1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "ar9002_phy.h"
19 
20 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
21 
ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw * ah)22 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
23 {
24 	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
25 }
26 
ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw * ah)27 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
28 {
29 	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
30 }
31 
__ath9k_hw_ar9287_fill_eeprom(struct ath_hw * ah)32 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
33 {
34 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
35 	struct ath_common *common = ath9k_hw_common(ah);
36 	u16 *eep_data;
37 	int addr, eep_start_loc = AR9287_EEP_START_LOC;
38 	eep_data = (u16 *)eep;
39 
40 	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
41 		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
42 					 eep_data)) {
43 			ath_dbg(common, ATH_DBG_EEPROM,
44 				"Unable to read eeprom region\n");
45 			return false;
46 		}
47 		eep_data++;
48 	}
49 
50 	return true;
51 }
52 
__ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw * ah)53 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
54 {
55 	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
56 
57 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
58 				     AR9287_HTC_EEP_START_LOC,
59 				     SIZE_EEPROM_AR9287);
60 	return true;
61 }
62 
ath9k_hw_ar9287_fill_eeprom(struct ath_hw * ah)63 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
64 {
65 	struct ath_common *common = ath9k_hw_common(ah);
66 
67 	if (!ath9k_hw_use_flash(ah)) {
68 		ath_dbg(common, ATH_DBG_EEPROM,
69 			"Reading from EEPROM, not flash\n");
70 	}
71 
72 	if (common->bus_ops->ath_bus_type == ATH_USB)
73 		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
74 	else
75 		return __ath9k_hw_ar9287_fill_eeprom(ah);
76 }
77 
ath9k_hw_ar9287_check_eeprom(struct ath_hw * ah)78 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
79 {
80 	u32 sum = 0, el, integer;
81 	u16 temp, word, magic, magic2, *eepdata;
82 	int i, addr;
83 	bool need_swap = false;
84 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
85 	struct ath_common *common = ath9k_hw_common(ah);
86 
87 	if (!ath9k_hw_use_flash(ah)) {
88 		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
89 					 &magic)) {
90 			ath_err(common, "Reading Magic # failed\n");
91 			return false;
92 		}
93 
94 		ath_dbg(common, ATH_DBG_EEPROM,
95 			"Read Magic = 0x%04X\n", magic);
96 
97 		if (magic != AR5416_EEPROM_MAGIC) {
98 			magic2 = swab16(magic);
99 
100 			if (magic2 == AR5416_EEPROM_MAGIC) {
101 				need_swap = true;
102 				eepdata = (u16 *)(&ah->eeprom);
103 
104 				for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
105 					temp = swab16(*eepdata);
106 					*eepdata = temp;
107 					eepdata++;
108 				}
109 			} else {
110 				ath_err(common,
111 					"Invalid EEPROM Magic. Endianness mismatch.\n");
112 				return -EINVAL;
113 			}
114 		}
115 	}
116 
117 	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
118 		need_swap ? "True" : "False");
119 
120 	if (need_swap)
121 		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
122 	else
123 		el = ah->eeprom.map9287.baseEepHeader.length;
124 
125 	if (el > sizeof(struct ar9287_eeprom))
126 		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
127 	else
128 		el = el / sizeof(u16);
129 
130 	eepdata = (u16 *)(&ah->eeprom);
131 
132 	for (i = 0; i < el; i++)
133 		sum ^= *eepdata++;
134 
135 	if (need_swap) {
136 		word = swab16(eep->baseEepHeader.length);
137 		eep->baseEepHeader.length = word;
138 
139 		word = swab16(eep->baseEepHeader.checksum);
140 		eep->baseEepHeader.checksum = word;
141 
142 		word = swab16(eep->baseEepHeader.version);
143 		eep->baseEepHeader.version = word;
144 
145 		word = swab16(eep->baseEepHeader.regDmn[0]);
146 		eep->baseEepHeader.regDmn[0] = word;
147 
148 		word = swab16(eep->baseEepHeader.regDmn[1]);
149 		eep->baseEepHeader.regDmn[1] = word;
150 
151 		word = swab16(eep->baseEepHeader.rfSilent);
152 		eep->baseEepHeader.rfSilent = word;
153 
154 		word = swab16(eep->baseEepHeader.blueToothOptions);
155 		eep->baseEepHeader.blueToothOptions = word;
156 
