1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik		: For pointing out the improper error condition
15  *			  check in the s2io_xmit routine and also some
16  *			  issues in the Tx watch dog function. Also for
17  *			  patiently answering all those innumerable
18  *			  questions regaring the 2.6 porting issues.
19  * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
20  *			  macros available only in 2.6 Kernel.
21  * Francois Romieu	: For pointing out all code part that were
22  *			  deprecated and also styling related comments.
23  * Grant Grundler	: For helping me get rid of some Architecture
24  *			  dependent code.
25  * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *		values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54 
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <net/tcp.h>
82 
83 #include <asm/system.h>
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86 
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90 
91 #define DRV_VERSION "2.0.26.28"
92 
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96 
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99 
RXD_IS_UP2DT(struct RxD_t * rxdp)100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102 	int ret;
103 
104 	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105 	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106 
107 	return ret;
108 }
109 
110 /*
111  * Cards with following subsystem_id have a link state indication
112  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113  * macro below identifies these cards given the subsystem_id.
114  */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
116 	(dev_type == XFRAME_I_DEVICE) ?					\
117 	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
118 	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119 
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122 
is_s2io_card_up(const struct s2io_nic * sp)123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125 	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127 
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130 	"Register test\t(offline)",
131 	"Eeprom test\t(offline)",
132 	"Link test\t(online)",
133 	"RLDRAM test\t(offline)",
134 	"BIST Test\t(offline)"
135 };
136 
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138 	{"tmac_frms"},
139 	{"tmac_data_octets"},
140 	{"tmac_drop_frms"},
141 	{"tmac_mcst_frms"},
142 	{"tmac_bcst_frms"},
143 	{"tmac_pause_ctrl_frms"},
144 	{"tmac_ttl_octets"},
145 	{"tmac_ucst_frms"},
146 	{"tmac_nucst_frms"},
147 	{"tmac_any_err_frms"},
148 	{"tmac_ttl_less_fb_octets"},
149 	{"tmac_vld_ip_octets"},
150 	{"tmac_vld_ip"},
151 	{"tmac_drop_ip"},
152 	{"tmac_icmp"},
153 	{"tmac_rst_tcp"},
154 	{"tmac_tcp"},
155 	{"tmac_udp"},
156 	{"rmac_vld_frms"},
157 	{"rmac_data_octets"},
158 	{"rmac_fcs_err_frms"},
159 	{"rmac_drop_frms"},
160 	{"rmac_vld_mcst_frms"},
161 	{"rmac_vld_bcst_frms"},
162 	{"rmac_in_rng_len_err_frms"},
163 	{"rmac_out_rng_len_err_frms"},
164 	{"rmac_long_frms"},
165 	{"rmac_pause_ctrl_frms"},
166 	{"rmac_unsup_ctrl_frms"},
167 	{"rmac_ttl_octets"},
168 	{"rmac_accepted_ucst_frms"},
169 	{"rmac_accepted_nucst_frms"},
170 	{"rmac_discarded_frms"},
171 	{"rmac_drop_events"},
172 	{"rmac_ttl_less_fb_octets"},
173 	{"rmac_ttl_frms"},
174 	{"rmac_usized_frms"},
175 	{"rmac_osized_frms"},
176 	{"rmac_frag_frms"},
177 	{"rmac_jabber_frms"},
178 	{"rmac_ttl_64_frms"},
179 	{"rmac_ttl_65_127_frms"},
180 	{"rmac_ttl_128_255_frms"},
181 	{"rmac_ttl_256_511_frms"},
182 	{"rmac_ttl_512_1023_frms"},
183 	{"rmac_ttl_1024_1518_frms"},
184 	{"rmac_ip"},
185 	{"rmac_ip_octets"},
186 	{"rmac_hdr_err_ip"},
187 	{"rmac_drop_ip"},
188 	{"rmac_icmp"},
189 	{"rmac_tcp"},
190 	{"rmac_udp"},
191 	{"rmac_err_drp_udp"},
192 	{"rmac_xgmii_err_sym"},
193 	{"rmac_frms_q0"},
194 	{"rmac_frms_q1"},
195 	{"rmac_frms_q2"},
196 	{"rmac_frms_q3"},
197 	{"rmac_frms_q4"},
198 	{"rmac_frms_q5"},
199 	{"rmac_frms_q6"},
200 	{"rmac_frms_q7"},
201 	{"rmac_full_q0"},
202 	{"rmac_full_q1"},
203 	{"rmac_full_q2"},
204 	{"rmac_full_q3"},
205 	{"rmac_full_q4"},
206 	{"rmac_full_q5"},
207 	{"rmac_full_q6"},
208 	{"rmac_full_q7"},
209 	{"rmac_pause_cnt"},
210 	{"rmac_xgmii_data_err_cnt"},
211 	{"rmac_xgmii_ctrl_err_cnt"},
212 	{"rmac_accepted_ip"},
213 	{"rmac_err_tcp"},
214 	{"rd_req_cnt"},
215 	{"new_rd_req_cnt"},
216 	{"new_rd_req_rtry_cnt"},
217 	{"rd_rtry_cnt"},
218 	{"wr_rtry_rd_ack_cnt"},
219 	{"wr_req_cnt"},
220 	{"new_wr_req_cnt"},
221 	{"new_wr_req_rtry_cnt"},
222 	{"wr_rtry_cnt"},
223 	{"wr_disc_cnt"},
224 	{"rd_rtry_wr_ack_cnt"},
225 	{"txp_wr_cnt"},
226 	{"txd_rd_cnt"},
227 	{"txd_wr_cnt"},
228 	{"rxd_rd_cnt"},
229 	{"rxd_wr_cnt"},
230 	{"txf_rd_cnt"},
231 	{"rxf_wr_cnt"}
232 };
233 
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235 	{"rmac_ttl_1519_4095_frms"},
236 	{"rmac_ttl_4096_8191_frms"},
237 	{"rmac_ttl_8192_max_frms"},
238 	{"rmac_ttl_gt_max_frms"},
239 	{"rmac_osized_alt_frms"},
240 	{"rmac_jabber_alt_frms"},
241 	{"rmac_gt_max_alt_frms"},
242 	{"rmac_vlan_frms"},
243 	{"rmac_len_discard"},
244 	{"rmac_fcs_discard"},
245 	{"rmac_pf_discard"},
246 	{"rmac_da_discard"},
247 	{"rmac_red_discard"},
248 	{"rmac_rts_discard"},
249 	{"rmac_ingm_full_discard"},
250 	{"link_fault_cnt"}
251 };
252 
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254 	{"\n DRIVER STATISTICS"},
255 	{"single_bit_ecc_errs"},
256 	{"double_bit_ecc_errs"},
257 	{"parity_err_cnt"},
258 	{"serious_err_cnt"},
259 	{"soft_reset_cnt"},
260 	{"fifo_full_cnt"},
261 	{"ring_0_full_cnt"},
262 	{"ring_1_full_cnt"},
263 	{"ring_2_full_cnt"},
264 	{"ring_3_full_cnt"},
265 	{"ring_4_full_cnt"},
266 	{"ring_5_full_cnt"},
267 	{"ring_6_full_cnt"},
268 	{"ring_7_full_cnt"},
269 	{"alarm_transceiver_temp_high"},
270 	{"alarm_transceiver_temp_low"},
271 	{"alarm_laser_bias_current_high"},
272 	{"alarm_laser_bias_current_low"},
273 	{"alarm_laser_output_power_high"},
274 	{"alarm_laser_output_power_low"},
275 	{"warn_transceiver_temp_high"},
276 	{"warn_transceiver_temp_low"},
277 	{"warn_laser_bias_current_high"},
278 	{"warn_laser_bias_current_low"},
279 	{"warn_laser_output_power_high"},
280 	{"warn_laser_output_power_low"},
281 	{"lro_aggregated_pkts"},
282 	{"lro_flush_both_count"},
283 	{"lro_out_of_sequence_pkts"},
284 	{"lro_flush_due_to_max_pkts"},
285 	{"lro_avg_aggr_pkts"},
286 	{"mem_alloc_fail_cnt"},
287 	{"pci_map_fail_cnt"},
288 	{"watchdog_timer_cnt"},
289 	{"mem_allocated"},
290 	{"mem_freed"},
291 	{"link_up_cnt"},
292 	{"link_down_cnt"},
293 	{"link_up_time"},
294 	{"link_down_time"},
295 	{"tx_tcode_buf_abort_cnt"},
296 	{"tx_tcode_desc_abort_cnt"},
297 	{"tx_tcode_parity_err_cnt"},
298 	{"tx_tcode_link_loss_cnt"},
299 	{"tx_tcode_list_proc_err_cnt"},
300 	{"rx_tcode_parity_err_cnt"},
301 	{"rx_tcode_abort_cnt"},
302 	{"rx_tcode_parity_abort_cnt"},
303 	{"rx_tcode_rda_fail_cnt"},
304 	{"rx_tcode_unkn_prot_cnt"},
305 	{"rx_tcode_fcs_err_cnt"},
306 	{"rx_tcode_buf_size_err_cnt"},
307 	{"rx_tcode_rxd_corrupt_cnt"},
308 	{"rx_tcode_unkn_err_cnt"},
309 	{"tda_err_cnt"},
310 	{"pfc_err_cnt"},
311 	{"pcc_err_cnt"},
312 	{"tti_err_cnt"},
313 	{"tpa_err_cnt"},
