1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2  * sungem.c: Sun GEM ethernet driver.
3  *
4  * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
5  *
6  * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7  * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8  * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
9  *
10  * NAPI and NETPOLL support
11  * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
12  *
13  * TODO:
14  *  - Now that the driver was significantly simplified, I need to rework
15  *    the locking. I'm sure we don't need _2_ spinlocks, and we probably
16  *    can avoid taking most of them for so long period of time (and schedule
17  *    instead). The main issues at this point are caused by the netdev layer
18  *    though:
19  *
20  *    gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21  *    help by net/core/dev.c, thus they can't schedule. That means they can't
22  *    call napi_disable() neither, thus force gem_poll() to keep a spinlock
23  *    where it could have been dropped. change_mtu especially would love also to
24  *    be able to msleep instead of horrid locked delays when resetting the HW,
25  *    but that read_lock() makes it impossible, unless I defer it's action to
26  *    the reset task, which means it'll be asynchronous (won't take effect until
27  *    the system schedules a bit).
28  *
29  *    Also, it would probably be possible to also remove most of the long-life
30  *    locking in open/resume code path (gem_reinit_chip) by beeing more careful
31  *    about when we can start taking interrupts or get xmit() called...
32  */
33 
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ioport.h>
42 #include <linux/in.h>
43 #include <linux/sched.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/errno.h>
48 #include <linux/pci.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/skbuff.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56 #include <linux/random.h>
57 #include <linux/workqueue.h>
58 #include <linux/if_vlan.h>
59 #include <linux/bitops.h>
60 #include <linux/mutex.h>
61 #include <linux/mm.h>
62 #include <linux/gfp.h>
63 
64 #include <asm/system.h>
65 #include <asm/io.h>
66 #include <asm/byteorder.h>
67 #include <asm/uaccess.h>
68 #include <asm/irq.h>
69 
70 #ifdef CONFIG_SPARC
71 #include <asm/idprom.h>
72 #include <asm/prom.h>
73 #endif
74 
75 #ifdef CONFIG_PPC_PMAC
76 #include <asm/pci-bridge.h>
77 #include <asm/prom.h>
78 #include <asm/machdep.h>
79 #include <asm/pmac_feature.h>
80 #endif
81 
82 #include "sungem_phy.h"
83 #include "sungem.h"
84 
85 /* Stripping FCS is causing problems, disabled for now */
86 #undef STRIP_FCS
87 
88 #define DEFAULT_MSG	(NETIF_MSG_DRV		| \
89 			 NETIF_MSG_PROBE	| \
90 			 NETIF_MSG_LINK)
91 
92 #define ADVERTISE_MASK	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
93 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
94 			 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
95 			 SUPPORTED_Pause | SUPPORTED_Autoneg)
96 
97 #define DRV_NAME	"sungem"
98 #define DRV_VERSION	"0.98"
99 #define DRV_RELDATE	"8/24/03"
100 #define DRV_AUTHOR	"David S. Miller (davem@redhat.com)"
101 
102 static char version[] __devinitdata =
103         DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
104 
105 MODULE_AUTHOR(DRV_AUTHOR);
106 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
107 MODULE_LICENSE("GPL");
108 
109 #define GEM_MODULE_NAME	"gem"
110 
111 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
112 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
113 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
114 
115 	/* These models only differ from the original GEM in
116 	 * that their tx/rx fifos are of a different size and
117 	 * they only support 10/100 speeds. -DaveM
118 	 *
119 	 * Apple's GMAC does support gigabit on machines with
120 	 * the BCM54xx PHYs. -BenH
121 	 */
122 	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
123 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
124 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
125 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
126 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
127 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
128 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
129 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
130 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
131 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
132 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
133 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
134 	{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
135 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
136 	{0, }
137 };
138 
139 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
140 
__phy_read(struct gem * gp,int phy_addr,int reg)141 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
142 {
143 	u32 cmd;
144 	int limit = 10000;
145 
146 	cmd  = (1 << 30);
147 	cmd |= (2 << 28);
148 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
149 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
150 	cmd |= (MIF_FRAME_TAMSB);
151 	writel(cmd, gp->regs + MIF_FRAME);
152 
153 	while (--limit) {
154 		cmd = readl(gp->regs + MIF_FRAME);
155 		if (cmd & MIF_FRAME_TALSB)
156 			break;
157 
158 		udelay(10);
159 	}
160 
161 	if (!limit)
162 		cmd = 0xffff;
163 
164 	return cmd & MIF_FRAME_DATA;
165 }
166 
_phy_read(struct net_device * dev,int mii_id,int reg)167 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
168 {
169 	struct gem *gp = netdev_priv(dev);
170 	return __phy_read(gp, mii_id, reg);
171 }
172 
phy_read(struct gem * gp,int reg)173 static inline u16 phy_read(struct gem *gp, int reg)
174 {
175 	return __phy_read(gp, gp->mii_phy_addr, reg);
176 }
177 
__phy_write(struct gem * gp,int phy_addr,int reg,u16 val)178 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
179 {
180 	u32 cmd;
181 	int limit = 10000;
182 
183 	cmd  = (1 << 30);
184 	cmd |= (1 << 28);
185 	cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
186 	cmd |= (reg << 18) & MIF_FRAME_REGAD;
187 	cmd |= (MIF_FRAME_TAMSB);
188 	cmd |= (val & MIF_FRAME_DATA);
189 	writel(cmd, gp->regs + MIF_FRAME);
190 
191 	while (limit--) {
192 		cmd = readl(gp->regs + MIF_FRAME);
193 		if (cmd & MIF_FRAME_TALSB)
194 			break;
195 
196 		udelay(10);
197 	}
198 }
199 
_phy_write(struct net_device * dev,int mii_id,int reg,int val)200 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
201 {
202 	struct gem *gp = netdev_priv(dev);
203 	__phy_write(gp, mii_id, reg, val & 0xffff);
204 }
205 
phy_write(struct gem * gp,int reg,u16 val)206 static inline void phy_write(struct gem *gp, int reg, u16 val)
207 {
208 	__phy_write(gp, gp->mii_phy_addr, reg, val);
209 }
210 
gem_enable_ints(struct gem * gp)211 static inline void gem_enable_ints(struct gem *gp)
212 {
213 	/* Enable all interrupts but TXDONE */
214 	writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
215 }
216 
gem_disable_ints(struct gem * gp)217 static inline void gem_disable_ints(struct gem *gp)
218 {
219 	/* Disable all interrupts, including TXDONE */
220 	writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
221 }
222 
gem_get_cell(struct gem * gp)223 static void gem_get_cell(struct gem *gp)
224 {
225 	BUG_ON(gp->cell_enabled < 0);
226 	gp->cell_enabled++;
227 #ifdef CONFIG_PPC_PMAC
228 	if (gp->cell_enabled == 1) {
229 		mb();
230 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
231 		udelay(10);
232 	}
233 #endif /* CONFIG_PPC_PMAC */
234 }
235 
236 /* Turn off the chip's clock */
gem_put_cell(struct gem * gp)237 static void gem_put_cell(struct gem *gp)
238 {
239 	BUG_ON(gp->cell_enabled <= 0);
240 	gp->cell_enabled--;
241 #ifdef CONFIG_PPC_PMAC
242 	if (gp->cell_enabled == 0) {
243 		mb();
244 		pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
245 		udelay(10);
246 	}
247 #endif /* CONFIG_PPC_PMAC */
248 }
249 
gem_handle_mif_event(struct gem * gp,u32 reg_val,u32 changed_bits)250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
251 {
252 	if (netif_msg_intr(gp))
253 		printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254 }
255 
gem_pcs_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
257 {
258 	u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259 	u32 pcs_miistat;
260 
261 	if (netif_msg_intr(gp))
262 		printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 			gp->dev->name, pcs_istat);
264 
265 	if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 		netdev_err(dev, "PCS irq but no link status change???\n");
267 		return 0;
268 	}
269 
270 	/* The link status bit latches on zero, so you must
271 	 * read it twice in such a case to see a transition
272 	 * to the link being up.
273 	 */
274 	pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 	if (!(pcs_miistat & PCS_MIISTAT_LS))
276 		pcs_miistat |=
277 			(readl(gp->regs + PCS_MIISTAT) &
278 			 PCS_MIISTAT_LS);
279 
280 	if (pcs_miistat & PCS_MIISTAT_ANC) {
281 		/* The remote-fault indication is only valid
282 		 * when autoneg has completed.
283 		 */
284 		if (pcs_miistat & PCS_MIISTAT_RF)
285 			netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
286 		else
287 			netdev_info(dev, "PCS AutoNEG complete\n");
288 	}
289 
290 	if (pcs_miistat & PCS_MIISTAT_LS) {
291 		netdev_info(dev, "PCS link is now up\n");
292 		netif_carrier_on(gp->dev);
293 	} else {
294 		netdev_info(dev, "PCS link is now down\n");
295 		netif_carrier_off(gp->dev);
296 		/* If this happens and the link timer is not running,
297 		 * reset so we re-negotiate.
298 		 */
299 		if (!timer_pending(&gp->link_timer))
300 			return 1;
301 	}
302 
303 	return 0;
304 }
305 
gem_txmac_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
307 {
308 	u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
309 
310 	if (netif_msg_intr(gp))
311 		printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 			gp->dev->name, txmac_stat);
313 
314 	/* Defer timer expiration is quite normal,
315 	 * don't even log the event.
316 	 */
317 	if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 	    !(txmac_stat & ~MAC_TXSTAT_DTE))
319 		return 0;
320 
321 	if (txmac_stat & MAC_TXSTAT_URUN) {
322 		netdev_err(dev, "TX MAC xmit underrun\n");
323 		dev->stats.tx_fifo_errors++;
324 	}
325 
326 	if (txmac_stat & MAC_TXSTAT_MPE) {
327 		netdev_err(dev, "TX MAC max packet size error\n");
328 		dev->stats.tx_errors++;
329 	}
330 
331 	/* The rest are all cases of one of the 16-bit TX
332 	 * counters expiring.
333 	 */
334 	if (txmac_stat & MAC_TXSTAT_NCE)
335 		dev->stats.collisions += 0x10000;
336 
337 	if (txmac_stat & MAC_TXSTAT_ECE) {
338 		dev->stats.tx_aborted_errors += 0x10000;
339 		dev->stats.collisions += 0x10000;
340 	}
341 
342 	if (txmac_stat & MAC_TXSTAT_LCE) {
343 		dev->stats.tx_aborted_errors += 0x10000;
344 		dev->stats.collisions += 0x10000;
345 	}
346 
347 	/* We do not keep track of MAC_TXSTAT_FCE and
348 	 * MAC_TXSTAT_PCE events.
349 	 */
350 	return 0;
351 }
352 
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354  * so we do the following.
355  *
356  * If any part of the reset goes wrong, we return 1 and that causes the
357  * whole chip to be reset.
358  */
gem_rxmac_reset(struct gem * gp)359 static int gem_rxmac_reset(struct gem *gp)
360 {
361 	struct net_device *dev = gp->dev;
362 	int limit, i;
363 	u64 desc_dma;
364 	u32 val;
365 
366 	/* First, reset & disable MAC RX. */
367 	writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368 	for (limit = 0; limit < 5000; limit++) {
369 		if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
370 			break;
371 		udelay(10);
372 	}
373 	if (limit == 5000) {
374 		netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
375 		return 1;
376 	}
377 
378 	writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379 	       gp->regs + MAC_RXCFG);
380 	for (limit = 0; limit < 5000; limit++) {
381 		if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
382 			break;
383 		udelay(10);
384 	}
385 	if (limit == 5000) {
386 		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
387 		return 1;
388 	}
389 
390 	/* Second, disable RX DMA. */
391 	writel(0, gp->regs + RXDMA_CFG);
392 	for (limit = 0; limit < 5000; limit++) {
393 		if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
394 			break;
395 		udelay(10);
396 	}
397 	if (limit == 5000) {
398 		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
399 		return 1;
400 	}
401 
402 	udelay(5000);
403 
404 	/* Execute RX reset command. */
405 	writel(gp->swrst_base | GREG_SWRST_RXRST,
406 	       gp->regs + GREG_SWRST);
407 	for (limit = 0; limit < 5000; limit++) {
408 		if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
409 			break;
410 		udelay(10);
411 	}
412 	if (limit == 5000) {
413 		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
414 		return 1;
415 	}
416 
417 	/* Refresh the RX ring. */
418 	for (i = 0; i < RX_RING_SIZE; i++) {
419 		struct gem_rxd *rxd = &gp->init_block->rxd[i];
420 
421 		if (gp->rx_skbs[i] == NULL) {
422 			netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
423 			return 1;
424 		}
425 
426 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
427 	}
428 	gp->rx_new = gp->rx_old = 0;
429 
430 	/* Now we must reprogram the rest of RX unit. */
431 	desc_dma = (u64) gp->gblock_dvma;
432 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
438 	writel(val, gp->regs + RXDMA_CFG);
439 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440 		writel(((5 & RXDMA_BLANK_IPKTS) |
441 			((8 << 12) & RXDMA_BLANK_ITIME)),
442 		       gp->regs + RXDMA_BLANK);
443 	else
444 		writel(((5 & RXDMA_BLANK_IPKTS) |
445 			((4 << 12) & RXDMA_BLANK_ITIME)),
446 		       gp->regs + RXDMA_BLANK);
447 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449 	writel(val, gp->regs + RXDMA_PTHRESH);
450 	val = readl(gp->regs + RXDMA_CFG);
451 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453 	val = readl(gp->regs + MAC_RXCFG);
454 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
455 
456 	return 0;
457 }
458 
gem_rxmac_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
460 {
461 	u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
462 	int ret = 0;
463 
464 	if (netif_msg_intr(gp))
465 		printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 			gp->dev->name, rxmac_stat);
467 
468 	if (rxmac_stat & MAC_RXSTAT_OFLW) {
469 		u32 smac = readl(gp->regs + MAC_SMACHINE);
470 
471 		netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472 		dev->stats.rx_over_errors++;
473 		dev->stats.rx_fifo_errors++;
474 
475 		ret = gem_rxmac_reset(gp);
476 	}
477 
478 	if (rxmac_stat & MAC_RXSTAT_ACE)
479 		dev->stats.rx_frame_errors += 0x10000;
480 
481 	if (rxmac_stat & MAC_RXSTAT_CCE)
482 		dev->stats.rx_crc_errors += 0x10000;
483 
484 	if (rxmac_stat & MAC_RXSTAT_LCE)
485 		dev->stats.rx_length_errors += 0x10000;
486 
487 	/* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
488 	 * events.
