1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  *****************************************************************************/
63 /*
64  * Please use this file (iwl-4965-hw.h) only for hardware-related definitions.
65  * Use iwl-commands.h for uCode API definitions.
66  * Use iwl-dev.h for driver implementation definitions.
67  */
68 
69 #ifndef __iwl_4965_hw_h__
70 #define __iwl_4965_hw_h__
71 
72 #include "iwl-fh.h"
73 
74 /* EEPROM */
75 #define IWL4965_EEPROM_IMG_SIZE			1024
76 
77 /*
78  * uCode queue management definitions ...
79  * The first queue used for block-ack aggregation is #7 (4965 only).
80  * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
81  */
82 #define IWL49_FIRST_AMPDU_QUEUE	7
83 
84 /* Sizes and addresses for instruction and data memory (SRAM) in
85  * 4965's embedded processor.  Driver access is via HBUS_TARG_MEM_* regs. */
86 #define IWL49_RTC_INST_LOWER_BOUND		(0x000000)
87 #define IWL49_RTC_INST_UPPER_BOUND		(0x018000)
88 
89 #define IWL49_RTC_DATA_LOWER_BOUND		(0x800000)
90 #define IWL49_RTC_DATA_UPPER_BOUND		(0x80A000)
91 
92 #define IWL49_RTC_INST_SIZE  (IWL49_RTC_INST_UPPER_BOUND - \
93 				IWL49_RTC_INST_LOWER_BOUND)
94 #define IWL49_RTC_DATA_SIZE  (IWL49_RTC_DATA_UPPER_BOUND - \
95 				IWL49_RTC_DATA_LOWER_BOUND)
96 
97 #define IWL49_MAX_INST_SIZE IWL49_RTC_INST_SIZE
98 #define IWL49_MAX_DATA_SIZE IWL49_RTC_DATA_SIZE
99 
100 /* Size of uCode instruction memory in bootstrap state machine */
101 #define IWL49_MAX_BSM_SIZE BSM_SRAM_SIZE
102 
iwl4965_hw_valid_rtc_data_addr(u32 addr)103 static inline int iwl4965_hw_valid_rtc_data_addr(u32 addr)
104 {
105 	return (addr >= IWL49_RTC_DATA_LOWER_BOUND) &&
106 	       (addr < IWL49_RTC_DATA_UPPER_BOUND);
107 }
108 
109 /********************* START TEMPERATURE *************************************/
110 
111 /**
112  * 4965 temperature calculation.
113  *
114  * The driver must calculate the device temperature before calculating
115  * a txpower setting (amplifier gain is temperature dependent).  The
116  * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
117  * values used for the life of the driver, and one of which (R4) is the
118  * real-time temperature indicator.
119  *
120  * uCode provides all 4 values to the driver via the "initialize alive"
121  * notification (see struct iwl4965_init_alive_resp).  After the runtime uCode
122  * image loads, uCode updates the R4 value via statistics notifications
123  * (see STATISTICS_NOTIFICATION), which occur after each received beacon
124  * when associated, or can be requested via REPLY_STATISTICS_CMD.
125  *
126  * NOTE:  uCode provides the R4 value as a 23-bit signed value.  Driver
127  *        must sign-extend to 32 bits before applying formula below.
128  *
129  * Formula:
130  *
131  * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
132  *
133  * NOTE:  The basic formula is 259 * (R4-R2) / (R3-R1).  The 97/100 is
134  * an additional correction, which should be centered around 0 degrees
135  * Celsius (273 degrees Kelvin).  The 8 (3 percent of 273) compensates for
136  * centering the 97/100 correction around 0 degrees K.
137  *
138  * Add 273 to Kelvin value to find degrees Celsius, for comparing current
139  * temperature with factory-measured temperatures when calculating txpower
140  * settings.
141  */
142 #define TEMPERATURE_CALIB_KELVIN_OFFSET 8
143 #define TEMPERATURE_CALIB_A_VAL 259
144 
145 /* Limit range of calculated temperature to be between these Kelvin values */
146 #define IWL_TX_POWER_TEMPERATURE_MIN  (263)
147 #define IWL_TX_POWER_TEMPERATURE_MAX  (410)
148 
149 #define IWL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
150 	(((t) < IWL_TX_POWER_TEMPERATURE_MIN) || \
151 	 ((t) > IWL_TX_POWER_TEMPERATURE_MAX))
152 
153 /********************* END TEMPERATURE ***************************************/
154 
155 /********************* START TXPOWER *****************************************/
156 
157 /**
158  * 4965 txpower calculations rely on information from three sources:
159  *
160  *     1) EEPROM
161  *     2) "initialize" alive notification
162  *     3) statistics notifications
163  *
164  * EEPROM data consists of:
165  *
166  * 1)  Regulatory information (max txpower and channel usage flags) is provided
167  *     separately for each channel that can possibly supported by 4965.