314 	{"sm_err_cnt"},
315 	{"lso_err_cnt"},
316 	{"mac_tmac_err_cnt"},
317 	{"mac_rmac_err_cnt"},
318 	{"xgxs_txgxs_err_cnt"},
319 	{"xgxs_rxgxs_err_cnt"},
320 	{"rc_err_cnt"},
321 	{"prc_pcix_err_cnt"},
322 	{"rpa_err_cnt"},
323 	{"rda_err_cnt"},
324 	{"rti_err_cnt"},
325 	{"mc_err_cnt"}
326 };
327 
328 #define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
331 
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334 
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337 
338 #define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
340 
341 #define S2IO_TIMER_CONF(timer, handle, arg, exp)	\
342 	init_timer(&timer);				\
343 	timer.function = handle;			\
344 	timer.data = (unsigned long)arg;		\
345 	mod_timer(&timer, (jiffies + exp))		\
346 
347 /* copy mac addr to def_mac_addr array */
do_s2io_copy_mac_addr(struct s2io_nic * sp,int offset,u64 mac_addr)348 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349 {
350 	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
351 	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
352 	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
353 	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
354 	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
355 	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 }
357 
358 /* Add the vlan */
s2io_vlan_rx_register(struct net_device * dev,struct vlan_group * grp)359 static void s2io_vlan_rx_register(struct net_device *dev,
360 				  struct vlan_group *grp)
361 {
362 	int i;
363 	struct s2io_nic *nic = netdev_priv(dev);
364 	unsigned long flags[MAX_TX_FIFOS];
365 	struct config_param *config = &nic->config;
366 	struct mac_info *mac_control = &nic->mac_control;
367 
368 	for (i = 0; i < config->tx_fifo_num; i++) {
369 		struct fifo_info *fifo = &mac_control->fifos[i];
370 
371 		spin_lock_irqsave(&fifo->tx_lock, flags[i]);
372 	}
373 
374 	nic->vlgrp = grp;
375 
376 	for (i = config->tx_fifo_num - 1; i >= 0; i--) {
377 		struct fifo_info *fifo = &mac_control->fifos[i];
378 
379 		spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
380 	}
381 }
382 
383 /* Unregister the vlan */
s2io_vlan_rx_kill_vid(struct net_device * dev,unsigned short vid)384 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
385 {
386 	int i;
387 	struct s2io_nic *nic = netdev_priv(dev);
388 	unsigned long flags[MAX_TX_FIFOS];
389 	struct config_param *config = &nic->config;
390 	struct mac_info *mac_control = &nic->mac_control;
391 
392 	for (i = 0; i < config->tx_fifo_num; i++) {
393 		struct fifo_info *fifo = &mac_control->fifos[i];
394 
395 		spin_lock_irqsave(&fifo->tx_lock, flags[i]);
396 	}
397 
398 	if (nic->vlgrp)
399 		vlan_group_set_device(nic->vlgrp, vid, NULL);
400 
401 	for (i = config->tx_fifo_num - 1; i >= 0; i--) {
402 		struct fifo_info *fifo = &mac_control->fifos[i];
403 
404 		spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
405 	}
406 }
407 
408 /*
409  * Constants to be programmed into the Xena's registers, to configure
410  * the XAUI.
411  */
412 
413 #define	END_SIGN	0x0
414 static const u64 herc_act_dtx_cfg[] = {
415 	/* Set address */
416 	0x8000051536750000ULL, 0x80000515367500E0ULL,
417 	/* Write data */
418 	0x8000051536750004ULL, 0x80000515367500E4ULL,
419 	/* Set address */
420 	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
421 	/* Write data */
422 	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
423 	/* Set address */
424 	0x801205150D440000ULL, 0x801205150D4400E0ULL,
425 	/* Write data */
426 	0x801205150D440004ULL, 0x801205150D4400E4ULL,
427 	/* Set address */
428 	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
429 	/* Write data */
430 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
431 	/* Done */
432 	END_SIGN
433 };
434 
435 static const u64 xena_dtx_cfg[] = {
436 	/* Set address */
437 	0x8000051500000000ULL, 0x80000515000000E0ULL,
438 	/* Write data */
439 	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
440 	/* Set address */
441 	0x8001051500000000ULL, 0x80010515000000E0ULL,
442 	/* Write data */
443 	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
444 	/* Set address */
445 	0x8002051500000000ULL, 0x80020515000000E0ULL,
446 	/* Write data */
447 	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
448 	END_SIGN
449 };
450 
451 /*
452  * Constants for Fixing the MacAddress problem seen mostly on
453  * Alpha machines.
454  */
455 static const u64 fix_mac[] = {
456 	0x0060000000000000ULL, 0x0060600000000000ULL,
457 	0x0040600000000000ULL, 0x0000600000000000ULL,
458 	0x0020600000000000ULL, 0x0060600000000000ULL,
459 	0x0020600000000000ULL, 0x0060600000000000ULL,
460 	0x0020600000000000ULL, 0x0060600000000000ULL,
461 	0x0020600000000000ULL, 0x0060600000000000ULL,
462 	0x0020600000000000ULL, 0x0060600000000000ULL,
463 	0x0020600000000000ULL, 0x0060600000000000ULL,
464 	0x0020600000000000ULL, 0x0060600000000000ULL,
465 	0x0020600000000000ULL, 0x0060600000000000ULL,
466 	0x0020600000000000ULL, 0x0060600000000000ULL,
467 	0x0020600000000000ULL, 0x0060600000000000ULL,
468 	0x0020600000000000ULL, 0x0000600000000000ULL,
469 	0x0040600000000000ULL, 0x0060600000000000ULL,
470 	END_SIGN
471 };
472 
473 MODULE_LICENSE("GPL");
474 MODULE_VERSION(DRV_VERSION);
475 
476 
477 /* Module Loadable parameters. */
478 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
479 S2IO_PARM_INT(rx_ring_num, 1);
480 S2IO_PARM_INT(multiq, 0);
481 S2IO_PARM_INT(rx_ring_mode, 1);
482 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
483 S2IO_PARM_INT(rmac_pause_time, 0x100);
484 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
485 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
486 S2IO_PARM_INT(shared_splits, 0);
487 S2IO_PARM_INT(tmac_util_period, 5);
488 S2IO_PARM_INT(rmac_util_period, 5);
489 S2IO_PARM_INT(l3l4hdr_size, 128);
490 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
491 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
492 /* Frequency of Rx desc syncs expressed as power of 2 */
493 S2IO_PARM_INT(rxsync_frequency, 3);
494 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
495 S2IO_PARM_INT(intr_type, 2);
496 /* Large receive offload feature */
497 
498 /* Max pkts to be aggregated by LRO at one time. If not specified,
499  * aggregation happens until we hit max IP pkt size(64K)
500  */
501 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
502 S2IO_PARM_INT(indicate_max_pkts, 0);
503 
504 S2IO_PARM_INT(napi, 1);
505 S2IO_PARM_INT(ufo, 0);
506 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
507 
508 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
509 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
510 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
511 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
512 static unsigned int rts_frm_len[MAX_RX_RINGS] =
513 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
514 
515 module_param_array(tx_fifo_len, uint, NULL, 0);
516 module_param_array(rx_ring_sz, uint, NULL, 0);
517 module_param_array(rts_frm_len, uint, NULL, 0);
518 
519 /*
520  * S2IO device table.
521  * This table lists all the devices that this driver supports.
