_desc_write(txd, 1, word);
1115 
1116 	rt2x00_desc_read(txd, 2, &word);
1117 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1118 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1119 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1120 			   txdesc->u.plcp.length_low);
1121 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1122 			   txdesc->u.plcp.length_high);
1123 	rt2x00_desc_write(txd, 2, word);
1124 
1125 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1126 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1127 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1128 	}
1129 
1130 	/*
1131 	 * Register descriptor details in skb frame descriptor.
1132 	 */
1133 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1134 	skbdesc->desc = txd;
1135 	skbdesc->desc_len = TXD_DESC_SIZE;
1136 }
1137 
1138 /*
1139  * TX data initialization
1140  */
1141 static void rt2500usb_beacondone(struct urb *urb);
1142 
rt2500usb_write_beacon(struct queue_entry * entry,struct txentry_desc * txdesc)1143 static void rt2500usb_write_beacon(struct queue_entry *entry,
1144 				   struct txentry_desc *txdesc)
1145 {
1146 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1147 	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1148 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1149 	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1150 	int length;
1151 	u16 reg, reg0;
1152 
1153 	/*
1154 	 * Disable beaconing while we are reloading the beacon data,
1155 	 * otherwise we might be sending out invalid data.
1156 	 */
1157 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1158 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1159 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1160 
1161 	/*
1162 	 * Add space for the descriptor in front of the skb.
1163 	 */
1164 	skb_push(entry->skb, TXD_DESC_SIZE);
1165 	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1166 
1167 	/*
1168 	 * Write the TX descriptor for the beacon.
1169 	 */
1170 	rt2500usb_write_tx_desc(entry, txdesc);
1171 
1172 	/*
1173 	 * Dump beacon to userspace through debugfs.
1174 	 */
1175 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1176 
1177 	/*
1178 	 * USB devices cannot blindly pass the skb->len as the
1179 	 * length of the data to usb_fill_bulk_urb. Pass the skb
1180 	 * to the driver to determine what the length should be.
1181 	 */
1182 	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1183 
1184 	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1185 			  entry->skb->data, length, rt2500usb_beacondone,
1186 			  entry);
1187 
1188 	/*
1189 	 * Second we need to create the guardian byte.
1190 	 * We only need a single byte, so lets recycle
1191 	 * the 'flags' field we are not using for beacons.
1192 	 */
1193 	bcn_priv->guardian_data = 0;
1194 	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1195 			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1196 			  entry);
1197 
1198 	/*
1199 	 * Send out the guardian byte.
1200 	 */
1201 	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1202 
1203 	/*
1204 	 * Enable beaconing again.
1205 	 */
1206 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1207 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1208 	reg0 = reg;
1209 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1210 	/*
1211 	 * Beacon generation will fail initially.
1212 	 * To prevent this we need to change the TXRX_CSR19
1213 	 * register several times (reg0 is the same as reg
1214 	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1215 	 * and 1 in reg).
1216 	 */
1217 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1219 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1220 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1221 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1222 }
1223 
rt2500usb_get_tx_data_len(struct queue_entry * entry)1224 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1225 {
1226 	int length;
1227 
1228 	/*
1229 	 * The length _must_ be a multiple of 2,
1230 	 * but it must _not_ be a multiple of the USB packet size.
1231 	 */
1232 	length = roundup(entry->skb->len, 2);
1233 	length += (2 * !(length % entry->queue->usb_maxpacket));
1234 
1235 	return length;
1236 }
1237 
1238 /*
1239  * RX control handlers
1240  */
rt2500usb_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)1241 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1242 				  struct rxdone_entry_desc *rxdesc)
1243 {
1244 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1245 	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1246 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1247 	__le32 *rxd =
1248 	    (__le32 *)(entry->skb->data +
1249 		       (entry_priv->urb->actual_length -
1250 			entry->queue->desc_size));
1251 	u32 word0;
1252 	u32 word1;
1253 
1254 	/*
1255 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1256 	 * frame data in rt2x00usb.