168  *     40 MHz wide (.11n HT40) channels are listed separately from 20 MHz
169  *     (legacy) channels.
170  *
171  *     See struct iwl4965_eeprom_channel for format, and struct iwl4965_eeprom
172  *     for locations in EEPROM.
173  *
174  * 2)  Factory txpower calibration information is provided separately for
175  *     sub-bands of contiguous channels.  2.4GHz has just one sub-band,
176  *     but 5 GHz has several sub-bands.
177  *
178  *     In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
179  *
180  *     See struct iwl4965_eeprom_calib_info (and the tree of structures
181  *     contained within it) for format, and struct iwl4965_eeprom for
182  *     locations in EEPROM.
183  *
184  * "Initialization alive" notification (see struct iwl4965_init_alive_resp)
185  * consists of:
186  *
187  * 1)  Temperature calculation parameters.
188  *
189  * 2)  Power supply voltage measurement.
190  *
191  * 3)  Tx gain compensation to balance 2 transmitters for MIMO use.
192  *
193  * Statistics notifications deliver:
194  *
195  * 1)  Current values for temperature param R4.
196  */
197 
198 /**
199  * To calculate a txpower setting for a given desired target txpower, channel,
200  * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
201  * support MIMO and transmit diversity), driver must do the following:
202  *
203  * 1)  Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
204  *     Do not exceed regulatory limit; reduce target txpower if necessary.
205  *
206  *     If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
207  *     2 transmitters will be used simultaneously; driver must reduce the
208  *     regulatory limit by 3 dB (half-power) for each transmitter, so the
209  *     combined total output of the 2 transmitters is within regulatory limits.
210  *
211  *
212  * 2)  Compare target txpower vs. (EEPROM) saturation txpower *reduced by
213  *     backoff for this bit rate*.  Do not exceed (saturation - backoff[rate]);
214  *     reduce target txpower if necessary.
215  *
216  *     Backoff values below are in 1/2 dB units (equivalent to steps in
217  *     txpower gain tables):
218  *
219  *     OFDM 6 - 36 MBit:  10 steps (5 dB)
220  *     OFDM 48 MBit:      15 steps (7.5 dB)
221  *     OFDM 54 MBit:      17 steps (8.5 dB)
222  *     OFDM 60 MBit:      20 steps (10 dB)
223  *     CCK all rates:     10 steps (5 dB)
224  *
225  *     Backoff values apply to saturation txpower on a per-transmitter basis;
226  *     when using MIMO (2 transmitters), each transmitter uses the same
227  *     saturation level provided in EEPROM, and the same backoff values;
228  *     no reduction (such as with regulatory txpower limits) is required.
229  *
230  *     Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
231  *     widths and 40 Mhz (.11n HT40) channel widths; there is no separate
232  *     factory measurement for ht40 channels.
233  *
234  *     The result of this step is the final target txpower.  The rest of
235  *     the steps figure out the proper settings for the device to achieve
236  *     that target txpower.
237  *
238  *
239  * 3)  Determine (EEPROM) calibration sub band for the target channel, by
240  *     comparing against first and last channels in each sub band
241  *     (see struct iwl4965_eeprom_calib_subband_info).
242  *
243  *
244  * 4)  Linearly interpolate (EEPROM) factory calibration measurement sets,
245  *     referencing the 2 factory-measured (sample) channels within the sub band.
246  *
247  *     Interpolation is based on difference between target channel's frequency
248  *     and the sample channels' frequencies.  Since channel numbers are based
249  *     on frequency (5 MHz between each channel number), this is equivalent
250  *     to interpolating based on channel number differences.
251  *
252  *     Note that the sample channels may or may not be the channels at the
253  *     edges of the sub band.  The target channel may be "outside" of the
254  *     span of the sampled channels.