489 	 */
490 	return ret;
491 }
492 
gem_mac_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
494 {
495 	u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
496 
497 	if (netif_msg_intr(gp))
498 		printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499 			gp->dev->name, mac_cstat);
500 
501 	/* This interrupt is just for pause frame and pause
502 	 * tracking.  It is useful for diagnostics and debug
503 	 * but probably by default we will mask these events.
504 	 */
505 	if (mac_cstat & MAC_CSTAT_PS)
506 		gp->pause_entered++;
507 
508 	if (mac_cstat & MAC_CSTAT_PRCV)
509 		gp->pause_last_time_recvd = (mac_cstat >> 16);
510 
511 	return 0;
512 }
513 
gem_mif_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
515 {
516 	u32 mif_status = readl(gp->regs + MIF_STATUS);
517 	u32 reg_val, changed_bits;
518 
519 	reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520 	changed_bits = (mif_status & MIF_STATUS_STAT);
521 
522 	gem_handle_mif_event(gp, reg_val, changed_bits);
523 
524 	return 0;
525 }
526 
gem_pci_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
528 {
529 	u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
530 
531 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533 		netdev_err(dev, "PCI error [%04x]", pci_estat);
534 
535 		if (pci_estat & GREG_PCIESTAT_BADACK)
536 			pr_cont(" <No ACK64# during ABS64 cycle>");
537 		if (pci_estat & GREG_PCIESTAT_DTRTO)
538 			pr_cont(" <Delayed transaction timeout>");
539 		if (pci_estat & GREG_PCIESTAT_OTHER)
540 			pr_cont(" <other>");
541 		pr_cont("\n");
542 	} else {
543 		pci_estat |= GREG_PCIESTAT_OTHER;
544 		netdev_err(dev, "PCI error\n");
545 	}
546 
547 	if (pci_estat & GREG_PCIESTAT_OTHER) {
548 		u16 pci_cfg_stat;
549 
550 		/* Interrogate PCI config space for the
551 		 * true cause.
552 		 */
553 		pci_read_config_word(gp->pdev, PCI_STATUS,
554 				     &pci_cfg_stat);
555 		netdev_err(dev, "Read PCI cfg space status [%04x]\n",
556 			   pci_cfg_stat);
557 		if (pci_cfg_stat & PCI_STATUS_PARITY)
558 			netdev_err(dev, "PCI parity error detected\n");
559 		if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
560 			netdev_err(dev, "PCI target abort\n");
561 		if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
562 			netdev_err(dev, "PCI master acks target abort\n");
563 		if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
564 			netdev_err(dev, "PCI master abort\n");
565 		if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
566 			netdev_err(dev, "PCI system error SERR#\n");
567 		if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
568 			netdev_err(dev, "PCI parity error\n");
569 
570 		/* Write the error bits back to clear them. */
571 		pci_cfg_stat &= (PCI_STATUS_PARITY |
572 				 PCI_STATUS_SIG_TARGET_ABORT |
573 				 PCI_STATUS_REC_TARGET_ABORT |
574 				 PCI_STATUS_REC_MASTER_ABORT |
575 				 PCI_STATUS_SIG_SYSTEM_ERROR |
576 				 PCI_STATUS_DETECTED_PARITY);
577 		pci_write_config_word(gp->pdev,
578 				      PCI_STATUS, pci_cfg_stat);
579 	}
580 
581 	/* For all PCI errors, we should reset the chip. */
582 	return 1;
583 }
584 
585 /* All non-normal interrupt conditions get serviced here.
586  * Returns non-zero if we should just exit the interrupt
587  * handler right now (ie. if we reset the card which invalidates
588  * all of the other original irq status bits).
589  */
gem_abnormal_irq(struct net_device * dev,struct gem * gp,u32 gem_status)590 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
591 {
592 	if (gem_status & GREG_STAT_RXNOBUF) {
593 		/* Frame arrived, no free RX buffers available. */
594 		if (netif_msg_rx_err(gp))
595 			printk(KERN_DEBUG "%s: no buffer for rx frame\n",
596 				gp->dev->name);
597 		dev->stats.rx_dropped++;
598 	}
599 
600 	if (gem_status & GREG_STAT_RXTAGERR) {
601 		/* corrupt RX tag framing */
602 		if (netif_msg_rx_err(gp))
603 			printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
604 				gp->dev->name);
605 		dev->stats.rx_errors++;
606 
607 		goto do_reset;
608 	}
609 
610 	if (gem_status & GREG_STAT_PCS) {
611 		if (gem_pcs_interrupt(dev, gp, gem_status))
612 			goto do_reset;
613 	}
614 
615 	if (gem_status & GREG_STAT_TXMAC) {
616 		if (gem_txmac_interrupt(dev, gp, gem_status))
617 			goto do_reset;
618 	}
619 
620 	if (gem_status & GREG_STAT_RXMAC) {
621 		if (gem_rxmac_interrupt(dev, gp, gem_status))
622 			goto do_reset;
623 	}
624 
625 	if (gem_status & GREG_STAT_MAC) {
626 		if (gem_mac_interrupt(dev, gp, gem_status))
627 			goto do_reset;
628 	}
629 
630 	if (gem_status & GREG_STAT_MIF) {
631 		if (gem_mif_interrupt(dev, gp, gem_status))
632 			goto do_reset;
633 	}
634 
635 	if (gem_status & GREG_STAT_PCIERR) {
636 		if (gem_pci_interrupt(dev, gp, gem_status))
637 			goto do_reset;
638 	}
639 
640 	return 0;
641 
642 do_reset:
643 	gp->reset_task_pending = 1;
644 	schedule_work(&gp->reset_task);
645 
646 	return 1;
647 }
648 
gem_tx(struct net_device * dev,struct gem * gp,u32 gem_status)649 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
650 {
651 	int entry, limit;
652 
653 	if (netif_msg_intr(gp))
654 		printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
655 			gp->dev->name, gem_status);
656 
657 	entry = gp->tx_old;
658 	limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
659 	while (entry != limit) {
660 		struct sk_buff *skb;
661 		struct gem_txd *txd;
662 		dma_addr_t dma_addr;
663 		u32 dma_len;
664 		int frag;
665 
666 		if (netif_msg_tx_done(gp))
667 			printk(KERN_DEBUG "%s: tx done, slot %d\n",
668 				gp->dev->name, entry);
669 		skb = gp->tx_skbs[entry];
670 		if (skb_shinfo(skb)->nr_frags) {
671 			int last = entry + skb_shinfo(skb)->nr_frags;
672 			int walk = entry;
673 			int incomplete = 0;
674 
675 			last &= (TX_RING_SIZE - 1);
676 			for (;;) {
677 				walk = NEXT_TX(walk);
678 				if (walk == limit)
679 					incomplete = 1;
680 				if (walk == last)
681 					break;
682 			}
683 			if (incomplete)
684 				break;
685 		}
686 		gp->tx_skbs[entry] = NULL;
687 		dev->stats.tx_bytes += skb->len;
688 
689 		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
690 			txd = &gp->init_block->txd[entry];
691 
692 			dma_addr = le64_to_cpu(txd->buffer);
693 			dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
694 
695 			pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
696 			entry = NEXT_TX(entry);
697 		}
698 
699 		dev->stats.tx_packets++;
700 		dev_kfree_skb_irq(skb);
701 	}
702 	gp->tx_old = entry;
703 
704 	if (netif_queue_stopped(dev) &&
705 	    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
706 		netif_wake_queue(dev);
707 }
708 
gem_post_rxds(struct gem * gp,int limit)709 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
710 {
711 	int cluster_start, curr, count, kick;
712 
713 	cluster_start = curr = (gp->rx_new & ~(4 - 1));
714 	count = 0;
715 	kick = -1;
716 	wmb();
717 	while (curr != limit) {
718 		curr = NEXT_RX(curr);
719 		if (++count == 4) {
720 			struct gem_rxd *rxd =
721 				&gp->init_block->rxd[cluster_start];
722 			for (;;) {
723 				rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
724 				rxd++;
725 				cluster_start = NEXT_RX(cluster_start);
726 				if (cluster_start == curr)
727 					break;
728 			}
729 			kick = curr;
730 			count = 0;
731 		}
732 	}
733 	if (kick >= 0) {
734 		mb();
735 		writel(kick, gp->regs + RXDMA_KICK);
736 	}
737 }
738 
gem_rx(struct gem * gp,int work_to_do)739 static int gem_rx(struct gem *gp, int work_to_do)
740 {
741 	struct net_device *dev = gp->dev;
742 	int entry, drops, work_done = 0;
743 	u32 done;
744 	__sum16 csum;
745 
746 	if (netif_msg_rx_status(gp))
747 		printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
748 			gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
749 
750 	entry = gp->rx_new;
751 	drops = 0;
752 	done = readl(gp->regs + RXDMA_DONE);
753 	for (;;) {
754 		struct gem_rxd *rxd = &gp->init_block->rxd[entry];
755 		struct sk_buff *skb;
756 		u64 status = le64_to_cpu(rxd->status_word);
757 		dma_addr_t dma_addr;
758 		int len;
759 
760 		if ((status & RXDCTRL_OWN) != 0)
761 			break;
762 
763 		if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
764 			break;
765 
766 		/* When writing back RX descriptor, GEM writes status
767 		 * then buffer address, possibly in separate transactions.
768 		 * If we don't wait for the chip to write both, we could
769 		 * post a new buffer to this descriptor then have GEM spam
770 		 * on the buffer address.  We sync on the RX completion
771 		 * register to prevent this from happening.
772 		 */
773 		if (entry == done) {
774 			done = readl(gp->regs + RXDMA_DONE);
775 			if (entry == done)
776 				break;
777 		}
778 
779 		/* We can now account for the work we're about to do */
780 		work_done++;
781 
782 		skb = gp->rx_skbs[entry];
783 
784 		len = (status & RXDCTRL_BUFSZ) >> 16;
785 		if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
786 			dev->stats.rx_errors++;
787 			if (len < ETH_ZLEN)
788 				dev->stats.rx_length_errors++;
789 			if (len & RXDCTRL_BAD)
790 				dev->stats.rx_crc_errors++;
791 
792 			/* We'll just return it to GEM. */
793 		drop_it:
794 			dev->stats.rx_dropped++;
795 			goto next;
796 		}
797 
798 		dma_addr = le64_to_cpu(rxd->buffer);
799 		if (len > RX_COPY_THRESHOLD) {
800 			struct sk_buff *new_skb;
801 
802 			new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
803 			if (new_skb == NULL) {
804 				drops++;
805 				goto drop_it;
806 			}
807 			pci_unmap_page(gp->pdev, dma_addr,
808 				       RX_BUF_ALLOC_SIZE(gp),
809 				       PCI_DMA_FROMDEVICE);
810 			gp->rx_skbs[entry] = new_skb;
811 			new_skb->dev = gp->dev;
812 			skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
813 			rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
814 							       virt_to_page(new_skb->data),
815 							       offset_in_page(new_skb->data),
816 							       RX_BUF_ALLOC_SIZE(gp),
817 							       PCI_DMA_FROMDEVICE));
818 			skb_reserve(new_skb, RX_OFFSET);
819 
820 			/* Trim the original skb for the netif. */
821 			skb_trim(skb, len);
822 		} else {
823 			struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
824 
825 			if (copy_skb == NULL) {
826 				drops++;
827 				goto drop_it;
828 			}
829 
830 			skb_reserve(copy_skb, 2);
831 			skb_put(copy_skb, len);
832 			pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
833 			skb_copy_from_linear_data(skb, copy_skb->data, len);
834 			pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
835 
836 			/* We'll reuse the original ring buffer. */
837 			skb = copy_skb;
838 		}
839 
840 		csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
841 		skb->csum = csum_unfold(csum);
842 		skb->ip_summed = CHECKSUM_COMPLETE;
843 		skb->protocol = eth_type_trans(skb, gp->dev);
844 
845 		netif_receive_skb(skb);
846 
847 		dev->stats.rx_packets++;
848 		dev->stats.rx_bytes += len;
849 
850 	next:
851 		entry = NEXT_RX(entry);
852 	}
853 
854 	gem_post_rxds(gp, entry);
855 
856 	gp->rx_new = entry;
857 
858 	if (drops)
859 		netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
860 
861 	return work_done;
862 }
863 
gem_poll(struct napi_struct * napi,int budget)864 static int gem_poll(struct napi_struct *napi, int budget)
865 {
866 	struct gem *gp = container_of(napi, struct gem, napi);
867 	struct net_device *dev = gp->dev;
868 	unsigned long flags;
869 	int work_done;
870 
871 	/*
872 	 * NAPI locking nightmare: See comment at head of driver
873 	 */
874 	spin_lock_irqsave(&gp->lock, flags);
875 
876 	work_done = 0;
877 	do {
878 		/* Handle anomalies */
879 		if (gp->status & GREG_STAT_ABNORMAL) {
880 			if (gem_abnormal_irq(dev, gp, gp->status))
881 				break;
882 		}
883 
884 		/* Run TX completion thread */
885 		spin_lock(&gp->tx_lock);
886 		gem_tx(dev, gp, gp->status);
887 		spin_unlock(&gp->tx_lock);
888 
889 		spin_unlock_irqrestore(&gp->lock, flags);
890 
891 		/* Run RX thread. We don't use any locking here,
892 		 * code willing to do bad things - like cleaning the
893 		 * rx ring - must call napi_disable(), which
894 		 * schedule_timeout()'s if polling is already disabled.