157 		word = swab16(eep->baseEepHeader.deviceCap);
158 		eep->baseEepHeader.deviceCap = word;
159 
160 		integer = swab32(eep->modalHeader.antCtrlCommon);
161 		eep->modalHeader.antCtrlCommon = integer;
162 
163 		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
164 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
165 			eep->modalHeader.antCtrlChain[i] = integer;
166 		}
167 
168 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
169 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
170 			eep->modalHeader.spurChans[i].spurChan = word;
171 		}
172 	}
173 
174 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
175 	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
176 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
177 			sum, ah->eep_ops->get_eeprom_ver(ah));
178 		return -EINVAL;
179 	}
180 
181 	return 0;
182 }
183 
ath9k_hw_ar9287_get_eeprom(struct ath_hw * ah,enum eeprom_param param)184 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
185 				      enum eeprom_param param)
186 {
187 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
188 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
189 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
190 	u16 ver_minor;
191 
192 	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
193 
194 	switch (param) {
195 	case EEP_NFTHRESH_2:
196 		return pModal->noiseFloorThreshCh[0];
197 	case EEP_MAC_LSW:
198 		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
199 	case EEP_MAC_MID:
200 		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
201 	case EEP_MAC_MSW:
202 		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
203 	case EEP_REG_0:
204 		return pBase->regDmn[0];
205 	case EEP_REG_1:
206 		return pBase->regDmn[1];
207 	case EEP_OP_CAP:
208 		return pBase->deviceCap;
209 	case EEP_OP_MODE:
210 		return pBase->opCapFlags;
211 	case EEP_RF_SILENT:
212 		return pBase->rfSilent;
213 	case EEP_MINOR_REV:
214 		return ver_minor;
215 	case EEP_TX_MASK:
216 		return pBase->txMask;
217 	case EEP_RX_MASK:
218 		return pBase->rxMask;
219 	case EEP_DEV_TYPE:
220 		return pBase->deviceType;
221 	case EEP_OL_PWRCTRL:
222 		return pBase->openLoopPwrCntl;
223 	case EEP_TEMPSENSE_SLOPE:
224 		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
225 			return pBase->tempSensSlope;
226 		else
227 			return 0;
228 	case EEP_TEMPSENSE_SLOPE_PAL_ON:
229 		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
230 			return pBase->tempSensSlopePalOn;
231 		else
232 			return 0;
233 	default:
234 		return 0;
235 	}
236 }
237 
ar9287_eeprom_get_tx_gain_index(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_data_op_loop_ar9287 * pRawDatasetOpLoop,u8 * pCalChans,u16 availPiers,int8_t * pPwr)238 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
239 			    struct ath9k_channel *chan,
240 			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
241 			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
242 {
243 	u16 idxL = 0, idxR = 0, numPiers;
244 	bool match;
245 	struct chan_centers centers;
246 
247 	ath9k_hw_get_channel_centers(ah, chan, &centers);
248 
249 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
250 		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
251 			break;
252 	}
253 
254 	match = ath9k_hw_get_lower_upper_index(
255 		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
256 		pCalChans, numPiers, &idxL, &idxR);
257 
258 	if (match) {
259 		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
260 	} else {
261 		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
262 			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
263 	}
264 
265 }
266 
ar9287_eeprom_olpc_set_pdadcs(struct ath_hw * ah,int32_t txPower,u16 chain)267 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
268 					  int32_t txPower, u16 chain)
269 {
270 	u32 tmpVal;
271 	u32 a;
272 
273 	/* Enable OLPC for chain 0 */
274 
275 	tmpVal = REG_READ(ah, 0xa270);
276 	tmpVal = tmpVal & 0xFCFFFFFF;
277 	tmpVal = tmpVal | (0x3 << 24);
278 	REG_WRITE(ah, 0xa270, tmpVal);
279 
280 	/* Enable OLPC for chain 1 */
281 
282 	tmpVal = REG_READ(ah, 0xb270);
283 	tmpVal = tmpVal & 0xFCFFFFFF;
284 	tmpVal = tmpVal | (0x3 << 24);
285 	REG_WRITE(ah, 0xb270, tmpVal);
286 
287 	/* Write the OLPC ref power for chain 0 */
288 
289 	if (chain == 0) {
290 		tmpVal = REG_READ(ah, 0xa398);