522  */
523 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
524 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
525 	 PCI_ANY_ID, PCI_ANY_ID},
526 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
527 	 PCI_ANY_ID, PCI_ANY_ID},
528 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
529 	 PCI_ANY_ID, PCI_ANY_ID},
530 	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
531 	 PCI_ANY_ID, PCI_ANY_ID},
532 	{0,}
533 };
534 
535 MODULE_DEVICE_TABLE(pci, s2io_tbl);
536 
537 static struct pci_error_handlers s2io_err_handler = {
538 	.error_detected = s2io_io_error_detected,
539 	.slot_reset = s2io_io_slot_reset,
540 	.resume = s2io_io_resume,
541 };
542 
543 static struct pci_driver s2io_driver = {
544 	.name = "S2IO",
545 	.id_table = s2io_tbl,
546 	.probe = s2io_init_nic,
547 	.remove = __devexit_p(s2io_rem_nic),
548 	.err_handler = &s2io_err_handler,
549 };
550 
551 /* A simplifier macro used both by init and free shared_mem Fns(). */
552 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
553 
554 /* netqueue manipulation helper functions */
s2io_stop_all_tx_queue(struct s2io_nic * sp)555 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
556 {
557 	if (!sp->config.multiq) {
558 		int i;
559 
560 		for (i = 0; i < sp->config.tx_fifo_num; i++)
561 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
562 	}
563 	netif_tx_stop_all_queues(sp->dev);
564 }
565 
s2io_stop_tx_queue(struct s2io_nic * sp,int fifo_no)566 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
567 {
568 	if (!sp->config.multiq)
569 		sp->mac_control.fifos[fifo_no].queue_state =
570 			FIFO_QUEUE_STOP;
571 
572 	netif_tx_stop_all_queues(sp->dev);
573 }
574 
s2io_start_all_tx_queue(struct s2io_nic * sp)575 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
576 {
577 	if (!sp->config.multiq) {
578 		int i;
579 
580 		for (i = 0; i < sp->config.tx_fifo_num; i++)
581 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
582 	}
583 	netif_tx_start_all_queues(sp->dev);
584 }
585 
s2io_start_tx_queue(struct s2io_nic * sp,int fifo_no)586 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
587 {
588 	if (!sp->config.multiq)
589 		sp->mac_control.fifos[fifo_no].queue_state =
590 			FIFO_QUEUE_START;
591 
592 	netif_tx_start_all_queues(sp->dev);
593 }
594 
s2io_wake_all_tx_queue(struct s2io_nic * sp)595 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
596 {
597 	if (!sp->config.multiq) {
598 		int i;
599 
600 		for (i = 0; i < sp->config.tx_fifo_num; i++)
601 			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
602 	}
603 	netif_tx_wake_all_queues(sp->dev);
604 }
605 
s2io_wake_tx_queue(struct fifo_info * fifo,int cnt,u8 multiq)606 static inline void s2io_wake_tx_queue(
607 	struct fifo_info *fifo, int cnt, u8 multiq)
608 {
609 
610 	if (multiq) {
611 		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
612 			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
613 	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
614 		if (netif_queue_stopped(fifo->dev)) {
615 			fifo->queue_state = FIFO_QUEUE_START;
616 			netif_wake_queue(fifo->dev);
617 		}
618 	}
619 }
620 
621 /**
622  * init_shared_mem - Allocation and Initialization of Memory
623  * @nic: Device private variable.
624  * Description: The function allocates all the memory areas shared
625  * between the NIC and the driver. This includes Tx descriptors,
626  * Rx descriptors and the statistics block.
627  */
628 
init_shared_mem(struct s2io_nic * nic)629 static int init_shared_mem(struct s2io_nic *nic)
630 {
631 	u32 size;
632 	void *tmp_v_addr, *tmp_v_addr_next;
633 	dma_addr_t tmp_p_addr, tmp_p_addr_next;
634 	struct RxD_block *pre_rxd_blk = NULL;
635 	int i, j, blk_cnt;
636 	int lst_size, lst_per_page;
637 	struct net_device *dev = nic->dev;
638 	unsigned long tmp;
639 	struct buffAdd *ba;
640 	struct config_param *config = &nic->config;
641 	struct mac_info *mac_control = &nic->mac_control;
642 	unsigned long long mem_allocated = 0;
643 
644 	/* Allocation and initialization of TXDLs in FIFOs */
645 	size = 0;
646 	for (i = 0; i < config->tx_fifo_num; i++) {
647 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
648 
649 		size += tx_cfg->fifo_len;
650 	}
651 	if (size > MAX_AVAILABLE_TXDS) {
652 		DBG_PRINT(ERR_DBG,
653 			  "Too many TxDs requested: %d, max supported: %d\n",
654 			  size, MAX_AVAILABLE_TXDS);
655 		return -EINVAL;
656 	}
657 
658 	size = 0;
659 	for (i = 0; i < config->tx_fifo_num; i++) {
660 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
661 
662 		size = tx_cfg->fifo_len;
663 		/*
664 		 * Legal values are from 2 to 8192
665 		 */
666 		if (size < 2) {
667 			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
668 				  "Valid lengths are 2 through 8192\n",
669 				  i, size);
670 			return -EINVAL;
671 		}
672 	}
673 
674 	lst_size = (sizeof(struct TxD) * config->max_txds);
675 	lst_per_page = PAGE_SIZE / lst_size;
676 
677 	for (i = 0; i < config->tx_fifo_num; i++) {
678 		struct fifo_info *fifo = &mac_control->fifos[i];
679 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
680 		int fifo_len = tx_cfg->fifo_len;
681 		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
682 
683 		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
684 		if (!fifo->list_info) {
685 			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
686 			return -ENOMEM;
687 		}
688 		mem_allocated += list_holder_size;
689 	}
690 	for (i = 0; i < config->tx_fifo_num; i++) {
691 		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
692 						lst_per_page);
693 		struct fifo_info *fifo = &mac_control->fifos[i];
694 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
695 
696 		fifo->tx_curr_put_info.offset = 0;
697 		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
698 		fifo->tx_curr_get_info.offset = 0;
699 		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
700 		fifo->fifo_no = i;
701 		fifo->nic = nic;
702 		fifo->max_txds = MAX_SKB_FRAGS + 2;
703 		fifo->dev = dev;
704 
705 		for (j = 0; j < page_num; j++) {
706 			int k = 0;
707 			dma_addr_t tmp_p;
708 			void *tmp_v;
709 			tmp_v = pci_alloc_consistent(nic->pdev,
710 						     PAGE_SIZE, &tmp_p);
711 			if (!tmp_v) {
712 				DBG_PRINT(INFO_DBG,
713 					  "pci_alloc_consistent failed for TxDL\n");
714 				return -ENOMEM;
715 			}
716 			/* If we got a zero DMA address(can happen on
717 			 * certain platforms like PPC), reallocate.
718 			 * Store virtual address of page we don't want,
719 			 * to be freed later.
720 			 */
721 			if (!tmp_p) {
722 				mac_control->zerodma_virt_addr = tmp_v;
723 				DBG_PRINT(INIT_DBG,
724 					  "%s: Zero DMA address for TxDL. "
725 					  "Virtual address %p\n",
726 					  dev->name, tmp_v);
727 				tmp_v = pci_alloc_consistent(nic->pdev,
728 							     PAGE_SIZE, &tmp_p);
729 				if (!tmp_v) {
730 					DBG_PRINT(INFO_DBG,
731 						  "pci_alloc_consistent failed for TxDL\n");
732 					return -ENOMEM;
733 				}
734 				mem_allocated += PAGE_SIZE;
735 			}
736 			while (k < lst_per_page) {
737 				int l = (j * lst_per_page) + k;
738 				if (l == tx_cfg->fifo_len)
739 					break;
740 				fifo->list_info[l].list_virt_addr =
741 					tmp_v + (k * lst_size);
742 				fifo->list_info[l].list_phy_addr =
743 					tmp_p + (k * lst_size);
744 				k++;
745 			}
746 		}
747 	}
748 
749 	for (i = 0; i < config->tx_fifo_num; i++) {
750 		struct fifo_info *fifo = &mac_control->fifos[i];
751 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
752 
753 		size = tx_cfg->fifo_len;
754 		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
755 		if (!fifo->ufo_in_band_v)
756 			return -ENOMEM;
757 		mem_allocated += (size * sizeof(u64));
758 	}
759 
760 	/* Allocation and initialization of RXDs in Rings */
761 	size = 0;
762 	for (i = 0; i < config->rx_ring_num; i++) {
763 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
764 		struct ring_info *ring = &mac_control->rings[i];
765 
766 		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
767 			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
768 				  "multiple of RxDs per Block\n",
769 				  dev->name, i);
770 			return FAILURE;
771 		}
772 		size += rx_cfg->num_rxd;
773 		ring->block_count = rx_cfg->num_rxd /
774 			(rxd_count[nic->rxd_mode] + 1);
775 		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
776 	}
777 	if (nic->rxd_mode == RXD_MODE_1)
778 		size = (size * (sizeof(struct RxD1)));
779 	else
780 		size = (size * (sizeof(struct RxD3)));
781 
782 	for (i = 0; i < config->rx_ring_num; i++) {
783 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
784 		struct ring_info *ring = &mac_control->rings[i];
785 
786 		ring->rx_curr_get_info.block_index = 0;
787 		ring->rx_curr_get_info.offset = 0;
788 		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
789 		ring->rx_curr_put_info.block_index = 0;
790 		ring->rx_curr_put_info.offset = 0;
791 		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
792 		ring->nic = nic;
793 		ring->ring_no = i;
794 
795 		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
796 		/*  Allocating all the Rx blocks */
797 		for (j = 0; j < blk_cnt; j++) {
798 			struct rx_block_info *rx_blocks;
799 			int l;
800 
801 			rx_blocks = &ring->rx_blocks[j];
802 			size = SIZE_OF_BLOCK;	/* size is always page size */
803 			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
804 							  &tmp_p_addr);
805 			if (tmp_v_addr == NULL) {
806 				/*
807 				 * In case of failure, free_shared_mem()
808 				 * is called, which should free any
809 				 * memory that was alloced till the
810 				 * failure happened.