255  *
256  *     Driver may choose the pair (for 2 Tx chains) of measurements (see
257  *     struct iwl4965_eeprom_calib_ch_info) for which the actual measured
258  *     txpower comes closest to the desired txpower.  Usually, though,
259  *     the middle set of measurements is closest to the regulatory limits,
260  *     and is therefore a good choice for all txpower calculations (this
261  *     assumes that high accuracy is needed for maximizing legal txpower,
262  *     while lower txpower configurations do not need as much accuracy).
263  *
264  *     Driver should interpolate both members of the chosen measurement pair,
265  *     i.e. for both Tx chains (radio transmitters), unless the driver knows
266  *     that only one of the chains will be used (e.g. only one tx antenna
267  *     connected, but this should be unusual).  The rate scaling algorithm
268  *     switches antennas to find best performance, so both Tx chains will
269  *     be used (although only one at a time) even for non-MIMO transmissions.
270  *
271  *     Driver should interpolate factory values for temperature, gain table
272  *     index, and actual power.  The power amplifier detector values are
273  *     not used by the driver.
274  *
275  *     Sanity check:  If the target channel happens to be one of the sample
276  *     channels, the results should agree with the sample channel's
277  *     measurements!
278  *
279  *
280  * 5)  Find difference between desired txpower and (interpolated)
281  *     factory-measured txpower.  Using (interpolated) factory gain table index
282  *     (shown elsewhere) as a starting point, adjust this index lower to
283  *     increase txpower, or higher to decrease txpower, until the target
284  *     txpower is reached.  Each step in the gain table is 1/2 dB.
285  *
286  *     For example, if factory measured txpower is 16 dBm, and target txpower
287  *     is 13 dBm, add 6 steps to the factory gain index to reduce txpower
288  *     by 3 dB.
289  *
290  *
291  * 6)  Find difference between current device temperature and (interpolated)
292  *     factory-measured temperature for sub-band.  Factory values are in
293  *     degrees Celsius.  To calculate current temperature, see comments for
294  *     "4965 temperature calculation".
295  *
296  *     If current temperature is higher than factory temperature, driver must
297  *     increase gain (lower gain table index), and vice verse.
298  *
299  *     Temperature affects gain differently for different channels:
300  *
301  *     2.4 GHz all channels:  3.5 degrees per half-dB step
302  *     5 GHz channels 34-43:  4.5 degrees per half-dB step
303  *     5 GHz channels >= 44:  4.0 degrees per half-dB step
304  *
305  *     NOTE:  Temperature can increase rapidly when transmitting, especially
306  *            with heavy traffic at high txpowers.  Driver should update
307  *            temperature calculations often under these conditions to
308  *            maintain strong txpower in the face of rising temperature.
309  *
310  *
311  * 7)  Find difference between current power supply voltage indicator
312  *     (from "initialize alive") and factory-measured power supply voltage
313  *     indicator (EEPROM).
314  *
315  *     If the current voltage is higher (indicator is lower) than factory
316  *     voltage, gain should be reduced (gain table index increased) by:
317  *
318  *     (eeprom - current) / 7
319  *
320  *     If the current voltage is lower (indicator is higher) than factory
321  *     voltage, gain should be increased (gain table index decreased) by:
322  *
323  *     2 * (current - eeprom) / 7
324  *
325  *     If number of index steps in either direction turns out to be > 2,
326  *     something is wrong ... just use 0.
327  *
328  *     NOTE:  Voltage compensation is independent of band/channel.
329  *
330  *     NOTE:  "Initialize" uCode measures current voltage, which is assumed
331  *            to be constant after this initial measurement.  Voltage
332  *            compensation for txpower (number of steps in gain table)
333  *            may be calculated once and used until the next uCode bootload.
334  *
335  *
336  * 8)  If setting up txpowers for MIMO rates (rate indexes 8-15, 24-31),
337  *     adjust txpower for each transmitter chain, so txpower is balanced
338  *     between the two chains.  There are 5 pairs of tx_atten[group][chain]
339  *     values in "initialize alive", one pair for each of 5 channel ranges:
340  *
341  *     Group 0:  5 GHz channel 34-43
342  *     Group 1:  5 GHz channel 44-70
343  *     Group 2:  5 GHz channel 71-124
344  *     Group 3:  5 GHz channel 125-200
345  *     Group 4:  2.4 GHz all channels
346  *
347  *     Add the tx_atten[group][chain] value to the index for the target chain.