895 		 */
896 		work_done += gem_rx(gp, budget - work_done);
897 
898 		if (work_done >= budget)
899 			return work_done;
900 
901 		spin_lock_irqsave(&gp->lock, flags);
902 
903 		gp->status = readl(gp->regs + GREG_STAT);
904 	} while (gp->status & GREG_STAT_NAPI);
905 
906 	__napi_complete(napi);
907 	gem_enable_ints(gp);
908 
909 	spin_unlock_irqrestore(&gp->lock, flags);
910 
911 	return work_done;
912 }
913 
gem_interrupt(int irq,void * dev_id)914 static irqreturn_t gem_interrupt(int irq, void *dev_id)
915 {
916 	struct net_device *dev = dev_id;
917 	struct gem *gp = netdev_priv(dev);
918 	unsigned long flags;
919 
920 	/* Swallow interrupts when shutting the chip down, though
921 	 * that shouldn't happen, we should have done free_irq() at
922 	 * this point...
923 	 */
924 	if (!gp->running)
925 		return IRQ_HANDLED;
926 
927 	spin_lock_irqsave(&gp->lock, flags);
928 
929 	if (napi_schedule_prep(&gp->napi)) {
930 		u32 gem_status = readl(gp->regs + GREG_STAT);
931 
932 		if (gem_status == 0) {
933 			napi_enable(&gp->napi);
934 			spin_unlock_irqrestore(&gp->lock, flags);
935 			return IRQ_NONE;
936 		}
937 		gp->status = gem_status;
938 		gem_disable_ints(gp);
939 		__napi_schedule(&gp->napi);
940 	}
941 
942 	spin_unlock_irqrestore(&gp->lock, flags);
943 
944 	/* If polling was disabled at the time we received that
945 	 * interrupt, we may return IRQ_HANDLED here while we
946 	 * should return IRQ_NONE. No big deal...
947 	 */
948 	return IRQ_HANDLED;
949 }
950 
951 #ifdef CONFIG_NET_POLL_CONTROLLER
gem_poll_controller(struct net_device * dev)952 static void gem_poll_controller(struct net_device *dev)
953 {
954 	/* gem_interrupt is safe to reentrance so no need
955 	 * to disable_irq here.
956 	 */
957 	gem_interrupt(dev->irq, dev);
958 }
959 #endif
960 
gem_tx_timeout(struct net_device * dev)961 static void gem_tx_timeout(struct net_device *dev)
962 {
963 	struct gem *gp = netdev_priv(dev);
964 
965 	netdev_err(dev, "transmit timed out, resetting\n");
966 	if (!gp->running) {
967 		netdev_err(dev, "hrm.. hw not running !\n");
968 		return;
969 	}
970 	netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
971 		   readl(gp->regs + TXDMA_CFG),
972 		   readl(gp->regs + MAC_TXSTAT),
973 		   readl(gp->regs + MAC_TXCFG));
974 	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
975 		   readl(gp->regs + RXDMA_CFG),
976 		   readl(gp->regs + MAC_RXSTAT),
977 		   readl(gp->regs + MAC_RXCFG));
978 
979 	spin_lock_irq(&gp->lock);
980 	spin_lock(&gp->tx_lock);
981 
982 	gp->reset_task_pending = 1;
983 	schedule_work(&gp->reset_task);
984 
985 	spin_unlock(&gp->tx_lock);
986 	spin_unlock_irq(&gp->lock);
987 }
988 
gem_intme(int entry)989 static __inline__ int gem_intme(int entry)
990 {
991 	/* Algorithm: IRQ every 1/2 of descriptors. */
992 	if (!(entry & ((TX_RING_SIZE>>1)-1)))
993 		return 1;
994 
995 	return 0;
996 }
997 
gem_start_xmit(struct sk_buff * skb,struct net_device * dev)998 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
999 				  struct net_device *dev)
1000 {
1001 	struct gem *gp = netdev_priv(dev);
1002 	int entry;
1003 	u64 ctrl;
1004 	unsigned long flags;
1005 
1006 	ctrl = 0;
1007 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1008 		const u64 csum_start_off = skb_checksum_start_offset(skb);
1009 		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1010 
1011 		ctrl = (TXDCTRL_CENAB |
1012 			(csum_start_off << 15) |
1013 			(csum_stuff_off << 21));
1014 	}
1015 
1016 	if (!spin_trylock_irqsave(&gp->tx_lock, flags)) {
1017 		/* Tell upper layer to requeue */
1018 		return NETDEV_TX_LOCKED;
1019 	}
1020 	/* We raced with gem_do_stop() */
1021 	if (!gp->running) {
1022 		spin_unlock_irqrestore(&gp->tx_lock, flags);
1023 		return NETDEV_TX_BUSY;
1024 	}
1025 
1026 	/* This is a hard error, log it. */
1027 	if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1028 		netif_stop_queue(dev);
1029 		spin_unlock_irqrestore(&gp->tx_lock, flags);
1030 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1031 		return NETDEV_TX_BUSY;
1032 	}
1033 
1034 	entry = gp->tx_new;
1035 	gp->tx_skbs[entry] = skb;
1036 
1037 	if (skb_shinfo(skb)->nr_frags == 0) {
1038 		struct gem_txd *txd = &gp->init_block->txd[entry];
1039 		dma_addr_t mapping;
1040 		u32 len;
1041 
1042 		len = skb->len;
1043 		mapping = pci_map_page(gp->pdev,
1044 				       virt_to_page(skb->data),
1045 				       offset_in_page(skb->data),
1046 				       len, PCI_DMA_TODEVICE);
1047 		ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1048 		if (gem_intme(entry))
1049 			ctrl |= TXDCTRL_INTME;
1050 		txd->buffer = cpu_to_le64(mapping);
1051 		wmb();
1052 		txd->control_word = cpu_to_le64(ctrl);
1053 		entry = NEXT_TX(entry);
1054 	} else {
1055 		struct gem_txd *txd;
1056 		u32 first_len;
1057 		u64 intme;
1058 		dma_addr_t first_mapping;
1059 		int frag, first_entry = entry;
1060 
1061 		intme = 0;
1062 		if (gem_intme(entry))
1063 			intme |= TXDCTRL_INTME;
1064 
1065 		/* We must give this initial chunk to the device last.
1066 		 * Otherwise we could race with the device.
1067 		 */
1068 		first_len = skb_headlen(skb);
1069 		first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1070 					     offset_in_page(skb->data),
1071 					     first_len, PCI_DMA_TODEVICE);
1072 		entry = NEXT_TX(entry);
1073 
1074 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1075 			skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1076 			u32 len;
1077 			dma_addr_t mapping;
1078 			u64 this_ctrl;
1079 
1080 			len = this_frag->size;
1081 			mapping = pci_map_page(gp->pdev,
1082 					       this_frag->page,
1083 					       this_frag->page_offset,
1084 					       len, PCI_DMA_TODEVICE);
1085 			this_ctrl = ctrl;
1086 			if (frag == skb_shinfo(skb)->nr_frags - 1)
1087 				this_ctrl |= TXDCTRL_EOF;
1088 
1089 			txd = &gp->init_block->txd[entry];
1090 			txd->buffer = cpu_to_le64(mapping);
1091 			wmb();
1092 			txd->control_word = cpu_to_le64(this_ctrl | len);
1093 
1094 			if (gem_intme(entry))
1095 				intme |= TXDCTRL_INTME;
1096 
1097 			entry = NEXT_TX(entry);
1098 		}
1099 		txd = &gp->init_block->txd[first_entry];
1100 		txd->buffer = cpu_to_le64(first_mapping);
1101 		wmb();
1102 		txd->control_word =
1103 			cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1104 	}
1105 
1106 	gp->tx_new = entry;
1107 	if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1108 		netif_stop_queue(dev);
1109 
1110 	if (netif_msg_tx_queued(gp))
1111 		printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1112 		       dev->name, entry, skb->len);
1113 	mb();
1114 	writel(gp->tx_new, gp->regs + TXDMA_KICK);
1115 	spin_unlock_irqrestore(&gp->tx_lock, flags);
1116 
1117 	dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1118 
1119 	return NETDEV_TX_OK;
1120 }
1121 
gem_pcs_reset(struct gem * gp)1122 static void gem_pcs_reset(struct gem *gp)
1123 {
1124 	int limit;
1125 	u32 val;
1126 
1127 	/* Reset PCS unit. */
1128 	val = readl(gp->regs + PCS_MIICTRL);
1129 	val |= PCS_MIICTRL_RST;
1130 	writel(val, gp->regs + PCS_MIICTRL);
1131 
1132 	limit = 32;
1133 	while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1134 		udelay(100);
1135 		if (limit-- <= 0)
1136 			break;
1137 	}
1138 	if (limit < 0)
1139 		netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1140 }
1141 
gem_pcs_reinit_adv(struct gem * gp)1142 static void gem_pcs_reinit_adv(struct gem *gp)
1143 {
1144 	u32 val;
1145 
1146 	/* Make sure PCS is disabled while changing advertisement
1147 	 * configuration.
1148 	 */
1149 	val = readl(gp->regs + PCS_CFG);
1150 	val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1151 	writel(val, gp->regs + PCS_CFG);
1152 
1153 	/* Advertise all capabilities except asymmetric
1154 	 * pause.
1155 	 */
1156 	val = readl(gp->regs + PCS_MIIADV);
1157 	val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1158 		PCS_MIIADV_SP | PCS_MIIADV_AP);
1159 	writel(val, gp->regs + PCS_MIIADV);
1160 
1161 	/* Enable and restart auto-negotiation, disable wrapback/loopback,
1162 	 * and re-enable PCS.
1163 	 */
1164 	val = readl(gp->regs + PCS_MIICTRL);
1165 	val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1166 	val &= ~PCS_MIICTRL_WB;
1167 	writel(val, gp->regs + PCS_MIICTRL);
1168 
1169 	val = readl(gp->regs + PCS_CFG);
1170 	val |= PCS_CFG_ENABLE;
1171 	writel(val, gp->regs + PCS_CFG);
1172 
1173 	/* Make sure serialink loopback is off.  The meaning
1174 	 * of this bit is logically inverted based upon whether
1175 	 * you are in Serialink or SERDES mode.
1176 	 */
1177 	val = readl(gp->regs + PCS_SCTRL);
1178 	if (gp->phy_type == phy_serialink)
1179 		val &= ~PCS_SCTRL_LOOP;
1180 	else
1181 		val |= PCS_SCTRL_LOOP;
1182 	writel(val, gp->regs + PCS_SCTRL);
1183 }
1184 
1185 #define STOP_TRIES 32
1186 
1187 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_reset(struct gem * gp)1188 static void gem_reset(struct gem *gp)
1189 {
1190 	int limit;
1191 	u32 val;
1192 
1193 	/* Make sure we won't get any more interrupts */
1194 	writel(0xffffffff, gp->regs + GREG_IMASK);
1195 
1196 	/* Reset the chip */
1197 	writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1198 	       gp->regs + GREG_SWRST);
1199 
1200 	limit = STOP_TRIES;
1201 
1202 	do {
1203 		udelay(20);
1204 		val = readl(gp->regs + GREG_SWRST);
1205 		if (limit-- <= 0)
1206 			break;
1207 	} while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1208 
1209 	if (limit < 0)
1210 		netdev_err(gp->dev, "SW reset is ghetto\n");
1211 
1212 	if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1213 		gem_pcs_reinit_adv(gp);
1214 }
1215 
1216 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_start_dma(struct gem * gp)1217 static void gem_start_dma(struct gem *gp)
1218 {
1219 	u32 val;
1220 
1221 	/* We are ready to rock, turn everything on. */
1222 	val = readl(gp->regs + TXDMA_CFG);
1223 	writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1224 	val = readl(gp->regs + RXDMA_CFG);
1225 	writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1226 	val = readl(gp->regs + MAC_TXCFG);
1227 	writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1228 	val = readl(gp->regs + MAC_RXCFG);
1229 	writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1230 
1231 	(void) readl(gp->regs + MAC_RXCFG);
1232 	udelay(100);
1233 
1234 	gem_enable_ints(gp);
1235 
1236 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1237 }
1238 
1239 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1240  * actually stopped before about 4ms tho ...