811 				 */
812 				rx_blocks->block_virt_addr = tmp_v_addr;
813 				return -ENOMEM;
814 			}
815 			mem_allocated += size;
816 			memset(tmp_v_addr, 0, size);
817 
818 			size = sizeof(struct rxd_info) *
819 				rxd_count[nic->rxd_mode];
820 			rx_blocks->block_virt_addr = tmp_v_addr;
821 			rx_blocks->block_dma_addr = tmp_p_addr;
822 			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
823 			if (!rx_blocks->rxds)
824 				return -ENOMEM;
825 			mem_allocated += size;
826 			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
827 				rx_blocks->rxds[l].virt_addr =
828 					rx_blocks->block_virt_addr +
829 					(rxd_size[nic->rxd_mode] * l);
830 				rx_blocks->rxds[l].dma_addr =
831 					rx_blocks->block_dma_addr +
832 					(rxd_size[nic->rxd_mode] * l);
833 			}
834 		}
835 		/* Interlinking all Rx Blocks */
836 		for (j = 0; j < blk_cnt; j++) {
837 			int next = (j + 1) % blk_cnt;
838 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
839 			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
840 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
841 			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
842 
843 			pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
844 			pre_rxd_blk->reserved_2_pNext_RxD_block =
845 				(unsigned long)tmp_v_addr_next;
846 			pre_rxd_blk->pNext_RxD_Blk_physical =
847 				(u64)tmp_p_addr_next;
848 		}
849 	}
850 	if (nic->rxd_mode == RXD_MODE_3B) {
851 		/*
852 		 * Allocation of Storages for buffer addresses in 2BUFF mode
853 		 * and the buffers as well.
854 		 */
855 		for (i = 0; i < config->rx_ring_num; i++) {
856 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
857 			struct ring_info *ring = &mac_control->rings[i];
858 
859 			blk_cnt = rx_cfg->num_rxd /
860 				(rxd_count[nic->rxd_mode] + 1);
861 			size = sizeof(struct buffAdd *) * blk_cnt;
862 			ring->ba = kmalloc(size, GFP_KERNEL);
863 			if (!ring->ba)
864 				return -ENOMEM;
865 			mem_allocated += size;
866 			for (j = 0; j < blk_cnt; j++) {
867 				int k = 0;
868 
869 				size = sizeof(struct buffAdd) *
870 					(rxd_count[nic->rxd_mode] + 1);
871 				ring->ba[j] = kmalloc(size, GFP_KERNEL);
872 				if (!ring->ba[j])
873 					return -ENOMEM;
874 				mem_allocated += size;
875 				while (k != rxd_count[nic->rxd_mode]) {
876 					ba = &ring->ba[j][k];
877 					size = BUF0_LEN + ALIGN_SIZE;
878 					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
879 					if (!ba->ba_0_org)
880 						return -ENOMEM;
881 					mem_allocated += size;
882 					tmp = (unsigned long)ba->ba_0_org;
883 					tmp += ALIGN_SIZE;
884 					tmp &= ~((unsigned long)ALIGN_SIZE);
885 					ba->ba_0 = (void *)tmp;
886 
887 					size = BUF1_LEN + ALIGN_SIZE;
888 					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
889 					if (!ba->ba_1_org)
890 						return -ENOMEM;
891 					mem_allocated += size;
892 					tmp = (unsigned long)ba->ba_1_org;
893 					tmp += ALIGN_SIZE;
894 					tmp &= ~((unsigned long)ALIGN_SIZE);
895 					ba->ba_1 = (void *)tmp;
896 					k++;
897 				}
898 			}
899 		}
900 	}
901 
902 	/* Allocation and initialization of Statistics block */
903 	size = sizeof(struct stat_block);
904 	mac_control->stats_mem =
905 		pci_alloc_consistent(nic->pdev, size,
906 				     &mac_control->stats_mem_phy);
907 
908 	if (!mac_control->stats_mem) {
909 		/*
910 		 * In case of failure, free_shared_mem() is called, which
911 		 * should free any memory that was alloced till the
912 		 * failure happened.
913 		 */
914 		return -ENOMEM;
915 	}
916 	mem_allocated += size;
917 	mac_control->stats_mem_sz = size;
918 
919 	tmp_v_addr = mac_control->stats_mem;
920 	mac_control->stats_info = (struct stat_block *)tmp_v_addr;
921 	memset(tmp_v_addr, 0, size);
922 	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
923 		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
924 	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
925 	return SUCCESS;
926 }
927 
928 /**
929  * free_shared_mem - Free the allocated Memory
930  * @nic:  Device private variable.
931  * Description: This function is to free all memory locations allocated by
932  * the init_shared_mem() function and return it to the kernel.
933  */
934 
free_shared_mem(struct s2io_nic * nic)935 static void free_shared_mem(struct s2io_nic *nic)
936 {
937 	int i, j, blk_cnt, size;
938 	void *tmp_v_addr;
939 	dma_addr_t tmp_p_addr;
940 	int lst_size, lst_per_page;
941 	struct net_device *dev;
942 	int page_num = 0;
943 	struct config_param *config;
944 	struct mac_info *mac_control;
945 	struct stat_block *stats;
946 	struct swStat *swstats;
947 
948 	if (!nic)
949 		return;
950 
951 	dev = nic->dev;
952 
953 	config = &nic->config;
954 	mac_control = &nic->mac_control;
955 	stats = mac_control->stats_info;
956 	swstats = &stats->sw_stat;
957 
958 	lst_size = sizeof(struct TxD) * config->max_txds;
959 	lst_per_page = PAGE_SIZE / lst_size;
960 
961 	for (i = 0; i < config->tx_fifo_num; i++) {
962 		struct fifo_info *fifo = &mac_control->fifos[i];
963 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
964 
965 		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
966 		for (j = 0; j < page_num; j++) {
967 			int mem_blks = (j * lst_per_page);
968 			struct list_info_hold *fli;
969 
970 			if (!fifo->list_info)
971 				return;
972 
973 			fli = &fifo->list_info[mem_blks];
974 			if (!fli->list_virt_addr)
975 				break;
976 			pci_free_consistent(nic->pdev, PAGE_SIZE,
977 					    fli->list_virt_addr,
978 					    fli->list_phy_addr);
979 			swstats->mem_freed += PAGE_SIZE;
980 		}
981 		/* If we got a zero DMA address during allocation,
982 		 * free the page now
983 		 */
984 		if (mac_control->zerodma_virt_addr) {
985 			pci_free_consistent(nic->pdev, PAGE_SIZE,
986 					    mac_control->zerodma_virt_addr,
987 					    (dma_addr_t)0);
988 			DBG_PRINT(INIT_DBG,
989 				  "%s: Freeing TxDL with zero DMA address. "
990 				  "Virtual address %p\n",
991 				  dev->name, mac_control->zerodma_virt_addr);
992 			swstats->mem_freed += PAGE_SIZE;
993 		}
994 		kfree(fifo->list_info);
995 		swstats->mem_freed += tx_cfg->fifo_len *
996 			sizeof(struct list_info_hold);
997 	}
998 
999 	size = SIZE_OF_BLOCK;
1000 	for (i = 0; i < config->rx_ring_num; i++) {
1001 		struct ring_info *ring = &mac_control->rings[i];
1002 
1003 		blk_cnt = ring->block_count;
1004 		for (j = 0; j < blk_cnt; j++) {
1005 			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1006 			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1007 			if (tmp_v_addr == NULL)
1008 				break;
1009 			pci_free_consistent(nic->pdev, size,
1010 					    tmp_v_addr, tmp_p_addr);
1011 			swstats->mem_freed += size;
1012 			kfree(ring->rx_blocks[j].rxds);
1013 			swstats->mem_freed += sizeof(struct rxd_info) *
1014 				rxd_count[nic->rxd_mode];
1015 		}
1016 	}
1017 
1018 	if (nic->rxd_mode == RXD_MODE_3B) {
1019 		/* Freeing buffer storage addresses in 2BUFF mode. */
1020 		for (i = 0; i < config->rx_ring_num; i++) {
1021 			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1022 			struct ring_info *ring = &mac_control->rings[i];
1023 
1024 			blk_cnt = rx_cfg->num_rxd /
1025 				(rxd_count[nic->rxd_mode] + 1);