348  *     The values are signed, but are in pairs of 0 and a non-negative number,
349  *     so as to reduce gain (if necessary) of the "hotter" channel.  This
350  *     avoids any need to double-check for regulatory compliance after
351  *     this step.
352  *
353  *
354  * 9)  If setting up for a CCK rate, lower the gain by adding a CCK compensation
355  *     value to the index:
356  *
357  *     Hardware rev B:  9 steps (4.5 dB)
358  *     Hardware rev C:  5 steps (2.5 dB)
359  *
360  *     Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
361  *     bits [3:2], 1 = B, 2 = C.
362  *
363  *     NOTE:  This compensation is in addition to any saturation backoff that
364  *            might have been applied in an earlier step.
365  *
366  *
367  * 10) Select the gain table, based on band (2.4 vs 5 GHz).
368  *
369  *     Limit the adjusted index to stay within the table!
370  *
371  *
372  * 11) Read gain table entries for DSP and radio gain, place into appropriate
373  *     location(s) in command (struct iwl4965_txpowertable_cmd).
374  */
375 
376 /**
377  * When MIMO is used (2 transmitters operating simultaneously), driver should
378  * limit each transmitter to deliver a max of 3 dB below the regulatory limit
379  * for the device.  That is, use half power for each transmitter, so total
380  * txpower is within regulatory limits.
381  *
382  * The value "6" represents number of steps in gain table to reduce power 3 dB.
383  * Each step is 1/2 dB.
384  */
385 #define IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
386 
387 /**
388  * CCK gain compensation.
389  *
390  * When calculating txpowers for CCK, after making sure that the target power
391  * is within regulatory and saturation limits, driver must additionally
392  * back off gain by adding these values to the gain table index.
393  *
394  * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
395  * bits [3:2], 1 = B, 2 = C.
396  */
397 #define IWL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
398 #define IWL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
399 
400 /*
401  * 4965 power supply voltage compensation for txpower
402  */
403 #define TX_POWER_IWL_VOLTAGE_CODES_PER_03V   (7)
404 
405 /**
406  * Gain tables.
407  *
408  * The following tables contain pair of values for setting txpower, i.e.
409  * gain settings for the output of the device's digital signal processor (DSP),
410  * and for the analog gain structure of the transmitter.
411  *
412  * Each entry in the gain tables represents a step of 1/2 dB.  Note that these
413  * are *relative* steps, not indications of absolute output power.  Output
414  * power varies with temperature, voltage, and channel frequency, and also
415  * requires consideration of average power (to satisfy regulatory constraints),
416  * and peak power (to avoid distortion of the output signal).
417  *
418  * Each entry contains two values:
419  * 1)  DSP gain (or sometimes called DSP attenuation).  This is a fine-grained
420  *     linear value that multiplies the output of the digital signal processor,
421  *     before being sent to the analog radio.
422  * 2)  Radio gain.  This sets the analog gain of the radio Tx path.
423  *     It is a coarser setting, and behaves in a logarithmic (dB) fashion.
424  *
425  * EEPROM contains factory calibration data for txpower.  This maps actual
426  * measured txpower levels to gain settings in the "well known" tables
427  * below ("well-known" means here that both factory calibration *and* the
428  * driver work with the same table).
429  *
430  * There are separate tables for 2.4 GHz and 5 GHz bands.  The 5 GHz table
431  * has an extension (into negative indexes), in case the driver needs to
432  * boost power setting for high device temperatures (higher than would be
433  * present during factory calibration).  A 5 Ghz EEPROM index of "40"
434  * corresponds to the 49th entry in the table used by the driver.