1241  */
gem_stop_dma(struct gem * gp)1242 static void gem_stop_dma(struct gem *gp)
1243 {
1244 	u32 val;
1245 
1246 	/* We are done rocking, turn everything off. */
1247 	val = readl(gp->regs + TXDMA_CFG);
1248 	writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1249 	val = readl(gp->regs + RXDMA_CFG);
1250 	writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1251 	val = readl(gp->regs + MAC_TXCFG);
1252 	writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1253 	val = readl(gp->regs + MAC_RXCFG);
1254 	writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1255 
1256 	(void) readl(gp->regs + MAC_RXCFG);
1257 
1258 	/* Need to wait a bit ... done by the caller */
1259 }
1260 
1261 
1262 /* Must be invoked under gp->lock and gp->tx_lock. */
1263 // XXX dbl check what that function should do when called on PCS PHY
gem_begin_auto_negotiation(struct gem * gp,struct ethtool_cmd * ep)1264 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1265 {
1266 	u32 advertise, features;
1267 	int autoneg;
1268 	int speed;
1269 	int duplex;
1270 
1271 	if (gp->phy_type != phy_mii_mdio0 &&
1272      	    gp->phy_type != phy_mii_mdio1)
1273      	    	goto non_mii;
1274 
1275 	/* Setup advertise */
1276 	if (found_mii_phy(gp))
1277 		features = gp->phy_mii.def->features;
1278 	else
1279 		features = 0;
1280 
1281 	advertise = features & ADVERTISE_MASK;
1282 	if (gp->phy_mii.advertising != 0)
1283 		advertise &= gp->phy_mii.advertising;
1284 
1285 	autoneg = gp->want_autoneg;
1286 	speed = gp->phy_mii.speed;
1287 	duplex = gp->phy_mii.duplex;
1288 
1289 	/* Setup link parameters */
1290 	if (!ep)
1291 		goto start_aneg;
1292 	if (ep->autoneg == AUTONEG_ENABLE) {
1293 		advertise = ep->advertising;
1294 		autoneg = 1;
1295 	} else {
1296 		autoneg = 0;
1297 		speed = ep->speed;
1298 		duplex = ep->duplex;
1299 	}
1300 
1301 start_aneg:
1302 	/* Sanitize settings based on PHY capabilities */
1303 	if ((features & SUPPORTED_Autoneg) == 0)
1304 		autoneg = 0;
1305 	if (speed == SPEED_1000 &&
1306 	    !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1307 		speed = SPEED_100;
1308 	if (speed == SPEED_100 &&
1309 	    !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1310 		speed = SPEED_10;
1311 	if (duplex == DUPLEX_FULL &&
1312 	    !(features & (SUPPORTED_1000baseT_Full |
1313 	    		  SUPPORTED_100baseT_Full |
1314 	    		  SUPPORTED_10baseT_Full)))
1315 	    	duplex = DUPLEX_HALF;
1316 	if (speed == 0)
1317 		speed = SPEED_10;
1318 
1319 	/* If we are asleep, we don't try to actually setup the PHY, we
1320 	 * just store the settings
1321 	 */
1322 	if (gp->asleep) {
1323 		gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1324 		gp->phy_mii.speed = speed;
1325 		gp->phy_mii.duplex = duplex;
1326 		return;
1327 	}
1328 
1329 	/* Configure PHY & start aneg */
1330 	gp->want_autoneg = autoneg;
1331 	if (autoneg) {
1332 		if (found_mii_phy(gp))
1333 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1334 		gp->lstate = link_aneg;
1335 	} else {
1336 		if (found_mii_phy(gp))
1337 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1338 		gp->lstate = link_force_ok;
1339 	}
1340 
1341 non_mii:
1342 	gp->timer_ticks = 0;
1343 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1344 }
1345 
1346 /* A link-up condition has occurred, initialize and enable the
1347  * rest of the chip.
1348  *
1349  * Must be invoked under gp->lock and gp->tx_lock.
1350  */
gem_set_link_modes(struct gem * gp)1351 static int gem_set_link_modes(struct gem *gp)
1352 {
1353 	u32 val;
1354 	int full_duplex, speed, pause;
1355 
1356 	full_duplex = 0;
1357 	speed = SPEED_10;
1358 	pause = 0;
1359 
1360 	if (found_mii_phy(gp)) {
1361 	    	if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1362 	    		return 1;
1363 		full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1364 		speed = gp->phy_mii.speed;
1365 		pause = gp->phy_mii.pause;
1366 	} else if (gp->phy_type == phy_serialink ||
1367 	    	   gp->phy_type == phy_serdes) {
1368 		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1369 
1370 		if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1371 			full_duplex = 1;
1372 		speed = SPEED_1000;
1373 	}
1374 
1375 	netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1376 		   speed, (full_duplex ? "full" : "half"));
1377 
1378 	if (!gp->running)
1379 		return 0;
1380 
1381 	val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1382 	if (full_duplex) {
1383 		val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1384 	} else {
1385 		/* MAC_TXCFG_NBO must be zero. */
1386 	}
1387 	writel(val, gp->regs + MAC_TXCFG);
1388 
1389 	val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1390 	if (!full_duplex &&
1391 	    (gp->phy_type == phy_mii_mdio0 ||
1392 	     gp->phy_type == phy_mii_mdio1)) {
1393 		val |= MAC_XIFCFG_DISE;
1394 	} else if (full_duplex) {
1395 		val |= MAC_XIFCFG_FLED;
1396 	}
1397 
1398 	if (speed == SPEED_1000)
1399 		val |= (MAC_XIFCFG_GMII);
1400 
1401 	writel(val, gp->regs + MAC_XIFCFG);
1402 
1403 	/* If gigabit and half-duplex, enable carrier extension
1404 	 * mode.  Else, disable it.
1405 	 */
1406 	if (speed == SPEED_1000 && !full_duplex) {
1407 		val = readl(gp->regs + MAC_TXCFG);
1408 		writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1409 
1410 		val = readl(gp->regs + MAC_RXCFG);
1411 		writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1412 	} else {
1413 		val = readl(gp->regs + MAC_TXCFG);
1414 		writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1415 
1416 		val = readl(gp->regs + MAC_RXCFG);
1417 		writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1418 	}
1419 
1420 	if (gp->phy_type == phy_serialink ||
1421 	    gp->phy_type == phy_serdes) {
1422  		u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1423 
1424 		if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1425 			pause = 1;
1426 	}
1427 
1428 	if (netif_msg_link(gp)) {
1429 		if (pause) {
1430 			netdev_info(gp->dev,
1431 				    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1432 				    gp->rx_fifo_sz,
1433 				    gp->rx_pause_off,
1434 				    gp->rx_pause_on);
1435 		} else {
1436 			netdev_info(gp->dev, "Pause is disabled\n");
1437 		}
1438 	}
1439 
1440 	if (!full_duplex)
1441 		writel(512, gp->regs + MAC_STIME);
1442 	else
1443 		writel(64, gp->regs + MAC_STIME);
1444 	val = readl(gp->regs + MAC_MCCFG);
1445 	if (pause)
1446 		val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1447 	else
1448 		val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1449 	writel(val, gp->regs + MAC_MCCFG);
1450 
1451 	gem_start_dma(gp);
1452 
1453 	return 0;
1454 }
1455 
1456 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_mdio_link_not_up(struct gem * gp)1457 static int gem_mdio_link_not_up(struct gem *gp)
1458 {
1459 	switch (gp->lstate) {
1460 	case link_force_ret:
1461 		netif_info(gp, link, gp->dev,
1462 			   "Autoneg failed again, keeping forced mode\n");
1463 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1464 			gp->last_forced_speed, DUPLEX_HALF);
1465 		gp->timer_ticks = 5;
1466 		gp->lstate = link_force_ok;
1467 		return 0;
1468 	case link_aneg:
1469 		/* We try forced modes after a failed aneg only on PHYs that don't
1470 		 * have "magic_aneg" bit set, which means they internally do the
1471 		 * while forced-mode thingy. On these, we just restart aneg
1472 		 */
1473 		if (gp->phy_mii.def->magic_aneg)
1474 			return 1;
1475 		netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1476 		/* Try forced modes. */
1477 		gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1478 			DUPLEX_HALF);
1479 		gp->timer_ticks = 5;
1480 		gp->lstate = link_force_try;
1481 		return 0;
1482 	case link_force_try:
1483 		/* Downgrade from 100 to 10 Mbps if necessary.
1484 		 * If already at 10Mbps, warn user about the
1485 		 * situation every 10 ticks.
1486 		 */
1487 		if (gp->phy_mii.speed == SPEED_100) {
1488 			gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1489 				DUPLEX_HALF);
1490 			gp->timer_ticks = 5;
1491 			netif_info(gp, link, gp->dev,
1492 				   "switching to forced 10bt\n");
1493 			return 0;
1494 		} else
1495 			return 1;
1496 	default:
1497 		return 0;
1498 	}
1499 }
1500 
gem_link_timer(unsigned long data)1501 static void gem_link_timer(unsigned long data)
1502 {
1503 	struct gem *gp = (struct gem *) data;
1504 	int restart_aneg = 0;
1505 
1506 	if (gp->asleep)
1507 		return;
1508 
1509 	spin_lock_irq(&gp->lock);
1510 	spin_lock(&gp->tx_lock);
1511 	gem_get_cell(gp);
1512 
1513 	/* If the reset task is still pending, we just
1514 	 * reschedule the link timer
1515 	 */
1516 	if (gp->reset_task_pending)
1517 		goto restart;
1518 
1519 	if (gp->phy_type == phy_serialink ||
1520 	    gp->phy_type == phy_serdes) {
1521 		u32 val = readl(gp->regs + PCS_MIISTAT);
1522 
1523 		if (!(val & PCS_MIISTAT_LS))
1524 			val = readl(gp->regs + PCS_MIISTAT);
1525 
1526 		if ((val & PCS_MIISTAT_LS) != 0) {
1527 			if (gp->lstate == link_up)
1528 				goto restart;
1529 
1530 			gp->lstate = link_up;
1531 			netif_carrier_on(gp->dev);
1532 			(void)gem_set_link_modes(gp);
1533 		}
1534 		goto restart;
1535 	}
1536 	if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1537 		/* Ok, here we got a link. If we had it due to a forced
1538 		 * fallback, and we were configured for autoneg, we do
1539 		 * retry a short autoneg pass. If you know your hub is
1540 		 * broken, use ethtool ;)
1541 		 */
1542 		if (gp->lstate == link_force_try && gp->want_autoneg) {
1543 			gp->lstate = link_force_ret;
1544 			gp->last_forced_speed = gp->phy_mii.speed;
1545 			gp->timer_ticks = 5;
1546 			if (netif_msg_link(gp))
1547 				netdev_info(gp->dev,
1548 					    "Got link after fallback, retrying autoneg once...\n");
1549 			gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1550 		} else if (gp->lstate != link_up) {
1551 			gp->lstate = link_up;
1552 			netif_carrier_on(gp->dev);
1553 			if (gem_set_link_modes(gp))
1554 				restart_aneg = 1;
1555 		}
1556 	} else {
1557 		/* If the link was previously up, we restart the
1558 		 * whole process
1559 		 */
1560 		if (gp->lstate == link_up) {
1561 			gp->lstate = link_down;
1562 			netif_info(gp, link, gp->dev, "Link down\n");
1563 			netif_carrier_off(gp->dev);
1564 			gp->reset_task_pending = 1;
1565 			schedule_work(&gp->reset_task);
1566 			restart_aneg = 1;
1567 		} else if (++gp->timer_ticks > 10) {
1568 			if (found_mii_phy(gp))
1569 				restart_aneg = gem_mdio_link_not_up(gp);
1570 			else
1571 				restart_aneg = 1;
1572 		}
1573 	}
1574 	if (restart_aneg) {
1575 		gem_begin_auto_negotiation(gp, NULL);
1576 		goto out_unlock;
1577 	}
1578 restart:
1579 	mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1580 out_unlock:
1581 	gem_put_cell(gp);
1582 	spin_unlock(&gp->tx_lock);
1583 	spin_unlock_irq(&gp->lock);
1584 }
1585 
1586 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_clean_rings(struct gem * gp)1587 static void gem_clean_rings(struct gem *gp)
1588 {
1589 	struct gem_init_block *gb = gp->init_block;
1590 	struct sk_buff *skb;
1591 	int i;
1592 	dma_addr_t dma_addr;
1593 
1594 	for (i = 0; i < RX_RING_SIZE; i++) {
1595 		struct gem_rxd *rxd;
1596 
1597 		rxd = &gb->rxd[i];
1598 		if (gp->rx_skbs[i] != NULL) {
1599 			skb = gp->rx_skbs[i];
1600 			dma_addr = le64_to_cpu(rxd->buffer);
1601 			pci_unmap_page(gp->pdev, dma_addr,
1602 				       RX_BUF_ALLOC_SIZE(gp),
1603 				       PCI_DMA_FROMDEVICE);
1604 			dev_kfree_skb_any(skb);
1605 			gp->rx_skbs[i] = NULL;
1606 		}
1607 		rxd->status_word = 0;
1608 		wmb();
1609 		rxd->buffer = 0;
1610 	}
1611 
1612 	for (i = 0; i < TX_RING_SIZE; i++) {
1613 		if (gp->tx_skbs[i] != NULL) {
1614 			struct gem_txd *txd;
1615 			int frag;
1616 
1617 			skb = gp->tx_skbs[i];
1618 			gp->tx_skbs[i] = NULL;
1619 
1620 			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1621 				int ent = i & (TX_RING_SIZE - 1);
1622 
1623 				txd = &gb->txd[ent];
1624 				dma_addr = le64_to_cpu(txd->buffer);
1625 				pci_unmap_page(gp->pdev, dma_addr,
1626 					       le64_to_cpu(txd->control_word) &
1627 					       TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1628 
1629 				if (frag != skb_shinfo(skb)->nr_frags)
1630 					i++;
1631 			}
1632 			dev_kfree_skb_any(skb);
1633 		}
1634 	}
1635 }
1636 
1637 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_init_rings(struct gem * gp)1638 static void gem_init_rings(struct gem *gp)
1639 {
1640 	struct gem_init_block *gb = gp->init_block;
1641 	struct net_device *dev = gp->dev;
1642 	int i;
1643 	dma_addr_t dma_addr;
1644 
1645 	gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1646 