1026 			for (j = 0; j < blk_cnt; j++) {
1027 				int k = 0;
1028 				if (!ring->ba[j])
1029 					continue;
1030 				while (k != rxd_count[nic->rxd_mode]) {
1031 					struct buffAdd *ba = &ring->ba[j][k];
1032 					kfree(ba->ba_0_org);
1033 					swstats->mem_freed +=
1034 						BUF0_LEN + ALIGN_SIZE;
1035 					kfree(ba->ba_1_org);
1036 					swstats->mem_freed +=
1037 						BUF1_LEN + ALIGN_SIZE;
1038 					k++;
1039 				}
1040 				kfree(ring->ba[j]);
1041 				swstats->mem_freed += sizeof(struct buffAdd) *
1042 					(rxd_count[nic->rxd_mode] + 1);
1043 			}
1044 			kfree(ring->ba);
1045 			swstats->mem_freed += sizeof(struct buffAdd *) *
1046 				blk_cnt;
1047 		}
1048 	}
1049 
1050 	for (i = 0; i < nic->config.tx_fifo_num; i++) {
1051 		struct fifo_info *fifo = &mac_control->fifos[i];
1052 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1053 
1054 		if (fifo->ufo_in_band_v) {
1055 			swstats->mem_freed += tx_cfg->fifo_len *
1056 				sizeof(u64);
1057 			kfree(fifo->ufo_in_band_v);
1058 		}
1059 	}
1060 
1061 	if (mac_control->stats_mem) {
1062 		swstats->mem_freed += mac_control->stats_mem_sz;
1063 		pci_free_consistent(nic->pdev,
1064 				    mac_control->stats_mem_sz,
1065 				    mac_control->stats_mem,
1066 				    mac_control->stats_mem_phy);
1067 	}
1068 }
1069 
1070 /**
1071  * s2io_verify_pci_mode -
1072  */
1073 
s2io_verify_pci_mode(struct s2io_nic * nic)1074 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1075 {
1076 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1077 	register u64 val64 = 0;
1078 	int     mode;
1079 
1080 	val64 = readq(&bar0->pci_mode);
1081 	mode = (u8)GET_PCI_MODE(val64);
1082 
1083 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1084 		return -1;      /* Unknown PCI mode */
1085 	return mode;
1086 }
1087 
1088 #define NEC_VENID   0x1033
1089 #define NEC_DEVID   0x0125
s2io_on_nec_bridge(struct pci_dev * s2io_pdev)1090 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1091 {
1092 	struct pci_dev *tdev = NULL;
1093 	while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1094 		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1095 			if (tdev->bus == s2io_pdev->bus->parent) {
1096 				pci_dev_put(tdev);
1097 				return 1;
1098 			}
1099 		}
1100 	}
1101 	return 0;
1102 }
1103 
1104 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1105 /**
1106  * s2io_print_pci_mode -
1107  */
s2io_print_pci_mode(struct s2io_nic * nic)1108 static int s2io_print_pci_mode(struct s2io_nic *nic)
1109 {
1110 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1111 	register u64 val64 = 0;
1112 	int	mode;
1113 	struct config_param *config = &nic->config;
1114 	const char *pcimode;
1115 
1116 	val64 = readq(&bar0->pci_mode);
1117 	mode = (u8)GET_PCI_MODE(val64);
1118 
1119 	if (val64 & PCI_MODE_UNKNOWN_MODE)
1120 		return -1;	/* Unknown PCI mode */
1121 
1122 	config->bus_speed = bus_speed[mode];
1123 
1124 	if (s2io_on_nec_bridge(nic->pdev)) {
1125 		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1126 			  nic->dev->name);
1127 		return mode;
1128 	}
1129 
1130 	switch (mode) {
1131 	case PCI_MODE_PCI_33:
1132 		pcimode = "33MHz PCI bus";
1133 		break;
1134 	case PCI_MODE_PCI_66:
1135 		pcimode = "66MHz PCI bus";
1136 		break;
1137 	case PCI_MODE_PCIX_M1_66:
1138 		pcimode = "66MHz PCIX(M1) bus";
1139 		break;
1140 	case PCI_MODE_PCIX_M1_100:
1141 		pcimode = "100MHz PCIX(M1) bus";
1142 		break;
1143 	case PCI_MODE_PCIX_M1_133:
1144 		pcimode = "133MHz PCIX(M1) bus";
1145 		break;
1146 	case PCI_MODE_PCIX_M2_66:
1147 		pcimode = "133MHz PCIX(M2) bus";
1148 		break;
1149 	case PCI_MODE_PCIX_M2_100:
1150 		pcimode = "200MHz PCIX(M2) bus";
1151 		break;
1152 	case PCI_MODE_PCIX_M2_133:
1153 		pcimode = "266MHz PCIX(M2) bus";
1154 		break;
1155 	default:
1156 		pcimode = "unsupported bus!";
1157 		mode = -1;
1158 	}
1159 
1160 	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1161 		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1162 
1163 	return mode;
1164 }
1165 
1166 /**
1167  *  init_tti - Initialization transmit traffic interrupt scheme
1168  *  @nic: device private variable
1169  *  @link: link status (UP/DOWN) used to enable/disable continuous
1170  *  transmit interrupts
1171  *  Description: The function configures transmit traffic interrupts
1172  *  Return Value:  SUCCESS on success and
1173  *  '-1' on failure
1174  */
1175 
init_tti(struct s2io_nic * nic,int link)1176 static int init_tti(struct s2io_nic *nic, int link)
1177 {
1178 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1179 	register u64 val64 = 0;
1180 	int i;
1181 	struct config_param *config = &nic->config;
1182 
1183 	for (i = 0; i < config->tx_fifo_num; i++) {
1184 		/*
1185 		 * TTI Initialization. Default Tx timer gets us about
1186 		 * 250 interrupts per sec. Continuous interrupts are enabled
1187 		 * by default.
1188 		 */
1189 		if (nic->device_type == XFRAME_II_DEVICE) {
1190 			int count = (nic->config.bus_speed * 125)/2;
1191 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1192 		} else
1193 			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1194 
1195 		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1196 			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1197 			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1198 			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1199 		if (i == 0)
1200 			if (use_continuous_tx_intrs && (link == LINK_UP))
1201 				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1202 		writeq(val64, &bar0->tti_data1_mem);
1203 
1204 		if (nic->config.intr_type == MSI_X) {
1205 			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1206 				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1207 				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1208 				TTI_DATA2_MEM_TX_UFC_D(0x300);
1209 		} else {
1210 			if ((nic->config.tx_steering_type ==
1211 			     TX_DEFAULT_STEERING) &&
1212 			    (config->tx_fifo_num > 1) &&
1213 			    (i >= nic->udp_fifo_idx) &&
1214 			    (i < (nic->udp_fifo_idx +
1215 				  nic->total_udp_fifos)))
1216 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1217 					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1218 					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1219 					TTI_DATA2_MEM_TX_UFC_D(0x120);
1220 			else
1221 				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1222 					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1223 					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1224 					TTI_DATA2_MEM_TX_UFC_D(0x80);
1225 		}
1226 
1227 		writeq(val64, &bar0->tti_data2_mem);
1228 
1229 		val64 = TTI_CMD_MEM_WE |
1230 			TTI_CMD_MEM_STROBE_NEW_CMD |
1231 			TTI_CMD_MEM_OFFSET(i);
1232 		writeq(val64, &bar0->tti_command_mem);
1233 
1234 		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1235 					  TTI_CMD_MEM_STROBE_NEW_CMD,
1236 					  S2IO_BIT_RESET) != SUCCESS)
1237 			return FAILURE;
1238 	}
1239 
1240 	return SUCCESS;
1241 }
1242 
1243 /**
1244  *  init_nic - Initialization of hardware
1245  *  @nic: device private variable
1246  *  Description: The function sequentially configures every block
1247  *  of the H/W from their reset values.