291 		tmpVal = tmpVal & 0xff00ffff;
292 		a = (txPower)&0xff;
293 		tmpVal = tmpVal | (a << 16);
294 		REG_WRITE(ah, 0xa398, tmpVal);
295 	}
296 
297 	/* Write the OLPC ref power for chain 1 */
298 
299 	if (chain == 1) {
300 		tmpVal = REG_READ(ah, 0xb398);
301 		tmpVal = tmpVal & 0xff00ffff;
302 		a = (txPower)&0xff;
303 		tmpVal = tmpVal | (a << 16);
304 		REG_WRITE(ah, 0xb398, tmpVal);
305 	}
306 }
307 
ath9k_hw_set_ar9287_power_cal_table(struct ath_hw * ah,struct ath9k_channel * chan,int16_t * pTxPowerIndexOffset)308 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
309 						struct ath9k_channel *chan,
310 						int16_t *pTxPowerIndexOffset)
311 {
312 	struct cal_data_per_freq_ar9287 *pRawDataset;
313 	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
314 	u8 *pCalBChans = NULL;
315 	u16 pdGainOverlap_t2;
316 	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
317 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
318 	u16 numPiers = 0, i, j;
319 	u16 numXpdGain, xpdMask;
320 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
321 	u32 reg32, regOffset, regChainOffset, regval;
322 	int16_t modalIdx, diff = 0;
323 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
324 
325 	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
326 	xpdMask = pEepData->modalHeader.xpdGain;
327 
328 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
329 	    AR9287_EEP_MINOR_VER_2)
330 		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
331 	else
332 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
333 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
334 
335 	if (IS_CHAN_2GHZ(chan)) {
336 		pCalBChans = pEepData->calFreqPier2G;
337 		numPiers = AR9287_NUM_2G_CAL_PIERS;
338 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
339 			pRawDatasetOpenLoop =
340 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
341 			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
342 		}
343 	}
344 
345 	numXpdGain = 0;
346 
347 	/* Calculate the value of xpdgains from the xpdGain Mask */
348 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
349 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
350 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
351 				break;
352 			xpdGainValues[numXpdGain] =
353 				(u16)(AR5416_PD_GAINS_IN_MASK-i);
354 			numXpdGain++;
355 		}
356 	}
357 
358 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
359 		      (numXpdGain - 1) & 0x3);
360 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
361 		      xpdGainValues[0]);
362 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
363 		      xpdGainValues[1]);
364 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
365 		      xpdGainValues[2]);
366 
367 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
368 		regChainOffset = i * 0x1000;
369 
370 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
371 			pRawDatasetOpenLoop =
372 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
373 
374 			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
375 				int8_t txPower;
376 				ar9287_eeprom_get_tx_gain_index(ah, chan,
377 							pRawDatasetOpenLoop,
378 							pCalBChans, numPiers,
379 							&txPower);
380 				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
381 			} else {
382 				pRawDataset =
383 					(struct cal_data_per_freq_ar9287 *)
384 					pEepData->calPierData2G[i];
385 
386 				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
387 							   pRawDataset,
388 							   pCalBChans, numPiers,
389 							   pdGainOverlap_t2,
390 							   gainBoundaries,
391 							   pdadcValues,
392 							   numXpdGain);
393 			}
394 
395 			if (i == 0) {
396 				if (!ath9k_hw_ar9287_get_eeprom(ah,
397 							EEP_OL_PWRCTRL)) {
398 
399 					regval = SM(pdGainOverlap_t2,
400 						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
401 						| SM(gainBoundaries[0],
402 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
403 						| SM(gainBoundaries[1],
404 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
405 						| SM(gainBoundaries[2],
406 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
407 						| SM(gainBoundaries[3],
408 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
409 
410 					REG_WRITE(ah,
411 						  AR_PHY_TPCRG5 + regChainOffset,
412 						  regval);