1257 	 */
1258 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1259 	rxd = (__le32 *)skbdesc->desc;
1260 
1261 	/*
1262 	 * It is now safe to read the descriptor on all architectures.
1263 	 */
1264 	rt2x00_desc_read(rxd, 0, &word0);
1265 	rt2x00_desc_read(rxd, 1, &word1);
1266 
1267 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1268 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1269 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1270 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1271 
1272 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1273 	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1274 		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1275 
1276 	if (rxdesc->cipher != CIPHER_NONE) {
1277 		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1278 		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1279 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1280 
1281 		/* ICV is located at the end of frame */
1282 
1283 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1284 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1285 			rxdesc->flags |= RX_FLAG_DECRYPTED;
1286 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1287 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1288 	}
1289 
1290 	/*
1291 	 * Obtain the status about this packet.
1292 	 * When frame was received with an OFDM bitrate,
1293 	 * the signal is the PLCP value. If it was received with
1294 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1295 	 */
1296 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1297 	rxdesc->rssi =
1298 	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1299 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1300 
1301 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1302 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1303 	else
1304 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1305 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1306 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1307 
1308 	/*
1309 	 * Adjust the skb memory window to the frame boundaries.
1310 	 */
1311 	skb_trim(entry->skb, rxdesc->size);
1312 }
1313 
1314 /*
1315  * Interrupt functions.
1316  */
rt2500usb_beacondone(struct urb * urb)1317 static void rt2500usb_beacondone(struct urb *urb)
1318 {
1319 	struct queue_entry *entry = (struct queue_entry *)urb->context;
1320 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1321 
1322 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1323 		return;
1324 
1325 	/*
1326 	 * Check if this was the guardian beacon,
1327 	 * if that was the case we need to send the real beacon now.
1328 	 * Otherwise we should free the sk_buffer, the device
1329 	 * should be doing the rest of the work now.
1330 	 */
1331 	if (bcn_priv->guardian_urb == urb) {
1332 		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1333 	} else if (bcn_priv->urb == urb) {
1334 		dev_kfree_skb(entry->skb);
1335 		entry->skb = NULL;
1336 	}
1337 }
1338 
1339 /*
1340  * Device probe functions.
1341  */
rt2500usb_validate_eeprom(struct rt2x00_dev * rt2x00dev)1342 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1343 {
1344 	u16 word;
1345 	u8 *mac;
1346 	u8 bbp;
1347 
1348 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1349 
1350 	/*
1351 	 * Start validation of the data that has been read.
1352 	 */
1353 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1354 	if (!is_valid_ether_addr(mac)) {
1355 		random_ether_addr(mac);
1356 		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1357 	}
1358 
1359 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1360 	if (word == 0xffff) {
1361 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1362 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1363 				   ANTENNA_SW_DIVERSITY);
1364 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1365 				   ANTENNA_SW_DIVERSITY);
1366 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1367 				   LED_MODE_DEFAULT);
1368 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1369 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1370 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1371 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1372 		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1373 	}
1374 
1375 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1376 	if (word == 0xffff) {
1377 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1378 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1379 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1380 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1381 		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1382 	}
1383 
1384 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1385 	if (word == 0xffff) {
1386 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1387 				   DEFAULT_RSSI_OFFSET);
1388 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1389 		EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1390 	}
1391 
1392 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1393 	if (word == 0xffff) {
1394 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1395 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1396 		EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1397 	}
1398 
1399 	/*
1400 	 * Switch lower vgc bound to current BBP R17 value,
1401 	 * lower the value a bit for better quality.