435  */
436 #define MIN_TX_GAIN_INDEX		(0)  /* highest gain, lowest idx, 2.4 */
437 #define MIN_TX_GAIN_INDEX_52GHZ_EXT	(-9) /* highest gain, lowest idx, 5 */
438 
439 /**
440  * 2.4 GHz gain table
441  *
442  * Index    Dsp gain   Radio gain
443  *   0        110         0x3f      (highest gain)
444  *   1        104         0x3f
445  *   2         98         0x3f
446  *   3        110         0x3e
447  *   4        104         0x3e
448  *   5         98         0x3e
449  *   6        110         0x3d
450  *   7        104         0x3d
451  *   8         98         0x3d
452  *   9        110         0x3c
453  *  10        104         0x3c
454  *  11         98         0x3c
455  *  12        110         0x3b
456  *  13        104         0x3b
457  *  14         98         0x3b
458  *  15        110         0x3a
459  *  16        104         0x3a
460  *  17         98         0x3a
461  *  18        110         0x39
462  *  19        104         0x39
463  *  20         98         0x39
464  *  21        110         0x38
465  *  22        104         0x38
466  *  23         98         0x38
467  *  24        110         0x37
468  *  25        104         0x37
469  *  26         98         0x37
470  *  27        110         0x36
471  *  28        104         0x36
472  *  29         98         0x36
473  *  30        110         0x35
474  *  31        104         0x35
475  *  32         98         0x35
476  *  33        110         0x34
477  *  34        104         0x34
478  *  35         98         0x34
479  *  36        110         0x33
480  *  37        104         0x33
481  *  38         98         0x33
482  *  39        110         0x32
483  *  40        104         0x32
484  *  41         98         0x32
485  *  42        110         0x31
486  *  43        104         0x31
487  *  44         98         0x31
488  *  45        110         0x30
489  *  46        104         0x30
490  *  47         98         0x30
491  *  48        110          0x6
492  *  49        104          0x6
493  *  50         98          0x6
494  *  51        110          0x5
495  *  52        104          0x5
496  *  53         98          0x5
497  *  54        110          0x4
498  *  55        104          0x4
499  *  56         98          0x4
500  *  57        110          0x3
501  *  58        104          0x3
502  *  59         98          0x3
503  *  60        110          0x2
504  *  61        104          0x2
505  *  62         98          0x2
506  *  63        110          0x1
507  *  64        104          0x1
508  *  65         98          0x1
509  *  66        110          0x0
510  *  67        104          0x0
511  *  68         98          0x0
512  *  69         97            0
513  *  70         96            0
514  *  71         95            0
515  *  72         94            0
516  *  73         93            0
517  *  74         92            0
518  *  75         91            0
519  *  76         90            0
520  *  77         89            0
521  *  78         88            0
522  *  79         87            0
523  *  80         86            0
524  *  81         85            0
525  *  82         84            0
526  *  83         83            0
527  *  84         82            0
528  *  85         81            0
529  *  86         80            0
530  *  87         79            0
531  *  88         78            0
532  *  89         77            0
533  *  90         76            0
534  *  91         75            0
535  *  92         74            0
536  *  93         73            0
537  *  94         72            0
538  *  95         71            0
539  *  96         70            0
540  *  97         69            0
541  *  98         68            0
542  */
543 
544 /**
545  * 5 GHz gain table
546  *
547  * Index    Dsp gain   Radio gain
548  *  -9 	      123         0x3F      (highest gain)
549  *  -8 	      117         0x3F
550  *  -7        110         0x3F
551  *  -6        104         0x3F
552  *  -5         98         0x3F
553  *  -4        110         0x3E
554  *  -3        104         0x3E
555  *  -2         98         0x3E
556  *  -1        110         0x3D
557  *   0        104         0x3D
558  *   1         98         0x3D
559  *   2        110         0x3C
560  *   3        104         0x3C
561  *   4         98         0x3C
562  *   5        110         0x3B
563  *   6        104         0x3B
564  *   7         98         0x3B
565  *   8        110         0x3A
566  *   9        104         0x3A
567  *  10         98         0x3A
568  *  11        110         0x39
569  *  12        104         0x39
570  *  13         98         0x39
571  *  14        110         0x38
572  *  15        104         0x38
573  *  16         98         0x38
574  *  17        110         0x37
575  *  18        104         0x37
576  *  19         98         0x37
577  *  20        110         0x36
578  *  21        104         0x36
579  *  22         98         0x36
580  *  23        110         0x35
581  *  24        104         0x35
582  *  25         98         0x35