413 				}
414 			}
415 
416 			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
417 			    pEepData->baseEepHeader.pwrTableOffset) {
418 				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
419 					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
420 				diff *= 2;
421 
422 				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
423 					pdadcValues[j] = pdadcValues[j+diff];
424 
425 				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
426 				     j < AR5416_NUM_PDADC_VALUES; j++)
427 					pdadcValues[j] =
428 					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
429 			}
430 
431 			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
432 				regOffset = AR_PHY_BASE +
433 					(672 << 2) + regChainOffset;
434 
435 				for (j = 0; j < 32; j++) {
436 					reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)
437 						| ((pdadcValues[4*j + 1] & 0xFF) << 8)
438 						| ((pdadcValues[4*j + 2] & 0xFF) << 16)
439 						| ((pdadcValues[4*j + 3] & 0xFF) << 24);
440 
441 					REG_WRITE(ah, regOffset, reg32);
442 					regOffset += 4;
443 				}
444 			}
445 		}
446 	}
447 
448 	*pTxPowerIndexOffset = 0;
449 }
450 
ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw * ah,struct ath9k_channel * chan,int16_t * ratesArray,u16 cfgCtl,u16 AntennaReduction,u16 twiceMaxRegulatoryPower,u16 powerLimit)451 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
452 						     struct ath9k_channel *chan,
453 						     int16_t *ratesArray,
454 						     u16 cfgCtl,
455 						     u16 AntennaReduction,
456 						     u16 twiceMaxRegulatoryPower,
457 						     u16 powerLimit)
458 {
459 #define CMP_CTL \
460 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
461 	 pEepData->ctlIndex[i])
462 
463 #define CMP_NO_CTL \
464 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
465 	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
466 
467 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
468 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10
469 
470 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
471 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
472 	static const u16 tpScaleReductionTable[5] =
473 		{ 0, 3, 6, 9, MAX_RATE_POWER };
474 	int i;
475 	int16_t twiceLargestAntenna;
476 	struct cal_ctl_data_ar9287 *rep;
477 	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
478 				    targetPowerCck = {0, {0, 0, 0, 0} };
479 	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
480 				    targetPowerCckExt = {0, {0, 0, 0, 0} };
481 	struct cal_target_power_ht targetPowerHt20,
482 				    targetPowerHt40 = {0, {0, 0, 0, 0} };
483 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
484 	static const u16 ctlModesFor11g[] = {
485 		CTL_11B, CTL_11G, CTL_2GHT20,
486 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
487 	};
488 	u16 numCtlModes = 0;
489 	const u16 *pCtlMode = NULL;
490 	u16 ctlMode, freq;
491 	struct chan_centers centers;
492 	int tx_chainmask;
493 	u16 twiceMinEdgePower;
494 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
495 	tx_chainmask = ah->txchainmask;
496 
497 	ath9k_hw_get_channel_centers(ah, chan, &centers);
498 
499 	/* Compute TxPower reduction due to Antenna Gain */
500 	twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
501 				  pEepData->modalHeader.antennaGainCh[1]);
502 	twiceLargestAntenna = (int16_t)min((AntennaReduction) -
503 					   twiceLargestAntenna, 0);
504 
505 	/*
506 	 * scaledPower is the minimum of the user input power level
507 	 * and the regulatory allowed power level.
508 	 */
509 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
510 
511 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
512 		maxRegAllowedPower -=
513 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
514 
515 	scaledPower = min(powerLimit, maxRegAllowedPower);
516 
517 	/*
518 	 * Reduce scaled Power by number of chains active
519 	 * to get the per chain tx power level.
520 	 */
521 	switch (ar5416_get_ntxchains(tx_chainmask)) {
522 	case 1:
523 		break;
524 	case 2:
525 		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
526 		break;
527 	case 3:
528 		scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
529 		break;
530 	}
531 	scaledPower = max((u16)0, scaledPower);
532 
533 	/*
534 	 * Get TX power from EEPROM.