1402 	 */
1403 	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1404 	bbp -= 6;
1405 
1406 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1407 	if (word == 0xffff) {
1408 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1409 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1410 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1411 		EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1412 	} else {
1413 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1414 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1415 	}
1416 
1417 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1418 	if (word == 0xffff) {
1419 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1420 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1421 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1422 		EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1423 	}
1424 
1425 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1426 	if (word == 0xffff) {
1427 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1428 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1429 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1430 		EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1431 	}
1432 
1433 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1434 	if (word == 0xffff) {
1435 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1436 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1437 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1438 		EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1439 	}
1440 
1441 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1442 	if (word == 0xffff) {
1443 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1444 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1445 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1446 		EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1447 	}
1448 
1449 	return 0;
1450 }
1451 
rt2500usb_init_eeprom(struct rt2x00_dev * rt2x00dev)1452 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1453 {
1454 	u16 reg;
1455 	u16 value;
1456 	u16 eeprom;
1457 
1458 	/*
1459 	 * Read EEPROM word for configuration.
1460 	 */
1461 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1462 
1463 	/*
1464 	 * Identify RF chipset.
1465 	 */
1466 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1467 	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1468 	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1469 
1470 	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1471 		ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1472 		return -ENODEV;
1473 	}
1474 
1475 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1476 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1477 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1478 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1479 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1480 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1481 		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1482 		return -ENODEV;
1483 	}
1484 
1485 	/*
1486 	 * Identify default antenna configuration.
1487 	 */
1488 	rt2x00dev->default_ant.tx =
1489 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1490 	rt2x00dev->default_ant.rx =
1491 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1492 
1493 	/*
1494 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1495 	 * I am not 100% sure about this, but the legacy drivers do not
1496 	 * indicate antenna swapping in software is required when
1497 	 * diversity is enabled.
1498 	 */
1499 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1500 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1501 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1502 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1503 
1504 	/*
1505 	 * Store led mode, for correct led behaviour.
1506 	 */
1507 #ifdef CONFIG_RT2X00_LIB_LEDS
1508 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1509 
1510 	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1511 	if (value == LED_MODE_TXRX_ACTIVITY ||
1512 	    value == LED_MODE_DEFAULT ||
1513 	    value == LED_MODE_ASUS)
1514 		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1515 				   LED_TYPE_ACTIVITY);
1516 #endif /* CONFIG_RT2X00_LIB_LEDS */
1517 
1518 	/*
1519 	 * Detect if this device has an hardware controlled radio.
1520 	 */
1521 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1522 		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1523 
1524 	/*
1525 	 * Read the RSSI <-> dBm offset information.
1526 	 */
1527 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1528 	rt2x00dev->rssi_offset =
1529 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1530 
1531 	return 0;
1532 }
1533 
1534 /*
1535  * RF value list for RF2522
1536  * Supports: 2.4 GHz
1537  */
1538 static const struct rf_channel rf_vals_bg_2522[] = {
1539 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1540 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1541 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1542 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1543 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1544 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1545 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1546 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1547 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1548 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1549 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1550 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1551 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1552 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1553 };
1554 
1555 /*
1556  * RF value list for RF2523
1557  * Supports: 2.4 GHz
1558  */
1559 static const struct rf_channel rf_vals_bg_2523[] = {
1560 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1561 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1562 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1563 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1564 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1565 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1566 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1567 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1568 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1569 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1570 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1571 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1572 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1573 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1574 };
1575 
1576 /*
1577  * RF value list for RF2524
1578  * Supports: 2.4 GHz
1579  */
1580 static const struct rf_channel rf_vals_bg_2524[] = {
1581 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1582 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1583 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1584 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1585 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1586 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1587 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1588 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1589 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1590 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1591 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1592 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1593 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1594 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1595 };
1596 
1597 /*