583  *  26        110         0x34
584  *  27        104         0x34
585  *  28         98         0x34
586  *  29        110         0x33
587  *  30        104         0x33
588  *  31         98         0x33
589  *  32        110         0x32
590  *  33        104         0x32
591  *  34         98         0x32
592  *  35        110         0x31
593  *  36        104         0x31
594  *  37         98         0x31
595  *  38        110         0x30
596  *  39        104         0x30
597  *  40         98         0x30
598  *  41        110         0x25
599  *  42        104         0x25
600  *  43         98         0x25
601  *  44        110         0x24
602  *  45        104         0x24
603  *  46         98         0x24
604  *  47        110         0x23
605  *  48        104         0x23
606  *  49         98         0x23
607  *  50        110         0x22
608  *  51        104         0x18
609  *  52         98         0x18
610  *  53        110         0x17
611  *  54        104         0x17
612  *  55         98         0x17
613  *  56        110         0x16
614  *  57        104         0x16
615  *  58         98         0x16
616  *  59        110         0x15
617  *  60        104         0x15
618  *  61         98         0x15
619  *  62        110         0x14
620  *  63        104         0x14
621  *  64         98         0x14
622  *  65        110         0x13
623  *  66        104         0x13
624  *  67         98         0x13
625  *  68        110         0x12
626  *  69        104         0x08
627  *  70         98         0x08
628  *  71        110         0x07
629  *  72        104         0x07
630  *  73         98         0x07
631  *  74        110         0x06
632  *  75        104         0x06
633  *  76         98         0x06
634  *  77        110         0x05
635  *  78        104         0x05
636  *  79         98         0x05
637  *  80        110         0x04
638  *  81        104         0x04
639  *  82         98         0x04
640  *  83        110         0x03
641  *  84        104         0x03
642  *  85         98         0x03
643  *  86        110         0x02
644  *  87        104         0x02
645  *  88         98         0x02
646  *  89        110         0x01
647  *  90        104         0x01
648  *  91         98         0x01
649  *  92        110         0x00
650  *  93        104         0x00
651  *  94         98         0x00
652  *  95         93         0x00
653  *  96         88         0x00
654  *  97         83         0x00
655  *  98         78         0x00
656  */
657 
658 
659 /**
660  * Sanity checks and default values for EEPROM regulatory levels.
661  * If EEPROM values fall outside MIN/MAX range, use default values.
662  *
663  * Regulatory limits refer to the maximum average txpower allowed by
664  * regulatory agencies in the geographies in which the device is meant
665  * to be operated.  These limits are SKU-specific (i.e. geography-specific),
666  * and channel-specific; each channel has an individual regulatory limit
667  * listed in the EEPROM.
668  *
669  * Units are in half-dBm (i.e. "34" means 17 dBm).
670  */
671 #define IWL_TX_POWER_DEFAULT_REGULATORY_24   (34)
672 #define IWL_TX_POWER_DEFAULT_REGULATORY_52   (34)
673 #define IWL_TX_POWER_REGULATORY_MIN          (0)
674 #define IWL_TX_POWER_REGULATORY_MAX          (34)
675 
676 /**
677  * Sanity checks and default values for EEPROM saturation levels.
678  * If EEPROM values fall outside MIN/MAX range, use default values.
679  *
680  * Saturation is the highest level that the output power amplifier can produce
681  * without significant clipping distortion.  This is a "peak" power level.
682  * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
683  * require differing amounts of backoff, relative to their average power output,
684  * in order to avoid clipping distortion.
685  *
686  * Driver must make sure that it is violating neither the saturation limit,
687  * nor the regulatory limit, when calculating Tx power settings for various
688  * rates.
689  *
690  * Units are in half-dBm (i.e. "38" means 19 dBm).
691  */
692 #define IWL_TX_POWER_DEFAULT_SATURATION_24   (38)
693 #define IWL_TX_POWER_DEFAULT_SATURATION_52   (38)
694 #define IWL_TX_POWER_SATURATION_MIN          (20)
695 #define IWL_TX_POWER_SATURATION_MAX          (50)
696 
697 /**
698  * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
699  * and thermal Txpower calibration.
700  *
701  * When calculating txpower, driver must compensate for current device
702  * temperature; higher temperature requires higher gain.  Driver must calculate
703  * current temperature (see "4965 temperature calculation"), then compare vs.
704  * factory calibration temperature in EEPROM; if current temperature is higher
705  * than factory temperature, driver must *increase* gain by proportions shown
706  * in table below.  If current temperature is lower than factory, driver must
707  * *decrease* gain.
708  *
709  * Different frequency ranges require different compensation, as shown below.