535 	 */
536 	if (IS_CHAN_2GHZ(chan))	{
537 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
538 		numCtlModes =
539 			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
540 
541 		pCtlMode = ctlModesFor11g;
542 
543 		ath9k_hw_get_legacy_target_powers(ah, chan,
544 						  pEepData->calTargetPowerCck,
545 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
546 						  &targetPowerCck, 4, false);
547 		ath9k_hw_get_legacy_target_powers(ah, chan,
548 						  pEepData->calTargetPower2G,
549 						  AR9287_NUM_2G_20_TARGET_POWERS,
550 						  &targetPowerOfdm, 4, false);
551 		ath9k_hw_get_target_powers(ah, chan,
552 					   pEepData->calTargetPower2GHT20,
553 					   AR9287_NUM_2G_20_TARGET_POWERS,
554 					   &targetPowerHt20, 8, false);
555 
556 		if (IS_CHAN_HT40(chan))	{
557 			/* All 2G CTLs */
558 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
559 			ath9k_hw_get_target_powers(ah, chan,
560 						   pEepData->calTargetPower2GHT40,
561 						   AR9287_NUM_2G_40_TARGET_POWERS,
562 						   &targetPowerHt40, 8, true);
563 			ath9k_hw_get_legacy_target_powers(ah, chan,
564 						  pEepData->calTargetPowerCck,
565 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
566 						  &targetPowerCckExt, 4, true);
567 			ath9k_hw_get_legacy_target_powers(ah, chan,
568 						  pEepData->calTargetPower2G,
569 						  AR9287_NUM_2G_20_TARGET_POWERS,
570 						  &targetPowerOfdmExt, 4, true);
571 		}
572 	}
573 
574 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
575 		bool isHt40CtlMode =
576 			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
577 
578 		if (isHt40CtlMode)
579 			freq = centers.synth_center;
580 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
581 			freq = centers.ext_center;
582 		else
583 			freq = centers.ctl_center;
584 
585 		/* Walk through the CTL indices stored in EEPROM */
586 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
587 			struct cal_ctl_edges *pRdEdgesPower;
588 
589 			/*
590 			 * Compare test group from regulatory channel list
591 			 * with test mode from pCtlMode list
592 			 */
593 			if (CMP_CTL || CMP_NO_CTL) {
594 				rep = &(pEepData->ctlData[i]);
595 				pRdEdgesPower =
596 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
597 
598 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
599 								pRdEdgesPower,
600 								IS_CHAN_2GHZ(chan),
601 								AR5416_NUM_BAND_EDGES);
602 
603 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
604 					twiceMaxEdgePower = min(twiceMaxEdgePower,
605 								twiceMinEdgePower);
606 				} else {
607 					twiceMaxEdgePower = twiceMinEdgePower;
608 					break;
609 				}
610 			}
611 		}
612 
613 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
614 
615 		/* Apply ctl mode to correct target power set */
616 		switch (pCtlMode[ctlMode]) {
617 		case CTL_11B:
618 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
619 				targetPowerCck.tPow2x[i] =
620 					(u8)min((u16)targetPowerCck.tPow2x[i],
621 						minCtlPower);
622 			}
623 			break;
624 		case CTL_11A:
625 		case CTL_11G:
626 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
627 				targetPowerOfdm.tPow2x[i] =
628 					(u8)min((u16)targetPowerOfdm.tPow2x[i],
629 						minCtlPower);
630 			}
631 			break;
632 		case CTL_5GHT20:
633 		case CTL_2GHT20:
634 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
635 				targetPowerHt20.tPow2x[i] =
636 					(u8)min((u16)targetPowerHt20.tPow2x[i],
637 						minCtlPower);
638 			}
639 			break;
640 		case CTL_11B_EXT:
641 			targetPowerCckExt.tPow2x[0] =
642 				(u8)min((u16)targetPowerCckExt.tPow2x[0],
643 					minCtlPower);
644 			break;
645 		case CTL_11A_EXT:
646 		case CTL_11G_EXT:
647 			targetPowerOfdmExt.tPow2x[0] =
648 				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
649 					minCtlPower);
650 			break;
651 		case CTL_5GHT40:
652 		case CTL_2GHT40:
653 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
654 				targetPowerHt40.tPow2x[i] =
655 					(u8)min((u16)targetPowerHt40.tPow2x[i],
656 						minCtlPower);
657 			}
658 			break;
659 		default:
660 			break;
661 		}
662 	}
663 
664 	/* Now set the rates array */
665 
666 	ratesArray[rate6mb] =
667 	ratesArray[rate9mb] =
668 	ratesArray[rate12mb] =
669 	ratesArray[rate18mb] =
670 	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
671 
672 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
673 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
674 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
675 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
676 
677 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
678 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
679 
680 	if (IS_CHAN_2GHZ(chan))	{
681 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
682 		ratesArray[rate2s] =
683 		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
684 		ratesArray[rate5_5s] =
685 		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
686 		ratesArray[rate11s] =
687 		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
688 	}
689 	if (IS_CHAN_HT40(chan))	{
690 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
691 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
692 
693 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
694 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
695 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
696 
697 		if (IS_CHAN_2GHZ(chan))
698 			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
699 	}
700 
701 #undef CMP_CTL
702 #undef CMP_NO_CTL
703 #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
704 #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
705 }
706 
ath9k_hw_ar9287_set_txpower(struct ath_hw * ah,struct ath9k_channel * chan,u16 cfgCtl,u8 twiceAntennaReduction,u8 twiceMaxRegulatoryPower,u8 powerLimit,bool test)707 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
708 					struct ath9k_channel *chan, u16 cfgCtl,
709 					u8 twiceAntennaReduction,
710 					u8 twiceMaxRegulatoryPower,
711 					u8 powerLimit, bool test)
712 {
713 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
714 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
715 	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
716 	int16_t ratesArray[Ar5416RateSize];
717 	int16_t txPowerIndexOffset = 0;