1598  * RF value list for RF2525
1599  * Supports: 2.4 GHz
1600  */
1601 static const struct rf_channel rf_vals_bg_2525[] = {
1602 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1603 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1604 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1605 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1606 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1607 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1608 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1609 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1610 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1611 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1612 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1613 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1614 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1615 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1616 };
1617 
1618 /*
1619  * RF value list for RF2525e
1620  * Supports: 2.4 GHz
1621  */
1622 static const struct rf_channel rf_vals_bg_2525e[] = {
1623 	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1624 	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1625 	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1626 	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1627 	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1628 	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1629 	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1630 	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1631 	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1632 	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1633 	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1634 	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1635 	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1636 	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1637 };
1638 
1639 /*
1640  * RF value list for RF5222
1641  * Supports: 2.4 GHz & 5.2 GHz
1642  */
1643 static const struct rf_channel rf_vals_5222[] = {
1644 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1645 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1646 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1647 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1648 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1649 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1650 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1651 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1652 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1653 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1654 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1655 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1656 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1657 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1658 
1659 	/* 802.11 UNI / HyperLan 2 */
1660 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1661 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1662 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1663 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1664 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1665 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1666 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1667 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1668 
1669 	/* 802.11 HyperLan 2 */
1670 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1671 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1672 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1673 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1674 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1675 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1676 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1677 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1678 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1679 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1680 
1681 	/* 802.11 UNII */
1682 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1683 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1684 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1685 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1686 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1687 };
1688 
rt2500usb_probe_hw_mode(struct rt2x00_dev * rt2x00dev)1689 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1690 {
1691 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1692 	struct channel_info *info;
1693 	char *tx_power;
1694 	unsigned int i;
1695 
1696 	/*
1697 	 * Initialize all hw fields.
1698 	 *
1699 	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1700 	 * capable of sending the buffered frames out after the DTIM
1701 	 * transmission using rt2x00lib_beacondone. This will send out
1702 	 * multicast and broadcast traffic immediately instead of buffering it
1703 	 * infinitly and thus dropping it after some time.
1704 	 */
1705 	rt2x00dev->hw->flags =
1706 	    IEEE80211_HW_RX_INCLUDES_FCS |
1707 	    IEEE80211_HW_SIGNAL_DBM |
1708 	    IEEE80211_HW_SUPPORTS_PS |
1709 	    IEEE80211_HW_PS_NULLFUNC_STACK;
1710 
1711 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1712 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1713 				rt2x00_eeprom_addr(rt2x00dev,
1714 						   EEPROM_MAC_ADDR_0));
1715 
1716 	/*
1717 	 * Initialize hw_mode information.
1718 	 */
1719 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1720 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1721 
1722 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1723 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1724 		spec->channels = rf_vals_bg_2522;
1725 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1726 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1727 		spec->channels = rf_vals_bg_2523;
1728 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1729 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1730 		spec->channels = rf_vals_bg_2524;
1731 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1732 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1733 		spec->channels = rf_vals_bg_2525;
1734 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1735 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1736 		spec->channels = rf_vals_bg_2525e;
1737 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1738 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1739 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1740 		spec->channels = rf_vals_5222;
1741 	}
1742 
1743 	/*
1744 	 * Create channel information array
1745 	 */
1746 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1747 	if (!info)
1748 		return -ENOMEM;
1749 
1750 	spec->channels_info = info;
1751 
1752 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1753 	for (i = 0; i < 14; i++) {
1754 		info[i].max_power = MAX_TXPOWER;
1755 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1756 	}
1757 
1758 	if (spec->num_channels > 14) {
1759 		for (i = 14; i < spec->num_channels; i++) {
1760 			info[i].max_power = MAX_TXPOWER;
1761 			info[i].default_power1 = DEFAULT_TXPOWER;
1762 		}
1763 	}
1764 
1765 	return 0;
1766 }
1767 
rt2500usb_probe_hw(struct rt2x00_dev * rt2x00dev)1768 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1769 {
1770 	int retval;
1771 
1772 	/*
1773 	 * Allocate eeprom data.
1774 	 */
1775 	retval = rt2500usb_validate_eeprom(rt2x00dev);
1776 	if (retval)
1777 		return retval;
1778 
1779 	retval = rt2500usb_init_eeprom(rt2x00dev);
1780 	if (retval)
1781 		return retval;
1782 
1783 	/*
1784 	 * Initialize hw specifications.