1647 	gem_clean_rings(gp);
1648 
1649 	gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1650 			    (unsigned)VLAN_ETH_FRAME_LEN);
1651 
1652 	for (i = 0; i < RX_RING_SIZE; i++) {
1653 		struct sk_buff *skb;
1654 		struct gem_rxd *rxd = &gb->rxd[i];
1655 
1656 		skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1657 		if (!skb) {
1658 			rxd->buffer = 0;
1659 			rxd->status_word = 0;
1660 			continue;
1661 		}
1662 
1663 		gp->rx_skbs[i] = skb;
1664 		skb->dev = dev;
1665 		skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1666 		dma_addr = pci_map_page(gp->pdev,
1667 					virt_to_page(skb->data),
1668 					offset_in_page(skb->data),
1669 					RX_BUF_ALLOC_SIZE(gp),
1670 					PCI_DMA_FROMDEVICE);
1671 		rxd->buffer = cpu_to_le64(dma_addr);
1672 		wmb();
1673 		rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1674 		skb_reserve(skb, RX_OFFSET);
1675 	}
1676 
1677 	for (i = 0; i < TX_RING_SIZE; i++) {
1678 		struct gem_txd *txd = &gb->txd[i];
1679 
1680 		txd->control_word = 0;
1681 		wmb();
1682 		txd->buffer = 0;
1683 	}
1684 	wmb();
1685 }
1686 
1687 /* Init PHY interface and start link poll state machine */
gem_init_phy(struct gem * gp)1688 static void gem_init_phy(struct gem *gp)
1689 {
1690 	u32 mifcfg;
1691 
1692 	/* Revert MIF CFG setting done on stop_phy */
1693 	mifcfg = readl(gp->regs + MIF_CFG);
1694 	mifcfg &= ~MIF_CFG_BBMODE;
1695 	writel(mifcfg, gp->regs + MIF_CFG);
1696 
1697 	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1698 		int i;
1699 
1700 		/* Those delay sucks, the HW seem to love them though, I'll
1701 		 * serisouly consider breaking some locks here to be able
1702 		 * to schedule instead
1703 		 */
1704 		for (i = 0; i < 3; i++) {
1705 #ifdef CONFIG_PPC_PMAC
1706 			pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1707 			msleep(20);
1708 #endif
1709 			/* Some PHYs used by apple have problem getting back to us,
1710 			 * we do an additional reset here
1711 			 */
1712 			phy_write(gp, MII_BMCR, BMCR_RESET);
1713 			msleep(20);
1714 			if (phy_read(gp, MII_BMCR) != 0xffff)
1715 				break;
1716 			if (i == 2)
1717 				netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1718 		}
1719 	}
1720 
1721 	if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1722 	    gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1723 		u32 val;
1724 
1725 		/* Init datapath mode register. */
1726 		if (gp->phy_type == phy_mii_mdio0 ||
1727 		    gp->phy_type == phy_mii_mdio1) {
1728 			val = PCS_DMODE_MGM;
1729 		} else if (gp->phy_type == phy_serialink) {
1730 			val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1731 		} else {
1732 			val = PCS_DMODE_ESM;
1733 		}
1734 
1735 		writel(val, gp->regs + PCS_DMODE);
1736 	}
1737 
1738 	if (gp->phy_type == phy_mii_mdio0 ||
1739 	    gp->phy_type == phy_mii_mdio1) {
1740 	    	// XXX check for errors
1741 		mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1742 
1743 		/* Init PHY */
1744 		if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1745 			gp->phy_mii.def->ops->init(&gp->phy_mii);
1746 	} else {
1747 		gem_pcs_reset(gp);
1748 		gem_pcs_reinit_adv(gp);
1749 	}
1750 
1751 	/* Default aneg parameters */
1752 	gp->timer_ticks = 0;
1753 	gp->lstate = link_down;
1754 	netif_carrier_off(gp->dev);
1755 
1756 	/* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1757 	spin_lock_irq(&gp->lock);
1758 	gem_begin_auto_negotiation(gp, NULL);
1759 	spin_unlock_irq(&gp->lock);
1760 }
1761 
1762 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_init_dma(struct gem * gp)1763 static void gem_init_dma(struct gem *gp)
1764 {
1765 	u64 desc_dma = (u64) gp->gblock_dvma;
1766 	u32 val;
1767 
1768 	val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1769 	writel(val, gp->regs + TXDMA_CFG);
1770 
1771 	writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1772 	writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1773 	desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1774 
1775 	writel(0, gp->regs + TXDMA_KICK);
1776 
1777 	val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1778 	       ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1779 	writel(val, gp->regs + RXDMA_CFG);
1780 
1781 	writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1782 	writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1783 
1784 	writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1785 
1786 	val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1787 	val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1788 	writel(val, gp->regs + RXDMA_PTHRESH);
1789 
1790 	if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1791 		writel(((5 & RXDMA_BLANK_IPKTS) |
1792 			((8 << 12) & RXDMA_BLANK_ITIME)),
1793 		       gp->regs + RXDMA_BLANK);
1794 	else
1795 		writel(((5 & RXDMA_BLANK_IPKTS) |
1796 			((4 << 12) & RXDMA_BLANK_ITIME)),
1797 		       gp->regs + RXDMA_BLANK);
1798 }
1799 
1800 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_setup_multicast(struct gem * gp)1801 static u32 gem_setup_multicast(struct gem *gp)
1802 {
1803 	u32 rxcfg = 0;
1804 	int i;
1805 
1806 	if ((gp->dev->flags & IFF_ALLMULTI) ||
1807 	    (netdev_mc_count(gp->dev) > 256)) {
1808 	    	for (i=0; i<16; i++)
1809 			writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1810 		rxcfg |= MAC_RXCFG_HFE;
1811 	} else if (gp->dev->flags & IFF_PROMISC) {
1812 		rxcfg |= MAC_RXCFG_PROM;
1813 	} else {
1814 		u16 hash_table[16];
1815 		u32 crc;
1816 		struct netdev_hw_addr *ha;
1817 		int i;
1818 
1819 		memset(hash_table, 0, sizeof(hash_table));
1820 		netdev_for_each_mc_addr(ha, gp->dev) {
1821 			char *addrs = ha->addr;
1822 
1823 			if (!(*addrs & 1))
1824 				continue;
1825 
1826  			crc = ether_crc_le(6, addrs);
1827 			crc >>= 24;
1828 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1829 		}
1830 	    	for (i=0; i<16; i++)
1831 			writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1832 		rxcfg |= MAC_RXCFG_HFE;
1833 	}
1834 
1835 	return rxcfg;
1836 }
1837 
1838 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_init_mac(struct gem * gp)1839 static void gem_init_mac(struct gem *gp)
1840 {
1841 	unsigned char *e = &gp->dev->dev_addr[0];
1842 
1843 	writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1844 
1845 	writel(0x00, gp->regs + MAC_IPG0);
1846 	writel(0x08, gp->regs + MAC_IPG1);
1847 	writel(0x04, gp->regs + MAC_IPG2);
1848 	writel(0x40, gp->regs + MAC_STIME);
1849 	writel(0x40, gp->regs + MAC_MINFSZ);
1850 
1851 	/* Ethernet payload + header + FCS + optional VLAN tag. */
1852 	writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1853 
1854 	writel(0x07, gp->regs + MAC_PASIZE);
1855 	writel(0x04, gp->regs + MAC_JAMSIZE);
1856 	writel(0x10, gp->regs + MAC_ATTLIM);
1857 	writel(0x8808, gp->regs + MAC_MCTYPE);
1858 
1859 	writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1860 
1861 	writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1862 	writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1863 	writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1864 
1865 	writel(0, gp->regs + MAC_ADDR3);
1866 	writel(0, gp->regs + MAC_ADDR4);
1867 	writel(0, gp->regs + MAC_ADDR5);
1868 
1869 	writel(0x0001, gp->regs + MAC_ADDR6);
1870 	writel(0xc200, gp->regs + MAC_ADDR7);
1871 	writel(0x0180, gp->regs + MAC_ADDR8);
1872 
1873 	writel(0, gp->regs + MAC_AFILT0);
1874 	writel(0, gp->regs + MAC_AFILT1);
1875 	writel(0, gp->regs + MAC_AFILT2);
1876 	writel(0, gp->regs + MAC_AF21MSK);
1877 	writel(0, gp->regs + MAC_AF0MSK);
1878 
1879 	gp->mac_rx_cfg = gem_setup_multicast(gp);
1880 #ifdef STRIP_FCS
1881 	gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1882 #endif
1883 	writel(0, gp->regs + MAC_NCOLL);
1884 	writel(0, gp->regs + MAC_FASUCC);
1885 	writel(0, gp->regs + MAC_ECOLL);
1886 	writel(0, gp->regs + MAC_LCOLL);
1887 	writel(0, gp->regs + MAC_DTIMER);
1888 	writel(0, gp->regs + MAC_PATMPS);
1889 	writel(0, gp->regs + MAC_RFCTR);
1890 	writel(0, gp->regs + MAC_LERR);
1891 	writel(0, gp->regs + MAC_AERR);
1892 	writel(0, gp->regs + MAC_FCSERR);
1893 	writel(0, gp->regs + MAC_RXCVERR);
1894 
1895 	/* Clear RX/TX/MAC/XIF config, we will set these up and enable
1896 	 * them once a link is established.
1897 	 */
1898 	writel(0, gp->regs + MAC_TXCFG);
1899 	writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1900 	writel(0, gp->regs + MAC_MCCFG);
1901 	writel(0, gp->regs + MAC_XIFCFG);
1902 
1903 	/* Setup MAC interrupts.  We want to get all of the interesting
1904 	 * counter expiration events, but we do not want to hear about
1905 	 * normal rx/tx as the DMA engine tells us that.
1906 	 */
1907 	writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1908 	writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1909 
1910 	/* Don't enable even the PAUSE interrupts for now, we
1911 	 * make no use of those events other than to record them.
1912 	 */
1913 	writel(0xffffffff, gp->regs + MAC_MCMASK);
1914 
1915 	/* Don't enable GEM's WOL in normal operations
1916 	 */
1917 	if (gp->has_wol)
1918 		writel(0, gp->regs + WOL_WAKECSR);
1919 }
1920 
1921 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_init_pause_thresholds(struct gem * gp)1922 static void gem_init_pause_thresholds(struct gem *gp)
1923 {
1924        	u32 cfg;
1925 
1926 	/* Calculate pause thresholds.  Setting the OFF threshold to the
1927 	 * full RX fifo size effectively disables PAUSE generation which
1928 	 * is what we do for 10/100 only GEMs which have FIFOs too small
1929 	 * to make real gains from PAUSE.
1930 	 */
1931 	if (gp->rx_fifo_sz <= (2 * 1024)) {
1932 		gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1933 	} else {
1934 		int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1935 		int off = (gp->rx_fifo_sz - (max_frame * 2));
1936 		int on = off - max_frame;
1937 
1938 		gp->rx_pause_off = off;
1939 		gp->rx_pause_on = on;
1940 	}
1941 
1942 
1943 	/* Configure the chip "burst" DMA mode & enable some
1944 	 * HW bug fixes on Apple version
1945 	 */
1946        	cfg  = 0;
1947        	if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1948 		cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1949 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1950        	cfg |= GREG_CFG_IBURST;
1951 #endif
1952        	cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1953        	cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1954        	writel(cfg, gp->regs + GREG_CFG);
1955 
1956 	/* If Infinite Burst didn't stick, then use different
1957 	 * thresholds (and Apple bug fixes don't exist)
1958 	 */
1959 	if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1960 		cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1961 		cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1962 		writel(cfg, gp->regs + GREG_CFG);
1963 	}
1964 }
1965 
gem_check_invariants(struct gem * gp)1966 static int gem_check_invariants(struct gem *gp)
1967 {
1968 	struct pci_dev *pdev = gp->pdev;
1969 	u32 mif_cfg;
1970 
1971 	/* On Apple's sungem, we can't rely on registers as the chip
1972 	 * was been powered down by the firmware. The PHY is looked
1973 	 * up later on.
1974 	 */
1975 	if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1976 		gp->phy_type = phy_mii_mdio0;
1977 		gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1978 		gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1979 		gp->swrst_base = 0;
1980 
1981 		mif_cfg = readl(gp->regs + MIF_CFG);
1982 		mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1983 		mif_cfg |= MIF_CFG_MDI0;
1984 		writel(mif_cfg, gp->regs + MIF_CFG);
1985 		writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1986 		writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1987 
1988 		/* We hard-code the PHY address so we can properly bring it out of
1989 		 * reset later on, we can't really probe it at this point, though
1990 		 * that isn't an issue.
1991 		 */
1992 		if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1993 			gp->mii_phy_addr = 1;
1994 		else
1995 			gp->mii_phy_addr = 0;
1996 
1997 		return 0;
1998 	}
1999 
2000 	mif_cfg = readl(gp->regs + MIF_CFG);
2001 
2002 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2003 	    pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2004 		/* One of the MII PHYs _must_ be present
2005 		 * as this chip has no gigabit PHY.
2006 		 */
2007 		if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2008 			pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2009 			       mif_cfg);
2010 			return -1;
2011 		}
2012 	}
2013 
2014 	/* Determine initial PHY interface type guess.  MDIO1 is the
2015 	 * external PHY and thus takes precedence over MDIO0.