710  */
711 /* Group 0, 5.2 GHz ch 34-43:  4.5 degrees per 1/2 dB. */
712 #define CALIB_IWL_TX_ATTEN_GR1_FCH 34
713 #define CALIB_IWL_TX_ATTEN_GR1_LCH 43
714 
715 /* Group 1, 5.3 GHz ch 44-70:  4.0 degrees per 1/2 dB. */
716 #define CALIB_IWL_TX_ATTEN_GR2_FCH 44
717 #define CALIB_IWL_TX_ATTEN_GR2_LCH 70
718 
719 /* Group 2, 5.5 GHz ch 71-124:  4.0 degrees per 1/2 dB. */
720 #define CALIB_IWL_TX_ATTEN_GR3_FCH 71
721 #define CALIB_IWL_TX_ATTEN_GR3_LCH 124
722 
723 /* Group 3, 5.7 GHz ch 125-200:  4.0 degrees per 1/2 dB. */
724 #define CALIB_IWL_TX_ATTEN_GR4_FCH 125
725 #define CALIB_IWL_TX_ATTEN_GR4_LCH 200
726 
727 /* Group 4, 2.4 GHz all channels:  3.5 degrees per 1/2 dB. */
728 #define CALIB_IWL_TX_ATTEN_GR5_FCH 1
729 #define CALIB_IWL_TX_ATTEN_GR5_LCH 20
730 
731 enum {
732 	CALIB_CH_GROUP_1 = 0,
733 	CALIB_CH_GROUP_2 = 1,
734 	CALIB_CH_GROUP_3 = 2,
735 	CALIB_CH_GROUP_4 = 3,
736 	CALIB_CH_GROUP_5 = 4,
737 	CALIB_CH_GROUP_MAX
738 };
739 
740 /********************* END TXPOWER *****************************************/
741 
742 
743 /**
744  * Tx/Rx Queues
745  *
746  * Most communication between driver and 4965 is via queues of data buffers.
747  * For example, all commands that the driver issues to device's embedded
748  * controller (uCode) are via the command queue (one of the Tx queues).  All
749  * uCode command responses/replies/notifications, including Rx frames, are
750  * conveyed from uCode to driver via the Rx queue.
751  *
752  * Most support for these queues, including handshake support, resides in
753  * structures in host DRAM, shared between the driver and the device.  When
754  * allocating this memory, the driver must make sure that data written by
755  * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
756  * cache memory), so DRAM and cache are consistent, and the device can
757  * immediately see changes made by the driver.
758  *
759  * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
760  * up to 7 DMA channels (FIFOs).  Each Tx queue is supported by a circular array
761  * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
762  */
763 #define IWL49_NUM_FIFOS 	7
764 #define IWL49_CMD_FIFO_NUM	4
765 #define IWL49_NUM_QUEUES	16
766 #define IWL49_NUM_AMPDU_QUEUES	8
767 
768 
769 /**
770  * struct iwl4965_schedq_bc_tbl
771  *
772  * Byte Count table
773  *
774  * Each Tx queue uses a byte-count table containing 320 entries:
775  * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
776  * duplicate the first 64 entries (to avoid wrap-around within a Tx window;
777  * max Tx window is 64 TFDs).
778  *
779  * When driver sets up a new TFD, it must also enter the total byte count
780  * of the frame to be transmitted into the corresponding entry in the byte
781  * count table for the chosen Tx queue.  If the TFD index is 0-63, the driver
782  * must duplicate the byte count entry in corresponding index 256-319.
783  *
784  * padding puts each byte count table on a 1024-byte boundary;
785  * 4965 assumes tables are separated by 1024 bytes.
786  */
787 struct iwl4965_scd_bc_tbl {
788 	__le16 tfd_offset[TFD_QUEUE_BC_SIZE];
789 	u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
790 } __packed;
791 
792 
793 #define IWL4965_RTC_INST_LOWER_BOUND		(0x000000)
794 
795 /* RSSI to dBm */
796 #define IWL4965_RSSI_OFFSET	44
797 
798 /* PCI registers */
799 #define PCI_CFG_RETRY_TIMEOUT	0x041
800 
801 /* PCI register values */
802 #define PCI_CFG_LINK_CTRL_VAL_L0S_EN	0x01
803 #define PCI_CFG_LINK_CTRL_VAL_L1_EN	0x02
804 
805 #define IWL4965_DEFAULT_TX_RETRY  15
806 
807 /* EEPROM */
808 #define IWL4965_FIRST_AMPDU_QUEUE	10
809 
810 
811 #endif /* !__iwl_4965_hw_h__ */
812