1785 	 */
1786 	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1787 	if (retval)
1788 		return retval;
1789 
1790 	/*
1791 	 * This device requires the atim queue
1792 	 */
1793 	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1794 	__set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1795 	if (!modparam_nohwcrypt) {
1796 		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1797 		__set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1798 	}
1799 	__set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
1800 	__set_bit(DRIVER_REQUIRE_SW_SEQNO, &rt2x00dev->flags);
1801 
1802 	/*
1803 	 * Set the rssi offset.
1804 	 */
1805 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1806 
1807 	return 0;
1808 }
1809 
1810 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1811 	.tx			= rt2x00mac_tx,
1812 	.start			= rt2x00mac_start,
1813 	.stop			= rt2x00mac_stop,
1814 	.add_interface		= rt2x00mac_add_interface,
1815 	.remove_interface	= rt2x00mac_remove_interface,
1816 	.config			= rt2x00mac_config,
1817 	.configure_filter	= rt2x00mac_configure_filter,
1818 	.set_tim		= rt2x00mac_set_tim,
1819 	.set_key		= rt2x00mac_set_key,
1820 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1821 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1822 	.get_stats		= rt2x00mac_get_stats,
1823 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1824 	.conf_tx		= rt2x00mac_conf_tx,
1825 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1826 	.flush			= rt2x00mac_flush,
1827 };
1828 
1829 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1830 	.probe_hw		= rt2500usb_probe_hw,
1831 	.initialize		= rt2x00usb_initialize,
1832 	.uninitialize		= rt2x00usb_uninitialize,
1833 	.clear_entry		= rt2x00usb_clear_entry,
1834 	.set_device_state	= rt2500usb_set_device_state,
1835 	.rfkill_poll		= rt2500usb_rfkill_poll,
1836 	.link_stats		= rt2500usb_link_stats,
1837 	.reset_tuner		= rt2500usb_reset_tuner,
1838 	.watchdog		= rt2x00usb_watchdog,
1839 	.start_queue		= rt2500usb_start_queue,
1840 	.kick_queue		= rt2x00usb_kick_queue,
1841 	.stop_queue		= rt2500usb_stop_queue,
1842 	.flush_queue		= rt2x00usb_flush_queue,
1843 	.write_tx_desc		= rt2500usb_write_tx_desc,
1844 	.write_beacon		= rt2500usb_write_beacon,
1845 	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1846 	.fill_rxdone		= rt2500usb_fill_rxdone,
1847 	.config_shared_key	= rt2500usb_config_key,
1848 	.config_pairwise_key	= rt2500usb_config_key,
1849 	.config_filter		= rt2500usb_config_filter,
1850 	.config_intf		= rt2500usb_config_intf,
1851 	.config_erp		= rt2500usb_config_erp,
1852 	.config_ant		= rt2500usb_config_ant,
1853 	.config			= rt2500usb_config,
1854 };
1855 
1856 static const struct data_queue_desc rt2500usb_queue_rx = {
1857 	.entry_num		= 32,
1858 	.data_size		= DATA_FRAME_SIZE,
1859 	.desc_size		= RXD_DESC_SIZE,
1860 	.priv_size		= sizeof(struct queue_entry_priv_usb),
1861 };
1862 
1863 static const struct data_queue_desc rt2500usb_queue_tx = {
1864 	.entry_num		= 32,
1865 	.data_size		= DATA_FRAME_SIZE,
1866 	.desc_size		= TXD_DESC_SIZE,
1867 	.priv_size		= sizeof(struct queue_entry_priv_usb),
1868 };
1869 
1870 static const struct data_queue_desc rt2500usb_queue_bcn = {
1871 	.entry_num		= 1,
1872 	.data_size		= MGMT_FRAME_SIZE,
1873 	.desc_size		= TXD_DESC_SIZE,
1874 	.priv_size		= sizeof(struct queue_entry_priv_usb_bcn),
1875 };
1876 
1877 static const struct data_queue_desc rt2500usb_queue_atim = {
1878 	.entry_num		= 8,
1879 	.data_size		= DATA_FRAME_SIZE,
1880 	.desc_size		= TXD_DESC_SIZE,
1881 	.priv_size		= sizeof(struct queue_entry_priv_usb),
1882 };
1883 
1884 static const struct rt2x00_ops rt2500usb_ops = {
1885 	.name			= KBUILD_MODNAME,
1886 	.max_sta_intf		= 1,
1887 	.max_ap_intf		= 1,
1888 	.eeprom_size		= EEPROM_SIZE,
1889 	.rf_size		= RF_SIZE,
1890 	.tx_queues		= NUM_TX_QUEUES,
1891 	.extra_tx_headroom	= TXD_DESC_SIZE,
1892 	.rx			= &rt2500usb_queue_rx,