1248  *  Return Value:  SUCCESS on success and
1249  *  '-1' on failure (endian settings incorrect).
1250  */
1251 
init_nic(struct s2io_nic * nic)1252 static int init_nic(struct s2io_nic *nic)
1253 {
1254 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1255 	struct net_device *dev = nic->dev;
1256 	register u64 val64 = 0;
1257 	void __iomem *add;
1258 	u32 time;
1259 	int i, j;
1260 	int dtx_cnt = 0;
1261 	unsigned long long mem_share;
1262 	int mem_size;
1263 	struct config_param *config = &nic->config;
1264 	struct mac_info *mac_control = &nic->mac_control;
1265 
1266 	/* to set the swapper controle on the card */
1267 	if (s2io_set_swapper(nic)) {
1268 		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1269 		return -EIO;
1270 	}
1271 
1272 	/*
1273 	 * Herc requires EOI to be removed from reset before XGXS, so..
1274 	 */
1275 	if (nic->device_type & XFRAME_II_DEVICE) {
1276 		val64 = 0xA500000000ULL;
1277 		writeq(val64, &bar0->sw_reset);
1278 		msleep(500);
1279 		val64 = readq(&bar0->sw_reset);
1280 	}
1281 
1282 	/* Remove XGXS from reset state */
1283 	val64 = 0;
1284 	writeq(val64, &bar0->sw_reset);
1285 	msleep(500);
1286 	val64 = readq(&bar0->sw_reset);
1287 
1288 	/* Ensure that it's safe to access registers by checking
1289 	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1290 	 */
1291 	if (nic->device_type == XFRAME_II_DEVICE) {
1292 		for (i = 0; i < 50; i++) {
1293 			val64 = readq(&bar0->adapter_status);
1294 			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1295 				break;
1296 			msleep(10);
1297 		}
1298 		if (i == 50)
1299 			return -ENODEV;
1300 	}
1301 
1302 	/*  Enable Receiving broadcasts */
1303 	add = &bar0->mac_cfg;
1304 	val64 = readq(&bar0->mac_cfg);
1305 	val64 |= MAC_RMAC_BCAST_ENABLE;
1306 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1307 	writel((u32)val64, add);
1308 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1309 	writel((u32) (val64 >> 32), (add + 4));
1310 
1311 	/* Read registers in all blocks */
1312 	val64 = readq(&bar0->mac_int_mask);
1313 	val64 = readq(&bar0->mc_int_mask);
1314 	val64 = readq(&bar0->xgxs_int_mask);
1315 
1316 	/*  Set MTU */
1317 	val64 = dev->mtu;
1318 	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1319 
1320 	if (nic->device_type & XFRAME_II_DEVICE) {
1321 		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1322 			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1323 					  &bar0->dtx_control, UF);
1324 			if (dtx_cnt & 0x1)
1325 				msleep(1); /* Necessary!! */
1326 			dtx_cnt++;
1327 		}
1328 	} else {
1329 		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1330 			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1331 					  &bar0->dtx_control, UF);
1332 			val64 = readq(&bar0->dtx_control);
1333 			dtx_cnt++;
1334 		}
1335 	}
1336 
1337 	/*  Tx DMA Initialization */
1338 	val64 = 0;
1339 	writeq(val64, &bar0->tx_fifo_partition_0);
1340 	writeq(val64, &bar0->tx_fifo_partition_1);
1341 	writeq(val64, &bar0->tx_fifo_partition_2);
1342 	writeq(val64, &bar0->tx_fifo_partition_3);
1343 
1344 	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1345 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1346 
1347 		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1348 			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1349 
1350 		if (i == (config->tx_fifo_num - 1)) {
1351 			if (i % 2 == 0)
1352 				i++;
1353 		}
1354 
1355 		switch (i) {
1356 		case 1:
1357 			writeq(val64, &bar0->tx_fifo_partition_0);
1358 			val64 = 0;
1359 			j = 0;
1360 			break;
1361 		case 3:
1362 			writeq(val64, &bar0->tx_fifo_partition_1);
1363 			val64 = 0;
1364 			j = 0;
1365 			break;
1366 		case 5:
1367 			writeq(val64, &bar0->tx_fifo_partition_2);
1368 			val64 = 0;
1369 			j = 0;
1370 			break;
1371 		case 7:
1372 			writeq(val64, &bar0->tx_fifo_partition_3);
1373 			val64 = 0;
1374 			j = 0;
1375 			break;
1376 		default:
1377 			j++;
1378 			break;
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1384 	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1385 	 */
1386 	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1387 		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1388 
1389 	val64 = readq(&bar0->tx_fifo_partition_0);
1390 	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1391 		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1392 
1393 	/*
1394 	 * Initialization of Tx_PA_CONFIG register to ignore packet
1395 	 * integrity checking.
1396 	 */
1397 	val64 = readq(&bar0->tx_pa_cfg);
1398 	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1399 		TX_PA_CFG_IGNORE_SNAP_OUI |
1400 		TX_PA_CFG_IGNORE_LLC_CTRL |
1401 		TX_PA_CFG_IGNORE_L2_ERR;
1402 	writeq(val64, &bar0->tx_pa_cfg);
1403 
1404 	/* Rx DMA intialization. */
1405 	val64 = 0;
1406 	for (i = 0; i < config->rx_ring_num; i++) {
1407 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1408 
1409 		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1410 	}
1411 	writeq(val64, &bar0->rx_queue_priority);
1412 
1413 	/*
1414 	 * Allocating equal share of memory to all the
1415 	 * configured Rings.
1416 	 */
1417 	val64 = 0;
1418 	if (nic->device_type & XFRAME_II_DEVICE)
1419 		mem_size = 32;
1420 	else
1421 		mem_size = 64;
1422 
1423 	for (i = 0; i < config->rx_ring_num; i++) {
1424 		switch (i) {
1425 		case 0:
1426 			mem_share = (mem_size / config->rx_ring_num +
1427 				     mem_size % config->rx_ring_num);
1428 			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1429 			continue;
1430 		case 1:
1431 			mem_share = (mem_size / config->rx_ring_num);
1432 			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1433 			continue;
1434 		case 2:
1435 			mem_share = (mem_size / config->rx_ring_num);
1436 			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1437 			continue;
1438 		case 3:
1439 			mem_share = (mem_size / config->rx_ring_num);
1440 			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1441 			continue;
1442 		case 4:
1443 			mem_share = (mem_size / config->rx_ring_num);
1444 			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1445 			continue;
1446 		case 5:
1447 			mem_share = (mem_size / config->rx_ring_num);
1448 			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1449 			continue;
1450 		case 6:
1451 			mem_share = (mem_size / config->rx_ring_num);
1452 			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1453 			continue;
1454 		case 7:
1455 			mem_share = (mem_size / config->rx_ring_num);
1456 			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1457 			continue;
1458 		}
1459 	}
1460 	writeq(val64, &bar0->rx_queue_cfg);
1461 
1462 	/*
1463 	 * Filling Tx round robin registers
1464 	 * as per the number of FIFOs for equal scheduling priority
1465 	 */
1466 	switch (config->tx_fifo_num) {
1467 	case 1:
1468 		val64 = 0x0;
1469 		writeq(val64, &bar0->tx_w_round_robin_0);
1470 		writeq(val64, &bar0->tx_w_round_robin_1);
1471 		writeq(val64, &bar0->tx_w_round_robin_2);
1472 		writeq(val64, &bar0->tx_w_round_robin_3);
1473 		writeq(val64, &bar0->tx_w_round_robin_4);
1474 		break;
1475 	case 2:
1476 		val64 = 0x0001000100010001ULL;
1477 		writeq(val64, &bar0->tx_w_round_robin_0);
1478 		writeq(val64, &bar0->tx_w_round_robin_1);
1479 		writeq(val64, &bar0->tx_w_round_robin_2);
1480 		writeq(val64, &bar0->tx_w_round_robin_3);
1481 		val64 = 0x0001000100000000ULL;
1482 		writeq(val64, &bar0->tx_w_round_robin_4);
1483 		break;
1484 	case 3:
1485 		val64 = 0x0001020001020001ULL;