2016 	 */
2017 
2018 	if (mif_cfg & MIF_CFG_MDI1) {
2019 		gp->phy_type = phy_mii_mdio1;
2020 		mif_cfg |= MIF_CFG_PSELECT;
2021 		writel(mif_cfg, gp->regs + MIF_CFG);
2022 	} else if (mif_cfg & MIF_CFG_MDI0) {
2023 		gp->phy_type = phy_mii_mdio0;
2024 		mif_cfg &= ~MIF_CFG_PSELECT;
2025 		writel(mif_cfg, gp->regs + MIF_CFG);
2026 	} else {
2027 #ifdef CONFIG_SPARC
2028 		const char *p;
2029 
2030 		p = of_get_property(gp->of_node, "shared-pins", NULL);
2031 		if (p && !strcmp(p, "serdes"))
2032 			gp->phy_type = phy_serdes;
2033 		else
2034 #endif
2035 			gp->phy_type = phy_serialink;
2036 	}
2037 	if (gp->phy_type == phy_mii_mdio1 ||
2038 	    gp->phy_type == phy_mii_mdio0) {
2039 		int i;
2040 
2041 		for (i = 0; i < 32; i++) {
2042 			gp->mii_phy_addr = i;
2043 			if (phy_read(gp, MII_BMCR) != 0xffff)
2044 				break;
2045 		}
2046 		if (i == 32) {
2047 			if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2048 				pr_err("RIO MII phy will not respond\n");
2049 				return -1;
2050 			}
2051 			gp->phy_type = phy_serdes;
2052 		}
2053 	}
2054 
2055 	/* Fetch the FIFO configurations now too. */
2056 	gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2057 	gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2058 
2059 	if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2060 		if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2061 			if (gp->tx_fifo_sz != (9 * 1024) ||
2062 			    gp->rx_fifo_sz != (20 * 1024)) {
2063 				pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2064 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2065 				return -1;
2066 			}
2067 			gp->swrst_base = 0;
2068 		} else {
2069 			if (gp->tx_fifo_sz != (2 * 1024) ||
2070 			    gp->rx_fifo_sz != (2 * 1024)) {
2071 				pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2072 				       gp->tx_fifo_sz, gp->rx_fifo_sz);
2073 				return -1;
2074 			}
2075 			gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2076 		}
2077 	}
2078 
2079 	return 0;
2080 }
2081 
2082 /* Must be invoked under gp->lock and gp->tx_lock. */
gem_reinit_chip(struct gem * gp)2083 static void gem_reinit_chip(struct gem *gp)
2084 {
2085 	/* Reset the chip */
2086 	gem_reset(gp);
2087 
2088 	/* Make sure ints are disabled */
2089 	gem_disable_ints(gp);
2090 
2091 	/* Allocate & setup ring buffers */
2092 	gem_init_rings(gp);
2093 
2094 	/* Configure pause thresholds */
2095 	gem_init_pause_thresholds(gp);
2096 
2097 	/* Init DMA & MAC engines */
2098 	gem_init_dma(gp);
2099 	gem_init_mac(gp);
2100 }
2101 
2102 
2103 /* Must be invoked with no lock held. */
gem_stop_phy(struct gem * gp,int wol)2104 static void gem_stop_phy(struct gem *gp, int wol)
2105 {
2106 	u32 mifcfg;
2107 	unsigned long flags;
2108 
2109 	/* Let the chip settle down a bit, it seems that helps
2110 	 * for sleep mode on some models
2111 	 */
2112 	msleep(10);
2113 
2114 	/* Make sure we aren't polling PHY status change. We
2115 	 * don't currently use that feature though
2116 	 */
2117 	mifcfg = readl(gp->regs + MIF_CFG);
2118 	mifcfg &= ~MIF_CFG_POLL;
2119 	writel(mifcfg, gp->regs + MIF_CFG);
2120 
2121 	if (wol && gp->has_wol) {
2122 		unsigned char *e = &gp->dev->dev_addr[0];
2123 		u32 csr;
2124 
2125 		/* Setup wake-on-lan for MAGIC packet */
2126 		writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2127 		       gp->regs + MAC_RXCFG);
2128 		writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2129 		writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2130 		writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2131 
2132 		writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2133 		csr = WOL_WAKECSR_ENABLE;
2134 		if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2135 			csr |= WOL_WAKECSR_MII;
2136 		writel(csr, gp->regs + WOL_WAKECSR);
2137 	} else {
2138 		writel(0, gp->regs + MAC_RXCFG);
2139 		(void)readl(gp->regs + MAC_RXCFG);
2140 		/* Machine sleep will die in strange ways if we
2141 		 * dont wait a bit here, looks like the chip takes
2142 		 * some time to really shut down
2143 		 */
2144 		msleep(10);
2145 	}
2146 
2147 	writel(0, gp->regs + MAC_TXCFG);
2148 	writel(0, gp->regs + MAC_XIFCFG);
2149 	writel(0, gp->regs + TXDMA_CFG);
2150 	writel(0, gp->regs + RXDMA_CFG);
2151 
2152 	if (!wol) {
2153 		spin_lock_irqsave(&gp->lock, flags);
2154 		spin_lock(&gp->tx_lock);
2155 		gem_reset(gp);
2156 		writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2157 		writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2158 		spin_unlock(&gp->tx_lock);
2159 		spin_unlock_irqrestore(&gp->lock, flags);
2160 
2161 		/* No need to take the lock here */
2162 
2163 		if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2164 			gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2165 
2166 		/* According to Apple, we must set the MDIO pins to this begnign
2167 		 * state or we may 1) eat more current, 2) damage some PHYs
2168 		 */
2169 		writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2170 		writel(0, gp->regs + MIF_BBCLK);
2171 		writel(0, gp->regs + MIF_BBDATA);
2172 		writel(0, gp->regs + MIF_BBOENAB);
2173 		writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2174 		(void) readl(gp->regs + MAC_XIFCFG);
2175 	}
2176 }
2177 
2178 
gem_do_start(struct net_device * dev)2179 static int gem_do_start(struct net_device *dev)
2180 {
2181 	struct gem *gp = netdev_priv(dev);
2182 	unsigned long flags;
2183 
2184 	spin_lock_irqsave(&gp->lock, flags);
2185 	spin_lock(&gp->tx_lock);
2186 
2187 	/* Enable the cell */
2188 	gem_get_cell(gp);
2189 
2190 	/* Init & setup chip hardware */
2191 	gem_reinit_chip(gp);
2192 
2193 	gp->running = 1;
2194 
2195 	napi_enable(&gp->napi);
2196 
2197 	if (gp->lstate == link_up) {
2198 		netif_carrier_on(gp->dev);
2199 		gem_set_link_modes(gp);
2200 	}
2201 
2202 	netif_wake_queue(gp->dev);
2203 
2204 	spin_unlock(&gp->tx_lock);
2205 	spin_unlock_irqrestore(&gp->lock, flags);
2206 
2207 	if (request_irq(gp->pdev->irq, gem_interrupt,
2208 				   IRQF_SHARED, dev->name, (void *)dev)) {
2209 		netdev_err(dev, "failed to request irq !\n");
2210 
2211 		spin_lock_irqsave(&gp->lock, flags);
2212 		spin_lock(&gp->tx_lock);
2213 
2214 		napi_disable(&gp->napi);
2215 
2216 		gp->running =  0;
2217 		gem_reset(gp);
2218 		gem_clean_rings(gp);
2219 		gem_put_cell(gp);
2220 
2221 		spin_unlock(&gp->tx_lock);
2222 		spin_unlock_irqrestore(&gp->lock, flags);
2223 
2224 		return -EAGAIN;
2225 	}
2226 
2227 	return 0;
2228 }
2229 
gem_do_stop(struct net_device * dev,int wol)2230 static void gem_do_stop(struct net_device *dev, int wol)
2231 {
2232 	struct gem *gp = netdev_priv(dev);
2233 	unsigned long flags;
2234 
2235 	spin_lock_irqsave(&gp->lock, flags);
2236 	spin_lock(&gp->tx_lock);
2237 
2238 	gp->running = 0;
2239 
2240 	/* Stop netif queue */
2241 	netif_stop_queue(dev);
2242 
2243 	/* Make sure ints are disabled */
2244 	gem_disable_ints(gp);
2245 
2246 	/* We can drop the lock now */
2247 	spin_unlock(&gp->tx_lock);
2248 	spin_unlock_irqrestore(&gp->lock, flags);
2249 
2250 	/* If we are going to sleep with WOL */
2251 	gem_stop_dma(gp);
2252 	msleep(10);
2253 	if (!wol)
2254 		gem_reset(gp);
2255 	msleep(10);
2256 
2257 	/* Get rid of rings */
2258 	gem_clean_rings(gp);
2259 
2260 	/* No irq needed anymore */
2261 	free_irq(gp->pdev->irq, (void *) dev);
2262 
2263 	/* Cell not needed neither if no WOL */
2264 	if (!wol) {
2265 		spin_lock_irqsave(&gp->lock, flags);
2266 		gem_put_cell(gp);
2267 		spin_unlock_irqrestore(&gp->lock, flags);
2268 	}
2269 }
2270 
gem_reset_task(struct work_struct * work)2271 static void gem_reset_task(struct work_struct *work)
2272 {
2273 	struct gem *gp = container_of(work, struct gem, reset_task);
2274 
2275 	mutex_lock(&gp->pm_mutex);
2276 
2277 	if (gp->opened)
2278 		napi_disable(&gp->napi);
2279 
2280 	spin_lock_irq(&gp->lock);
2281 	spin_lock(&gp->tx_lock);
2282 
2283 	if (gp->running) {
2284 		netif_stop_queue(gp->dev);
2285 
2286 		/* Reset the chip & rings */
2287 		gem_reinit_chip(gp);
2288 		if (gp->lstate == link_up)
2289 			gem_set_link_modes(gp);
2290 		netif_wake_queue(gp->dev);
2291 	}
2292 
2293 	gp->reset_task_pending = 0;
2294 
2295 	spin_unlock(&gp->tx_lock);
2296 	spin_unlock_irq(&gp->lock);
2297 
2298 	if (gp->opened)
2299 		napi_enable(&gp->napi);
2300 
2301 	mutex_unlock(&gp->pm_mutex);
2302 }
2303 
2304 
gem_open(struct net_device * dev)2305 static int gem_open(struct net_device *dev)
2306 {
2307 	struct gem *gp = netdev_priv(dev);
2308 	int rc = 0;
2309 
2310 	mutex_lock(&gp->pm_mutex);
2311 
2312 	/* We need the cell enabled */
2313 	if (!gp->asleep)
2314 		rc = gem_do_start(dev);
2315 	gp->opened = (rc == 0);
2316 
2317 	mutex_unlock(&gp->pm_mutex);
2318 
2319 	return rc;
2320 }
2321 
gem_close(struct net_device * dev)2322 static int gem_close(struct net_device *dev)
2323 {
2324 	struct gem *gp = netdev_priv(dev);
2325 
2326 	mutex_lock(&gp->pm_mutex);
2327 
2328 	napi_disable(&gp->napi);
2329 
2330 	gp->opened = 0;
2331 	if (!gp->asleep)
2332 		gem_do_stop(dev, 0);
2333 
2334 	mutex_unlock(&gp->pm_mutex);
2335 
2336 	return 0;
2337 }
2338 
2339 #ifdef CONFIG_PM
gem_suspend(struct pci_dev * pdev,pm_message_t state)2340 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2341 {
2342 	struct net_device *dev = pci_get_drvdata(pdev);
2343 	struct gem *gp = netdev_priv(dev);
2344 	unsigned long flags;
2345 
2346 	mutex_lock(&gp->pm_mutex);
2347 
2348 	netdev_info(dev, "suspending, WakeOnLan %s\n",
2349 		    (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2350 
2351 	/* Keep the cell enabled during the entire operation */
2352 	spin_lock_irqsave(&gp->lock, flags);
2353 	spin_lock(&gp->tx_lock);
2354 	gem_get_cell(gp);
2355 	spin_unlock(&gp->tx_lock);
2356 	spin_unlock_irqrestore(&gp->lock, flags);
2357 
2358 	/* If the driver is opened, we stop the MAC */
2359 	if (gp->opened) {
2360 		napi_disable(&gp->napi);
2361 
2362 		/* Stop traffic, mark us closed */
2363 		netif_device_detach(dev);
2364 
2365 		/* Switch off MAC, remember WOL setting */
2366 		gp->asleep_wol = gp->wake_on_lan;
2367 		gem_do_stop(dev, gp->asleep_wol);
2368 	} else
2369 		gp->asleep_wol = 0;
2370 
2371 	/* Mark us asleep */
2372 	gp->asleep = 1;
2373 	wmb();
2374 
2375 	/* Stop the link timer */
2376 	del_timer_sync(&gp->link_timer);
2377 
2378 	/* Now we release the mutex to not block the reset task who
2379 	 * can take it too. We are marked asleep, so there will be no
2380 	 * conflict here
2381 	 */
2382 	mutex_unlock(&gp->pm_mutex);
2383 
2384 	/* Wait for the pending reset task to complete */
2385 	flush_work_sync(&gp->reset_task);
2386 
2387 	/* Shut the PHY down eventually and setup WOL */
2388 	gem_stop_phy(gp, gp->asleep_wol);
2389 
2390 	/* Make sure bus master is disabled */
2391 	pci_disable_device(gp->pdev);
2392 
2393 	/* Release the cell, no need to take a lock at this point since
2394 	 * nothing else can happen now
2395 	 */
2396 	gem_put_cell(gp);
2397 
2398 	return 0;
2399 }
2400 
gem_resume(struct pci_dev * pdev)2401 static int gem_resume(struct pci_dev *pdev)
2402 {
2403 	struct net_device *dev = pci_get_drvdata(pdev);
2404 	struct gem *gp = netdev_priv(dev);
2405 	unsigned long flags;
2406 
2407 	netdev_info(dev, "resuming\n");
2408 
2409 	mutex_lock(&gp->pm_mutex);
2410 
2411 	/* Keep the cell enabled during the entire operation, no need to
2412 	 * take a lock here tho since nothing else can happen while we are
2413 	 * marked asleep
2414 	 */
2415 	gem_get_cell(gp);
2416 
2417 	/* Make sure PCI access and bus master are enabled */
2418 	if (pci_enable_device(gp->pdev)) {
2419 		netdev_err(dev, "Can't re-enable chip !\n");
2420 		/* Put cell and forget it for now, it will be considered as
2421 		 * still asleep, a new sleep cycle may bring it back
2422 		 */
2423 		gem_put_cell(gp);
2424 		mutex_unlock(&gp->pm_mutex);
2425 		return 0;
2426 	}
2427 	pci_set_master(gp->pdev);
2428 
2429 	/* Reset everything */
2430 	gem_reset(gp);
2431 
2432 	/* Mark us woken up */
2433 	gp->asleep = 0;
2434 	wmb();
2435 
2436 	/* Bring the PHY back. Again, lock is useless at this point as
2437 	 * nothing can be happening until we restart the whole thing
2438 	 */
2439 	gem_init_phy(gp);
2440 
2441 	/* If we were opened, bring everything back */
2442 	if (gp->opened) {
2443 		/* Restart MAC */
2444 		gem_do_start(dev);
2445 
2446 		/* Re-attach net device */
2447 		netif_device_attach(dev);
2448 	}
2449 
2450 	spin_lock_irqsave(&gp->lock, flags);
2451 	spin_lock(&gp->tx_lock);
2452 
2453 	/* If we had WOL enabled, the cell clock was never turned off during
2454 	 * sleep, so we end up beeing unbalanced. Fix that here
2455 	 */
2456 	if (gp->asleep_wol)
2457 		gem_put_cell(gp);
2458 
2459 	/* This function doesn't need to hold the cell, it will be held if the
2460 	 * driver is open by gem_do_start().