718 	u8 ht40PowerIncForPdadc = 2;
719 	int i;
720 
721 	memset(ratesArray, 0, sizeof(ratesArray));
722 
723 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
724 	    AR9287_EEP_MINOR_VER_2)
725 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
726 
727 	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
728 						 &ratesArray[0], cfgCtl,
729 						 twiceAntennaReduction,
730 						 twiceMaxRegulatoryPower,
731 						 powerLimit);
732 
733 	ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
734 
735 	regulatory->max_power_level = 0;
736 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
737 		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
738 		if (ratesArray[i] > MAX_RATE_POWER)
739 			ratesArray[i] = MAX_RATE_POWER;
740 
741 		if (ratesArray[i] > regulatory->max_power_level)
742 			regulatory->max_power_level = ratesArray[i];
743 	}
744 
745 	if (test)
746 		return;
747 
748 	if (IS_CHAN_2GHZ(chan))
749 		i = rate1l;
750 	else
751 		i = rate6mb;
752 
753 	regulatory->max_power_level = ratesArray[i];
754 
755 	if (AR_SREV_9280_20_OR_LATER(ah)) {
756 		for (i = 0; i < Ar5416RateSize; i++)
757 			ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
758 	}
759 
760 	/* OFDM power per rate */
761 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
762 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
763 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
764 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
765 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
766 
767 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
768 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
769 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
770 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
771 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
772 
773 	/* CCK power per rate */
774 	if (IS_CHAN_2GHZ(chan))	{
775 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
776 			  ATH9K_POW_SM(ratesArray[rate2s], 24)
777 			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
778 			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
779 			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
780 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
781 			  ATH9K_POW_SM(ratesArray[rate11s], 24)
782 			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
783 			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
784 			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
785 	}
786 
787 	/* HT20 power per rate */
788 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
789 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
790 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
791 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
792 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
793 
794 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
795 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
796 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
797 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
798 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
799 
800 	/* HT40 power per rate */
801 	if (IS_CHAN_HT40(chan))	{
802 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
803 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
804 				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
805 				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
806 				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
807 				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
808 
809 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
810 				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
811 				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
812 				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
813 				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
814 		} else {
815 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
816 				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
817 					       ht40PowerIncForPdadc, 24)
818 				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
819 						 ht40PowerIncForPdadc, 16)
820 				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
821 						 ht40PowerIncForPdadc, 8)
822 				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
823 						 ht40PowerIncForPdadc, 0));
824 
825 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
826 				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
827 					       ht40PowerIncForPdadc, 24)
828 				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
829 						 ht40PowerIncForPdadc, 16)
830 				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
831 						 ht40PowerIncForPdadc, 8)
832 				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
833 						 ht40PowerIncForPdadc, 0));
834 		}
835 
836 		/* Dup/Ext power per rate */
837 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
838 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
839 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
840 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
841 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
842 	}
843 }
844 
ath9k_hw_ar9287_set_addac(struct ath_hw * ah,struct ath9k_channel * chan)845 static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
846 				      struct ath9k_channel *chan)
847 {
848 }
849 
ath9k_hw_ar9287_set_board_values(struct ath_hw * ah,struct ath9k_channel * chan)850 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
851 					     struct ath9k_channel *chan)
852 {
853 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
854 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
855 	u16 antWrites[AR9287_ANT_16S];
856 	u32 regChainOffset, regval;
857 	u8 txRxAttenLocal;
858 	int i, j, offset_num;
859 
860 	pModal = &eep->modalHeader;
861 
862 	antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
863 	antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
864 	antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
865 	antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
866 	antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
867 	antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
868 	antWrites[6] = (u16)((pModal->antCtrlCommon >> 4)  & 0xF);