1486 		writeq(val64, &bar0->tx_w_round_robin_0);
1487 		val64 = 0x0200010200010200ULL;
1488 		writeq(val64, &bar0->tx_w_round_robin_1);
1489 		val64 = 0x0102000102000102ULL;
1490 		writeq(val64, &bar0->tx_w_round_robin_2);
1491 		val64 = 0x0001020001020001ULL;
1492 		writeq(val64, &bar0->tx_w_round_robin_3);
1493 		val64 = 0x0200010200000000ULL;
1494 		writeq(val64, &bar0->tx_w_round_robin_4);
1495 		break;
1496 	case 4:
1497 		val64 = 0x0001020300010203ULL;
1498 		writeq(val64, &bar0->tx_w_round_robin_0);
1499 		writeq(val64, &bar0->tx_w_round_robin_1);
1500 		writeq(val64, &bar0->tx_w_round_robin_2);
1501 		writeq(val64, &bar0->tx_w_round_robin_3);
1502 		val64 = 0x0001020300000000ULL;
1503 		writeq(val64, &bar0->tx_w_round_robin_4);
1504 		break;
1505 	case 5:
1506 		val64 = 0x0001020304000102ULL;
1507 		writeq(val64, &bar0->tx_w_round_robin_0);
1508 		val64 = 0x0304000102030400ULL;
1509 		writeq(val64, &bar0->tx_w_round_robin_1);
1510 		val64 = 0x0102030400010203ULL;
1511 		writeq(val64, &bar0->tx_w_round_robin_2);
1512 		val64 = 0x0400010203040001ULL;
1513 		writeq(val64, &bar0->tx_w_round_robin_3);
1514 		val64 = 0x0203040000000000ULL;
1515 		writeq(val64, &bar0->tx_w_round_robin_4);
1516 		break;
1517 	case 6:
1518 		val64 = 0x0001020304050001ULL;
1519 		writeq(val64, &bar0->tx_w_round_robin_0);
1520 		val64 = 0x0203040500010203ULL;
1521 		writeq(val64, &bar0->tx_w_round_robin_1);
1522 		val64 = 0x0405000102030405ULL;
1523 		writeq(val64, &bar0->tx_w_round_robin_2);
1524 		val64 = 0x0001020304050001ULL;
1525 		writeq(val64, &bar0->tx_w_round_robin_3);
1526 		val64 = 0x0203040500000000ULL;
1527 		writeq(val64, &bar0->tx_w_round_robin_4);
1528 		break;
1529 	case 7:
1530 		val64 = 0x0001020304050600ULL;
1531 		writeq(val64, &bar0->tx_w_round_robin_0);
1532 		val64 = 0x0102030405060001ULL;
1533 		writeq(val64, &bar0->tx_w_round_robin_1);
1534 		val64 = 0x0203040506000102ULL;
1535 		writeq(val64, &bar0->tx_w_round_robin_2);
1536 		val64 = 0x0304050600010203ULL;
1537 		writeq(val64, &bar0->tx_w_round_robin_3);
1538 		val64 = 0x0405060000000000ULL;
1539 		writeq(val64, &bar0->tx_w_round_robin_4);
1540 		break;
1541 	case 8:
1542 		val64 = 0x0001020304050607ULL;
1543 		writeq(val64, &bar0->tx_w_round_robin_0);
1544 		writeq(val64, &bar0->tx_w_round_robin_1);
1545 		writeq(val64, &bar0->tx_w_round_robin_2);
1546 		writeq(val64, &bar0->tx_w_round_robin_3);
1547 		val64 = 0x0001020300000000ULL;
1548 		writeq(val64, &bar0->tx_w_round_robin_4);
1549 		break;
1550 	}
1551 
1552 	/* Enable all configured Tx FIFO partitions */
1553 	val64 = readq(&bar0->tx_fifo_partition_0);
1554 	val64 |= (TX_FIFO_PARTITION_EN);
1555 	writeq(val64, &bar0->tx_fifo_partition_0);
1556 
1557 	/* Filling the Rx round robin registers as per the
1558 	 * number of Rings and steering based on QoS with
1559 	 * equal priority.
1560 	 */
1561 	switch (config->rx_ring_num) {
1562 	case 1:
1563 		val64 = 0x0;
1564 		writeq(val64, &bar0->rx_w_round_robin_0);
1565 		writeq(val64, &bar0->rx_w_round_robin_1);
1566 		writeq(val64, &bar0->rx_w_round_robin_2);
1567 		writeq(val64, &bar0->rx_w_round_robin_3);
1568 		writeq(val64, &bar0->rx_w_round_robin_4);
1569 
1570 		val64 = 0x8080808080808080ULL;
1571 		writeq(val64, &bar0->rts_qos_steering);
1572 		break;
1573 	case 2:
1574 		val64 = 0x0001000100010001ULL;
1575 		writeq(val64, &bar0->rx_w_round_robin_0);
1576 		writeq(val64, &bar0->rx_w_round_robin_1);
1577 		writeq(val64, &bar0->rx_w_round_robin_2);
1578 		writeq(val64, &bar0->rx_w_round_robin_3);
1579 		val64 = 0x0001000100000000ULL;
1580 		writeq(val64, &bar0->rx_w_round_robin_4);
1581 
1582 		val64 = 0x8080808040404040ULL;
1583 		writeq(val64, &bar0->rts_qos_steering);
1584 		break;
1585 	case 3:
1586 		val64 = 0x0001020001020001ULL;
1587 		writeq(val64, &bar0->rx_w_round_robin_0);
1588 		val64 = 0x0200010200010200ULL;
1589 		writeq(val64, &bar0->rx_w_round_robin_1);
1590 		val64 = 0x0102000102000102ULL;
1591 		writeq(val64, &bar0->rx_w_round_robin_2);
1592 		val64 = 0x0001020001020001ULL;
1593 		writeq(val64, &bar0->rx_w_round_robin_3);
1594 		val64 = 0x0200010200000000ULL;
1595 		writeq(val64, &bar0->rx_w_round_robin_4);
1596 
1597 		val64 = 0x8080804040402020ULL;
1598 		writeq(val64, &bar0->rts_qos_steering);
1599 		break;
1600 	case 4:
1601 		val64 = 0x0001020300010203ULL;
1602 		writeq(val64, &bar0->rx_w_round_robin_0);
1603 		writeq(val64, &bar0->rx_w_round_robin_1);
1604 		writeq(val64, &bar0->rx_w_round_robin_2);
1605 		writeq(val64, &bar0->rx_w_round_robin_3);
1606 		val64 = 0x0001020300000000ULL;
1607 		writeq(val64, &bar0->rx_w_round_robin_4);
1608 
1609 		val64 = 0x8080404020201010ULL;
1610 		writeq(val64, &bar0->rts_qos_steering);
1611 		break;
1612 	case 5:
1613 		val64 = 0x0001020304000102ULL;
1614 		writeq(val64, &bar0->rx_w_round_robin_0);
1615 		val64 = 0x0304000102030400ULL;
1616 		writeq(val64, &bar0->rx_w_round_robin_1);
1617 		val64 = 0x0102030400010203ULL;
1618 		writeq(val64, &bar0->rx_w_round_robin_2);
1619 		val64 = 0x0400010203040001ULL;
1620 		writeq(val64, &bar0->rx_w_round_robin_3);
1621 		val64 = 0x0203040000000000ULL;
1622 		writeq(val64, &bar0->rx_w_round_robin_4);
1623 
1624 		val64 = 0x8080404020201008ULL;
1625 		writeq(val64, &bar0->rts_qos_steering);
1626 		break;
1627 	case 6:
1628 		val64 = 0x0001020304050001ULL;
1629 		writeq(val64, &bar0->rx_w_round_robin_0);
1630 		val64 = 0x0203040500010203ULL;
1631 		writeq(val64, &bar0->rx_w_round_robin_1);
1632 		val64 = 0x0405000102030405ULL;
1633 		writeq(val64, &bar0->rx_w_round_robin_2);
1634 		val64 = 0x0001020304050001ULL;
1635 		writeq(val64, &bar0->rx_w_round_robin_3);
1636 		val64 = 0x0203040500000000ULL;
1637 		writeq(val64, &bar0->rx_w_round_robin_4);
1638 
1639 		val64 = 0x8080404020100804ULL;
1640 		writeq(val64, &bar0->rts_qos_steering);
1641 		break;
1642 	case 7:
1643 		val64 = 0x0001020304050600ULL;
1644 		writeq(val64, &bar0->rx_w_round_robin_0);
1645 		val64 = 0x0102030405060001ULL;
1646 		writeq(val64, &bar0->rx_w_round_robin_1);
1647 		val64 = 0x0203040506000102ULL;
1648 		writeq(val64, &bar0->rx_w_round_robin_2);
1649 		val64 = 0x0304050600010203ULL;
1650 		writeq(val64, &bar0->rx_w_round_robin_3);
1651 		val64 = 0x0405060000000000ULL;
1652 		writeq(val64, &bar0->rx_w_round_robin_4);
1653 
1654 		val64 = 0x8080402010080402ULL;
1655 		writeq(val64, &bar0->rts_qos_steering);
1656 		break;
1657 	case 8:
1658 		val64 = 0x0001020304050607ULL;
1659 		writeq(val64, &bar0->rx_w_round_robin_0);
1660 		writeq(val64, &bar0->rx_w_round_robin_1);
1661 		writeq(val64, &bar0->rx_w_round_robin_2);
1662 		writeq(val64, &bar0->rx_w_round_robin_3);
1663 		val64 = 0x0001020300000000ULL;
1664 		writeq(val64, &bar0->rx_w_round_robin_4);
1665 
1666 		val64 = 0x8040201008040201ULL;
1667 		writeq(val64, &bar0->rts_qos_steering);
1668 		break;
1669 	}
1670 
1671 	/* UDP Fix */
1672 	val64 = 0;
1673 	for (i = 0; i < 8; i++)
1674 		writeq(val64, &bar0->rts_frm_len_n[i]);
1675 
1676 	/* Set the default rts frame length for the rings configured */
1677 	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1678 	for (i = 0 ; i < config->rx_ring_num ; i++)
1679 		writeq(val64, &bar0->rts_frm_len_n[i]);
1680 
1681 	/* Set the frame length for the configured rings
1682 	 * desired by the user
1683 	 */
1684 	for (i = 0; i < config->rx_ring_num; i++) {
1685 		/* If rts_frm_len[i] == 0 then it is assumed that user not
1686 		 * specified frame length steering.