2461 	 */
2462 	gem_put_cell(gp);
2463 
2464 	spin_unlock(&gp->tx_lock);
2465 	spin_unlock_irqrestore(&gp->lock, flags);
2466 
2467 	mutex_unlock(&gp->pm_mutex);
2468 
2469 	return 0;
2470 }
2471 #endif /* CONFIG_PM */
2472 
gem_get_stats(struct net_device * dev)2473 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2474 {
2475 	struct gem *gp = netdev_priv(dev);
2476 
2477 	spin_lock_irq(&gp->lock);
2478 	spin_lock(&gp->tx_lock);
2479 
2480 	/* I have seen this being called while the PM was in progress,
2481 	 * so we shield against this
2482 	 */
2483 	if (gp->running) {
2484 		dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2485 		writel(0, gp->regs + MAC_FCSERR);
2486 
2487 		dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2488 		writel(0, gp->regs + MAC_AERR);
2489 
2490 		dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2491 		writel(0, gp->regs + MAC_LERR);
2492 
2493 		dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2494 		dev->stats.collisions +=
2495 			(readl(gp->regs + MAC_ECOLL) +
2496 			 readl(gp->regs + MAC_LCOLL));
2497 		writel(0, gp->regs + MAC_ECOLL);
2498 		writel(0, gp->regs + MAC_LCOLL);
2499 	}
2500 
2501 	spin_unlock(&gp->tx_lock);
2502 	spin_unlock_irq(&gp->lock);
2503 
2504 	return &dev->stats;
2505 }
2506 
gem_set_mac_address(struct net_device * dev,void * addr)2507 static int gem_set_mac_address(struct net_device *dev, void *addr)
2508 {
2509 	struct sockaddr *macaddr = (struct sockaddr *) addr;
2510 	struct gem *gp = netdev_priv(dev);
2511 	unsigned char *e = &dev->dev_addr[0];
2512 
2513 	if (!is_valid_ether_addr(macaddr->sa_data))
2514 		return -EADDRNOTAVAIL;
2515 
2516 	if (!netif_running(dev) || !netif_device_present(dev)) {
2517 		/* We'll just catch it later when the
2518 		 * device is up'd or resumed.
2519 		 */
2520 		memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2521 		return 0;
2522 	}
2523 
2524 	mutex_lock(&gp->pm_mutex);
2525 	memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2526 	if (gp->running) {
2527 		writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2528 		writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2529 		writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2530 	}
2531 	mutex_unlock(&gp->pm_mutex);
2532 
2533 	return 0;
2534 }
2535 
gem_set_multicast(struct net_device * dev)2536 static void gem_set_multicast(struct net_device *dev)
2537 {
2538 	struct gem *gp = netdev_priv(dev);
2539 	u32 rxcfg, rxcfg_new;
2540 	int limit = 10000;
2541 
2542 
2543 	spin_lock_irq(&gp->lock);
2544 	spin_lock(&gp->tx_lock);
2545 
2546 	if (!gp->running)
2547 		goto bail;
2548 
2549 	netif_stop_queue(dev);
2550 
2551 	rxcfg = readl(gp->regs + MAC_RXCFG);
2552 	rxcfg_new = gem_setup_multicast(gp);
2553 #ifdef STRIP_FCS
2554 	rxcfg_new |= MAC_RXCFG_SFCS;
2555 #endif
2556 	gp->mac_rx_cfg = rxcfg_new;
2557 
2558 	writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2559 	while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2560 		if (!limit--)
2561 			break;
2562 		udelay(10);
2563 	}
2564 
2565 	rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2566 	rxcfg |= rxcfg_new;
2567 
2568 	writel(rxcfg, gp->regs + MAC_RXCFG);
2569 
2570 	netif_wake_queue(dev);
2571 
2572  bail:
2573 	spin_unlock(&gp->tx_lock);
2574 	spin_unlock_irq(&gp->lock);
2575 }
2576 
2577 /* Jumbo-grams don't seem to work :-( */
2578 #define GEM_MIN_MTU	68
2579 #if 1
2580 #define GEM_MAX_MTU	1500
2581 #else
2582 #define GEM_MAX_MTU	9000
2583 #endif
2584 
gem_change_mtu(struct net_device * dev,int new_mtu)2585 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2586 {
2587 	struct gem *gp = netdev_priv(dev);
2588 
2589 	if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2590 		return -EINVAL;
2591 
2592 	if (!netif_running(dev) || !netif_device_present(dev)) {
2593 		/* We'll just catch it later when the
2594 		 * device is up'd or resumed.
2595 		 */
2596 		dev->mtu = new_mtu;
2597 		return 0;
2598 	}
2599 
2600 	mutex_lock(&gp->pm_mutex);
2601 	spin_lock_irq(&gp->lock);
2602 	spin_lock(&gp->tx_lock);
2603 	dev->mtu = new_mtu;
2604 	if (gp->running) {
2605 		gem_reinit_chip(gp);
2606 		if (gp->lstate == link_up)
2607 			gem_set_link_modes(gp);
2608 	}
2609 	spin_unlock(&gp->tx_lock);
2610 	spin_unlock_irq(&gp->lock);
2611 	mutex_unlock(&gp->pm_mutex);
2612 
2613 	return 0;
2614 }
2615 
gem_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2616 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2617 {
2618 	struct gem *gp = netdev_priv(dev);
2619 
2620 	strcpy(info->driver, DRV_NAME);
2621 	strcpy(info->version, DRV_VERSION);
2622 	strcpy(info->bus_info, pci_name(gp->pdev));
2623 }
2624 
gem_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2625 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2626 {
2627 	struct gem *gp = netdev_priv(dev);
2628 
2629 	if (gp->phy_type == phy_mii_mdio0 ||
2630 	    gp->phy_type == phy_mii_mdio1) {
2631 		if (gp->phy_mii.def)
2632 			cmd->supported = gp->phy_mii.def->features;
2633 		else
2634 			cmd->supported = (SUPPORTED_10baseT_Half |
2635 					  SUPPORTED_10baseT_Full);
2636 
2637 		/* XXX hardcoded stuff for now */
2638 		cmd->port = PORT_MII;
2639 		cmd->transceiver = XCVR_EXTERNAL;
2640 		cmd->phy_address = 0; /* XXX fixed PHYAD */
2641 
2642 		/* Return current PHY settings */
2643 		spin_lock_irq(&gp->lock);
2644 		cmd->autoneg = gp->want_autoneg;
2645 		cmd->speed = gp->phy_mii.speed;
2646 		cmd->duplex = gp->phy_mii.duplex;
2647 		cmd->advertising = gp->phy_mii.advertising;
2648 
2649 		/* If we started with a forced mode, we don't have a default
2650 		 * advertise set, we need to return something sensible so
2651 		 * userland can re-enable autoneg properly.
2652 		 */
2653 		if (cmd->advertising == 0)
2654 			cmd->advertising = cmd->supported;
2655 		spin_unlock_irq(&gp->lock);
2656 	} else { // XXX PCS ?
2657 		cmd->supported =
2658 			(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2659 			 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2660 			 SUPPORTED_Autoneg);
2661 		cmd->advertising = cmd->supported;
2662 		cmd->speed = 0;
2663 		cmd->duplex = cmd->port = cmd->phy_address =
2664 			cmd->transceiver = cmd->autoneg = 0;
2665 
2666 		/* serdes means usually a Fibre connector, with most fixed */
2667 		if (gp->phy_type == phy_serdes) {
2668 			cmd->port = PORT_FIBRE;
2669 			cmd->supported = (SUPPORTED_1000baseT_Half |
2670 				SUPPORTED_1000baseT_Full |
2671 				SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2672 				SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2673 			cmd->advertising = cmd->supported;
2674 			cmd->transceiver = XCVR_INTERNAL;
2675 			if (gp->lstate == link_up)
2676 				cmd->speed = SPEED_1000;
2677 			cmd->duplex = DUPLEX_FULL;
2678 			cmd->autoneg = 1;
2679 		}
2680 	}
2681 	cmd->maxtxpkt = cmd->maxrxpkt = 0;
2682 
2683 	return 0;
2684 }
2685 
gem_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2686 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2687 {
2688 	struct gem *gp = netdev_priv(dev);
2689 
2690 	/* Verify the settings we care about. */
2691 	if (cmd->autoneg != AUTONEG_ENABLE &&
2692 	    cmd->autoneg != AUTONEG_DISABLE)
2693 		return -EINVAL;
2694 
2695 	if (cmd->autoneg == AUTONEG_ENABLE &&
2696 	    cmd->advertising == 0)
2697 		return -EINVAL;
2698 
2699 	if (cmd->autoneg == AUTONEG_DISABLE &&
2700 	    ((cmd->speed != SPEED_1000 &&
2701 	      cmd->speed != SPEED_100 &&
2702 	      cmd->speed != SPEED_10) ||
2703 	     (cmd->duplex != DUPLEX_HALF &&
2704 	      cmd->duplex != DUPLEX_FULL)))
2705 		return -EINVAL;
2706 
2707 	/* Apply settings and restart link process. */
2708 	spin_lock_irq(&gp->lock);
2709 	gem_get_cell(gp);
2710 	gem_begin_auto_negotiation(gp, cmd);
2711 	gem_put_cell(gp);
2712 	spin_unlock_irq(&gp->lock);
2713 
2714 	return 0;
2715 }
2716 
gem_nway_reset(struct net_device * dev)2717 static int gem_nway_reset(struct net_device *dev)
2718 {
2719 	struct gem *gp = netdev_priv(dev);
2720 
2721 	if (!gp->want_autoneg)
2722 		return -EINVAL;
2723 
2724 	/* Restart link process. */
2725 	spin_lock_irq(&gp->lock);
2726 	gem_get_cell(gp);
2727 	gem_begin_auto_negotiation(gp, NULL);
2728 	gem_put_cell(gp);
2729 	spin_unlock_irq(&gp->lock);
2730 
2731 	return 0;
2732 }
2733 
gem_get_msglevel(struct net_device * dev)2734 static u32 gem_get_msglevel(struct net_device *dev)
2735 {
2736 	struct gem *gp = netdev_priv(dev);
2737 	return gp->msg_enable;
2738 }
2739 
gem_set_msglevel(struct net_device * dev,u32 value)2740 static void gem_set_msglevel(struct net_device *dev, u32 value)
2741 {
2742 	struct gem *gp = netdev_priv(dev);
2743 	gp->msg_enable = value;
2744 }
2745 
2746 
2747 /* Add more when I understand how to program the chip */
2748 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2749 
2750 #define WOL_SUPPORTED_MASK	(WAKE_MAGIC)
2751 
gem_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2752 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2753 {
2754 	struct gem *gp = netdev_priv(dev);
2755 
2756 	/* Add more when I understand how to program the chip */
2757 	if (gp->has_wol) {
2758 		wol->supported = WOL_SUPPORTED_MASK;
2759 		wol->wolopts = gp->wake_on_lan;
2760 	} else {
2761 		wol->supported = 0;
2762 		wol->wolopts = 0;
2763 	}
2764 }
2765 
gem_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2766 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2767 {
2768 	struct gem *gp = netdev_priv(dev);
2769 
2770 	if (!gp->has_wol)
2771 		return -EOPNOTSUPP;
2772 	gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2773 	return 0;
2774 }
2775 
2776 static const struct ethtool_ops gem_ethtool_ops = {
2777 	.get_drvinfo		= gem_get_drvinfo,
2778 	.get_link		= ethtool_op_get_link,
2779 	.get_settings		= gem_get_settings,
2780 	.set_settings		= gem_set_settings,
2781 	.nway_reset		= gem_nway_reset,
2782 	.get_msglevel		= gem_get_msglevel,
2783 	.set_msglevel		= gem_set_msglevel,
2784 	.get_wol		= gem_get_wol,
2785 	.set_wol		= gem_set_wol,
2786 };
2787 
gem_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2788 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2789 {
2790 	struct gem *gp = netdev_priv(dev);
2791 	struct mii_ioctl_data *data = if_mii(ifr);
2792 	int rc = -EOPNOTSUPP;
2793 	unsigned long flags;
2794 
2795 	/* Hold the PM mutex while doing ioctl's or we may collide
2796 	 * with power management.