869 	antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);
870 
871 	offset_num = 8;
872 
873 	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
874 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
875 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
876 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
877 		antWrites[j++] = 0;
878 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
879 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
880 		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
881 		antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
882 	}
883 
884 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
885 
886 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
887 		regChainOffset = i * 0x1000;
888 
889 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
890 			  pModal->antCtrlChain[i]);
891 
892 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
893 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
894 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
895 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
896 			  SM(pModal->iqCalICh[i],
897 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
898 			  SM(pModal->iqCalQCh[i],
899 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
900 
901 		txRxAttenLocal = pModal->txRxAttenCh[i];
902 
903 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
904 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
905 			      pModal->bswMargin[i]);
906 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
907 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
908 			      pModal->bswAtten[i]);
909 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
910 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
911 			      txRxAttenLocal);
912 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
913 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
914 			      pModal->rxTxMarginCh[i]);
915 	}
916 
917 
918 	if (IS_CHAN_HT40(chan))
919 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
920 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
921 	else
922 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
923 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
924 
925 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
926 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
927 
928 	REG_WRITE(ah, AR_PHY_RF_CTL4,
929 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
930 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
931 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
932 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
933 
934 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
935 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
936 
937 	REG_RMW_FIELD(ah, AR_PHY_CCA,
938 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
939 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
940 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
941 
942 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
943 	regval &= ~(AR9287_AN_RF2G3_DB1 |
944 		    AR9287_AN_RF2G3_DB2 |
945 		    AR9287_AN_RF2G3_OB_CCK |
946 		    AR9287_AN_RF2G3_OB_PSK |
947 		    AR9287_AN_RF2G3_OB_QAM |
948 		    AR9287_AN_RF2G3_OB_PAL_OFF);
949 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
950 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
951 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
952 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
953 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
954 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
955 
956 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
957 
958 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
959 	regval &= ~(AR9287_AN_RF2G3_DB1 |
960 		    AR9287_AN_RF2G3_DB2 |
961 		    AR9287_AN_RF2G3_OB_CCK |
962 		    AR9287_AN_RF2G3_OB_PSK |
963 		    AR9287_AN_RF2G3_OB_QAM |
964 		    AR9287_AN_RF2G3_OB_PAL_OFF);
965 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
966 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
967 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
968 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
969 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
970 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
971 
972 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
973 
974 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
975 		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
976 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
977 		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
978 
979 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
980 				  AR9287_AN_TOP2_XPABIAS_LVL,
981 				  AR9287_AN_TOP2_XPABIAS_LVL_S,
982 				  pModal->xpaBiasLvl);
983 }
984 
ath9k_hw_ar9287_get_spur_channel(struct ath_hw * ah,u16 i,bool is2GHz)985 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
986 					    u16 i, bool is2GHz)
987 {
988 #define EEP_MAP9287_SPURCHAN \
989 	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
990 
991 	struct ath_common *common = ath9k_hw_common(ah);
992 	u16 spur_val = AR_NO_SPUR;
993 
994 	ath_dbg(common, ATH_DBG_ANI,
995 		"Getting spur idx:%d is2Ghz:%d val:%x\n",
996 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
997 
998 	switch (ah->config.spurmode) {
999 	case SPUR_DISABLE:
1000 		break;
1001 	case SPUR_ENABLE_IOCTL:
1002 		spur_val = ah->config.spurchans[i][is2GHz];
1003 		ath_dbg(common, ATH_DBG_ANI,
1004 			"Getting spur val from new loc. %d\n", spur_val);
1005 		break;
1006 	case SPUR_ENABLE_EEPROM:
1007 		spur_val = EEP_MAP9287_SPURCHAN;
1008 		break;
1009 	}
1010 
1011 	return spur_val;
1012 
1013 #undef EEP_MAP9287_SPURCHAN
1014 }
1015 
1016 const struct eeprom_ops eep_ar9287_ops = {
1017 	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1018 	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1019 	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
1020 	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1021 	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1022 	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1023 	.set_addac		= ath9k_hw_ar9287_set_addac,
1024 	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1025 	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
1026 };
1027