1893 	.tx			= &rt2500usb_queue_tx,
1894 	.bcn			= &rt2500usb_queue_bcn,
1895 	.atim			= &rt2500usb_queue_atim,
1896 	.lib			= &rt2500usb_rt2x00_ops,
1897 	.hw			= &rt2500usb_mac80211_ops,
1898 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1899 	.debugfs		= &rt2500usb_rt2x00debug,
1900 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1901 };
1902 
1903 /*
1904  * rt2500usb module information.
1905  */
1906 static struct usb_device_id rt2500usb_device_table[] = {
1907 	/* ASUS */
1908 	{ USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1909 	{ USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1910 	/* Belkin */
1911 	{ USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1912 	{ USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1913 	{ USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1914 	/* Cisco Systems */
1915 	{ USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1916 	{ USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1917 	{ USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1918 	/* CNet */
1919 	{ USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1920 	/* Conceptronic */
1921 	{ USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1922 	/* D-LINK */
1923 	{ USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1924 	/* Gigabyte */
1925 	{ USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1926 	{ USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1927 	/* Hercules */
1928 	{ USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1929 	/* Melco */
1930 	{ USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1931 	{ USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1932 	{ USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1933 	{ USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1934 	{ USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1935 	/* MSI */
1936 	{ USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1937 	{ USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1938 	{ USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1939 	/* Ralink */
1940 	{ USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1941 	{ USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1942 	{ USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1943 	{ USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1944 	/* Sagem */
1945 	{ USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1946 	/* Siemens */
1947 	{ USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1948 	/* SMC */
1949 	{ USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1950 	/* Spairon */
1951 	{ USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1952 	/* SURECOM */
1953 	{ USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1954 	/* Trust */
1955 	{ USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1956 	/* VTech */
1957 	{ USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1958 	/* Zinwell */
1959 	{ USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1960 	{ 0, }
1961 };
1962 
1963 MODULE_AUTHOR(DRV_PROJECT);
1964 MODULE_VERSION(DRV_VERSION);
1965 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1966 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1967 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1968 MODULE_LICENSE("GPL");
1969 
1970 static struct usb_driver rt2500usb_driver = {
1971 	.name		= KBUILD_MODNAME,
1972 	.id_table	= rt2500usb_device_table,
1973 	.probe		= rt2x00usb_probe,
1974 	.disconnect	= rt2x00usb_disconnect,
1975 	.suspend	= rt2x00usb_suspend,
1976 	.resume		= rt2x00usb_resume,
1977 };
1978 
rt2500usb_init(void)1979 static int __init rt2500usb_init(void)
1980 {
1981 	return usb_register(&rt2500usb_driver);
1982 }
1983 
rt2500usb_exit(void)1984 static void __exit rt2500usb_exit(void)
1985 {
1986 	usb_deregister(&rt2500usb_driver);
1987 }
1988 
1989 module_init(rt2500usb_init);
1990 module_exit(rt2500usb_exit);
1991