2797 	 */
2798 	mutex_lock(&gp->pm_mutex);
2799 
2800 	spin_lock_irqsave(&gp->lock, flags);
2801 	gem_get_cell(gp);
2802 	spin_unlock_irqrestore(&gp->lock, flags);
2803 
2804 	switch (cmd) {
2805 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
2806 		data->phy_id = gp->mii_phy_addr;
2807 		/* Fallthrough... */
2808 
2809 	case SIOCGMIIREG:		/* Read MII PHY register. */
2810 		if (!gp->running)
2811 			rc = -EAGAIN;
2812 		else {
2813 			data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2814 						   data->reg_num & 0x1f);
2815 			rc = 0;
2816 		}
2817 		break;
2818 
2819 	case SIOCSMIIREG:		/* Write MII PHY register. */
2820 		if (!gp->running)
2821 			rc = -EAGAIN;
2822 		else {
2823 			__phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2824 				    data->val_in);
2825 			rc = 0;
2826 		}
2827 		break;
2828 	};
2829 
2830 	spin_lock_irqsave(&gp->lock, flags);
2831 	gem_put_cell(gp);
2832 	spin_unlock_irqrestore(&gp->lock, flags);
2833 
2834 	mutex_unlock(&gp->pm_mutex);
2835 
2836 	return rc;
2837 }
2838 
2839 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2840 /* Fetch MAC address from vital product data of PCI ROM. */
find_eth_addr_in_vpd(void __iomem * rom_base,int len,unsigned char * dev_addr)2841 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2842 {
2843 	int this_offset;
2844 
2845 	for (this_offset = 0x20; this_offset < len; this_offset++) {
2846 		void __iomem *p = rom_base + this_offset;
2847 		int i;
2848 
2849 		if (readb(p + 0) != 0x90 ||
2850 		    readb(p + 1) != 0x00 ||
2851 		    readb(p + 2) != 0x09 ||
2852 		    readb(p + 3) != 0x4e ||
2853 		    readb(p + 4) != 0x41 ||
2854 		    readb(p + 5) != 0x06)
2855 			continue;
2856 
2857 		this_offset += 6;
2858 		p += 6;
2859 
2860 		for (i = 0; i < 6; i++)
2861 			dev_addr[i] = readb(p + i);
2862 		return 1;
2863 	}
2864 	return 0;
2865 }
2866 
get_gem_mac_nonobp(struct pci_dev * pdev,unsigned char * dev_addr)2867 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2868 {
2869 	size_t size;
2870 	void __iomem *p = pci_map_rom(pdev, &size);
2871 
2872 	if (p) {
2873 			int found;
2874 
2875 		found = readb(p) == 0x55 &&
2876 			readb(p + 1) == 0xaa &&
2877 			find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2878 		pci_unmap_rom(pdev, p);
2879 		if (found)
2880 			return;
2881 	}
2882 
2883 	/* Sun MAC prefix then 3 random bytes. */
2884 	dev_addr[0] = 0x08;
2885 	dev_addr[1] = 0x00;
2886 	dev_addr[2] = 0x20;
2887 	get_random_bytes(dev_addr + 3, 3);
2888 }
2889 #endif /* not Sparc and not PPC */
2890 
gem_get_device_address(struct gem * gp)2891 static int __devinit gem_get_device_address(struct gem *gp)
2892 {
2893 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2894 	struct net_device *dev = gp->dev;
2895 	const unsigned char *addr;
2896 
2897 	addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2898 	if (addr == NULL) {
2899 #ifdef CONFIG_SPARC
2900 		addr = idprom->id_ethaddr;
2901 #else
2902 		printk("\n");
2903 		pr_err("%s: can't get mac-address\n", dev->name);
2904 		return -1;
2905 #endif
2906 	}
2907 	memcpy(dev->dev_addr, addr, 6);
2908 #else
2909 	get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2910 #endif
2911 	return 0;
2912 }
2913 
gem_remove_one(struct pci_dev * pdev)2914 static void gem_remove_one(struct pci_dev *pdev)
2915 {
2916 	struct net_device *dev = pci_get_drvdata(pdev);
2917 
2918 	if (dev) {
2919 		struct gem *gp = netdev_priv(dev);
2920 
2921 		unregister_netdev(dev);
2922 
2923 		/* Stop the link timer */
2924 		del_timer_sync(&gp->link_timer);
2925 
2926 		/* We shouldn't need any locking here */
2927 		gem_get_cell(gp);
2928 
2929 		/* Cancel reset task */
2930 		cancel_work_sync(&gp->reset_task);
2931 
2932 		/* Shut the PHY down */
2933 		gem_stop_phy(gp, 0);
2934 
2935 		gem_put_cell(gp);
2936 
2937 		/* Make sure bus master is disabled */
2938 		pci_disable_device(gp->pdev);
2939 
2940 		/* Free resources */
2941 		pci_free_consistent(pdev,
2942 				    sizeof(struct gem_init_block),
2943 				    gp->init_block,
2944 				    gp->gblock_dvma);
2945 		iounmap(gp->regs);
2946 		pci_release_regions(pdev);
2947 		free_netdev(dev);
2948 
2949 		pci_set_drvdata(pdev, NULL);
2950 	}
2951 }
2952 
2953 static const struct net_device_ops gem_netdev_ops = {
2954 	.ndo_open		= gem_open,
2955 	.ndo_stop		= gem_close,
2956 	.ndo_start_xmit		= gem_start_xmit,
2957 	.ndo_get_stats		= gem_get_stats,
2958 	.ndo_set_multicast_list = gem_set_multicast,
2959 	.ndo_do_ioctl		= gem_ioctl,
2960 	.ndo_tx_timeout		= gem_tx_timeout,
2961 	.ndo_change_mtu		= gem_change_mtu,
2962 	.ndo_validate_addr	= eth_validate_addr,
2963 	.ndo_set_mac_address    = gem_set_mac_address,
2964 #ifdef CONFIG_NET_POLL_CONTROLLER
2965 	.ndo_poll_controller    = gem_poll_controller,
2966 #endif
2967 };
2968 
gem_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)2969 static int __devinit gem_init_one(struct pci_dev *pdev,
2970 				  const struct pci_device_id *ent)
2971 {
2972 	unsigned long gemreg_base, gemreg_len;
2973 	struct net_device *dev;
2974 	struct gem *gp;
2975 	int err, pci_using_dac;
2976 
2977 	printk_once(KERN_INFO "%s", version);
2978 
2979 	/* Apple gmac note: during probe, the chip is powered up by
2980 	 * the arch code to allow the code below to work (and to let
2981 	 * the chip be probed on the config space. It won't stay powered
2982 	 * up until the interface is brought up however, so we can't rely
2983 	 * on register configuration done at this point.
2984 	 */
2985 	err = pci_enable_device(pdev);
2986 	if (err) {
2987 		pr_err("Cannot enable MMIO operation, aborting\n");
2988 		return err;
2989 	}
2990 	pci_set_master(pdev);
2991 
2992 	/* Configure DMA attributes. */
2993 
2994 	/* All of the GEM documentation states that 64-bit DMA addressing
2995 	 * is fully supported and should work just fine.  However the
2996 	 * front end for RIO based GEMs is different and only supports
2997 	 * 32-bit addressing.
2998 	 *
2999 	 * For now we assume the various PPC GEMs are 32-bit only as well.
3000 	 */
3001 	if (pdev->vendor == PCI_VENDOR_ID_SUN &&
3002 	    pdev->device == PCI_DEVICE_ID_SUN_GEM &&
3003 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3004 		pci_using_dac = 1;
3005 	} else {
3006 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3007 		if (err) {
3008 			pr_err("No usable DMA configuration, aborting\n");
3009 			goto err_disable_device;
3010 		}
3011 		pci_using_dac = 0;
3012 	}
3013 
3014 	gemreg_base = pci_resource_start(pdev, 0);
3015 	gemreg_len = pci_resource_len(pdev, 0);
3016 
3017 	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3018 		pr_err("Cannot find proper PCI device base address, aborting\n");
3019 		err = -ENODEV;
3020 		goto err_disable_device;
3021 	}
3022 
3023 	dev = alloc_etherdev(sizeof(*gp));
3024 	if (!dev) {
3025 		pr_err("Etherdev alloc failed, aborting\n");
3026 		err = -ENOMEM;
3027 		goto err_disable_device;
3028 	}
3029 	SET_NETDEV_DEV(dev, &pdev->dev);
3030 
3031 	gp = netdev_priv(dev);
3032 
3033 	err = pci_request_regions(pdev, DRV_NAME);
3034 	if (err) {
3035 		pr_err("Cannot obtain PCI resources, aborting\n");
3036 		goto err_out_free_netdev;
3037 	}
3038 
3039 	gp->pdev = pdev;
3040 	dev->base_addr = (long) pdev;
3041 	gp->dev = dev;
3042 
3043 	gp->msg_enable = DEFAULT_MSG;
3044 
3045 	spin_lock_init(&gp->lock);
3046 	spin_lock_init(&gp->tx_lock);
3047 	mutex_init(&gp->pm_mutex);
3048 
3049 	init_timer(&gp->link_timer);
3050 	gp->link_timer.function = gem_link_timer;
3051 	gp->link_timer.data = (unsigned long) gp;
3052 
3053 	INIT_WORK(&gp->reset_task, gem_reset_task);
3054 
3055 	gp->lstate = link_down;
3056 	gp->timer_ticks = 0;
3057 	netif_carrier_off(dev);
3058 
3059 	gp->regs = ioremap(gemreg_base, gemreg_len);
3060 	if (!gp->regs) {
3061 		pr_err("Cannot map device registers, aborting\n");
3062 		err = -EIO;
3063 		goto err_out_free_res;
3064 	}
3065 
3066 	/* On Apple, we want a reference to the Open Firmware device-tree
3067 	 * node. We use it for clock control.
3068 	 */
3069 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3070 	gp->of_node = pci_device_to_OF_node(pdev);
3071 #endif
3072 
3073 	/* Only Apple version supports WOL afaik */
3074 	if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3075 		gp->has_wol = 1;
3076 
3077 	/* Make sure cell is enabled */
3078 	gem_get_cell(gp);
3079 
3080 	/* Make sure everything is stopped and in init state */
3081 	gem_reset(gp);
3082 
3083 	/* Fill up the mii_phy structure (even if we won't use it) */
3084 	gp->phy_mii.dev = dev;
3085 	gp->phy_mii.mdio_read = _phy_read;
3086 	gp->phy_mii.mdio_write = _phy_write;
3087 #ifdef CONFIG_PPC_PMAC
3088 	gp->phy_mii.platform_data = gp->of_node;
3089 #endif
3090 	/* By default, we start with autoneg */
3091 	gp->want_autoneg = 1;
3092 
3093 	/* Check fifo sizes, PHY type, etc... */
3094 	if (gem_check_invariants(gp)) {
3095 		err = -ENODEV;
3096 		goto err_out_iounmap;
3097 	}
3098 
3099 	/* It is guaranteed that the returned buffer will be at least
3100 	 * PAGE_SIZE aligned.
3101 	 */
3102 	gp->init_block = (struct gem_init_block *)
3103 		pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3104 				     &gp->gblock_dvma);
3105 	if (!gp->init_block) {
3106 		pr_err("Cannot allocate init block, aborting\n");
3107 		err = -ENOMEM;
3108 		goto err_out_iounmap;
3109 	}
3110 
3111 	if (gem_get_device_address(gp))
3112 		goto err_out_free_consistent;
3113 
3114 	dev->netdev_ops = &gem_netdev_ops;
3115 	netif_napi_add(dev, &gp->napi, gem_poll, 64);
3116 	dev->ethtool_ops = &gem_ethtool_ops;
3117 	dev->watchdog_timeo = 5 * HZ;
3118 	dev->irq = pdev->irq;
3119 	dev->dma = 0;
3120 
3121 	/* Set that now, in case PM kicks in now */
3122 	pci_set_drvdata(pdev, dev);
3123 
3124 	/* Detect & init PHY, start autoneg, we release the cell now
3125 	 * too, it will be managed by whoever needs it
3126 	 */
3127 	gem_init_phy(gp);
3128 
3129 	spin_lock_irq(&gp->lock);
3130 	gem_put_cell(gp);
3131 	spin_unlock_irq(&gp->lock);
3132 
3133 	/* Register with kernel */
3134 	if (register_netdev(dev)) {
3135 		pr_err("Cannot register net device, aborting\n");
3136 		err = -ENOMEM;
3137 		goto err_out_free_consistent;
3138 	}
3139 
3140 	netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3141 		    dev->dev_addr);
3142 
3143 	if (gp->phy_type == phy_mii_mdio0 ||
3144      	    gp->phy_type == phy_mii_mdio1)
3145 		netdev_info(dev, "Found %s PHY\n",
3146 			    gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3147 
3148 	/* GEM can do it all... */
3149 	dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3150 	if (pci_using_dac)
3151 		dev->features |= NETIF_F_HIGHDMA;
3152 
3153 	return 0;
3154 
3155 err_out_free_consistent:
3156 	gem_remove_one(pdev);
3157 err_out_iounmap:
3158 	gem_put_cell(gp);
3159 	iounmap(gp->regs);
3160 
3161 err_out_free_res:
3162 	pci_release_regions(pdev);
3163 
3164 err_out_free_netdev:
3165 	free_netdev(dev);
3166 err_disable_device:
3167 	pci_disable_device(pdev);
3168 	return err;
3169 
3170 }
3171 
3172 
3173 static struct pci_driver gem_driver = {
3174 	.name		= GEM_MODULE_NAME,
3175 	.id_table	= gem_pci_tbl,
3176 	.probe		= gem_init_one,
3177 	.remove		= gem_remove_one,
3178 #ifdef CONFIG_PM
3179 	.suspend	= gem_suspend,
3180 	.resume		= gem_resume,
3181 #endif /* CONFIG_PM */
3182 };
3183 
gem_init(void)3184 static int __init gem_init(void)
3185 {
3186 	return pci_register_driver(&gem_driver);
3187 }
3188 
gem_cleanup(void)3189 static void __exit gem_cleanup(void)
3190 {
3191 	pci_unregister_driver(&gem_driver);
3192 }
3193 
3194 module_init(gem_init);
3195 module_exit(gem_cleanup);
3196