1687 		 * If the user provides the frame length then program
1688 		 * the rts_frm_len register for those values or else
1689 		 * leave it as it is.
1690 		 */
1691 		if (rts_frm_len[i] != 0) {
1692 			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1693 			       &bar0->rts_frm_len_n[i]);
1694 		}
1695 	}
1696 
1697 	/* Disable differentiated services steering logic */
1698 	for (i = 0; i < 64; i++) {
1699 		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1700 			DBG_PRINT(ERR_DBG,
1701 				  "%s: rts_ds_steer failed on codepoint %d\n",
1702 				  dev->name, i);
1703 			return -ENODEV;
1704 		}
1705 	}
1706 
1707 	/* Program statistics memory */
1708 	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1709 
1710 	if (nic->device_type == XFRAME_II_DEVICE) {
1711 		val64 = STAT_BC(0x320);
1712 		writeq(val64, &bar0->stat_byte_cnt);
1713 	}
1714 
1715 	/*
1716 	 * Initializing the sampling rate for the device to calculate the
1717 	 * bandwidth utilization.
1718 	 */
1719 	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1720 		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1721 	writeq(val64, &bar0->mac_link_util);
1722 
1723 	/*
1724 	 * Initializing the Transmit and Receive Traffic Interrupt
1725 	 * Scheme.
1726 	 */
1727 
1728 	/* Initialize TTI */
1729 	if (SUCCESS != init_tti(nic, nic->last_link_state))
1730 		return -ENODEV;
1731 
1732 	/* RTI Initialization */
1733 	if (nic->device_type == XFRAME_II_DEVICE) {
1734 		/*
1735 		 * Programmed to generate Apprx 500 Intrs per
1736 		 * second
1737 		 */
1738 		int count = (nic->config.bus_speed * 125)/4;
1739 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1740 	} else
1741 		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1742 	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1743 		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1744 		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1745 		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1746 
1747 	writeq(val64, &bar0->rti_data1_mem);
1748 
1749 	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1750 		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1751 	if (nic->config.intr_type == MSI_X)
1752 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1753 			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1754 	else
1755 		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1756 			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1757 	writeq(val64, &bar0->rti_data2_mem);
1758 
1759 	for (i = 0; i < config->rx_ring_num; i++) {
1760 		val64 = RTI_CMD_MEM_WE |
1761 			RTI_CMD_MEM_STROBE_NEW_CMD |
1762 			RTI_CMD_MEM_OFFSET(i);
1763 		writeq(val64, &bar0->rti_command_mem);
1764 
1765 		/*
1766 		 * Once the operation completes, the Strobe bit of the
1767 		 * command register will be reset. We poll for this
1768 		 * particular condition. We wait for a maximum of 500ms
1769 		 * for the operation to complete, if it's not complete
1770 		 * by then we return error.
1771 		 */
1772 		time = 0;
1773 		while (true) {
1774 			val64 = readq(&bar0->rti_command_mem);
1775 			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1776 				break;
1777 
1778 			if (time > 10) {
1779 				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1780 					  dev->name);
1781 				return -ENODEV;
1782 			}
1783 			time++;
1784 			msleep(50);
1785 		}
1786 	}
1787 
1788 	/*
1789 	 * Initializing proper values as Pause threshold into all
1790 	 * the 8 Queues on Rx side.
1791 	 */
1792 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1793 	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1794 
1795 	/* Disable RMAC PAD STRIPPING */
1796 	add = &bar0->mac_cfg;
1797 	val64 = readq(&bar0->mac_cfg);
1798 	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1799 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1800 	writel((u32) (val64), add);
1801 	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1802 	writel((u32) (val64 >> 32), (add + 4));
1803 	val64 = readq(&bar0->mac_cfg);
1804 
1805 	/* Enable FCS stripping by adapter */
1806 	add = &bar0->mac_cfg;
1807 	val64 = readq(&bar0->mac_cfg);
1808 	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1809 	if (nic->device_type == XFRAME_II_DEVICE)
1810 		writeq(val64, &bar0->mac_cfg);
1811 	else {
1812 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1813 		writel((u32) (val64), add);
1814 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1815 		writel((u32) (val64 >> 32), (add + 4));
1816 	}
1817 
1818 	/*
1819 	 * Set the time value to be inserted in the pause frame
1820 	 * generated by xena.
1821 	 */
1822 	val64 = readq(&bar0->rmac_pause_cfg);
1823 	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1824 	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1825 	writeq(val64, &bar0->rmac_pause_cfg);
1826 
1827 	/*
1828 	 * Set the Threshold Limit for Generating the pause frame
1829 	 * If the amount of data in any Queue exceeds ratio of
1830 	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1831 	 * pause frame is generated
1832 	 */
1833 	val64 = 0;
1834 	for (i = 0; i < 4; i++) {
1835 		val64 |= (((u64)0xFF00 |
1836 			   nic->mac_control.mc_pause_threshold_q0q3)
1837 			  << (i * 2 * 8));
1838 	}
1839 	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1840 
1841 	val64 = 0;
1842 	for (i = 0; i < 4; i++) {
1843 		val64 |= (((u64)0xFF00 |
1844 			   nic->mac_control.mc_pause_threshold_q4q7)
1845 			  << (i * 2 * 8));
1846 	}
1847 	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1848 
1849 	/*
1850 	 * TxDMA will stop Read request if the number of read split has
1851 	 * exceeded the limit pointed by shared_splits
1852 	 */
1853 	val64 = readq(&bar0->pic_control);
1854 	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1855 	writeq(val64, &bar0->pic_control);
1856 
1857 	if (nic->config.bus_speed == 266) {
1858 		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1859 		writeq(0x0, &bar0->read_retry_delay);
1860 		writeq(0x0, &bar0->write_retry_delay);
1861 	}
1862 
1863 	/*
1864 	 * Programming the Herc to split every write transaction
1865 	 * that does not start on an ADB to reduce disconnects.
1866 	 */
1867 	if (nic->device_type == XFRAME_II_DEVICE) {
1868 		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1869 			MISC_LINK_STABILITY_PRD(3);
1870 		writeq(val64, &bar0->misc_control);
1871 		val64 = readq(&bar0->pic_control2);
1872 		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1873 		writeq(val64, &bar0->pic_control2);
1874 	}
1875 	if (strstr(nic->product_name, "CX4")) {
1876 		val64 = TMAC_AVG_IPG(0x17);
1877 		writeq(val64, &bar0->tmac_avg_ipg);
1878 	}
1879 
1880 	return SUCCESS;
1881 }
1882 #define LINK_UP_DOWN_INTERRUPT		1
1883 #define MAC_RMAC_ERR_TIMER		2
1884 
s2io_link_fault_indication(struct s2io_nic * nic)1885 static int s2io_link_fault_indication(struct s2io_nic *nic)
1886 {
1887 	if (nic->device_type == XFRAME_II_DEVICE)
1888 		return LINK_UP_DOWN_INTERRUPT;
1889 	else
1890 		return MAC_RMAC_ERR_TIMER;
1891 }
1892 
1893 /**
1894  *  do_s2io_write_bits -  update alarm bits in alarm register
1895  *  @value: alarm bits
1896  *  @flag: interrupt status
1897  *  @addr: address value
1898  *  Description: update alarm bits in alarm register
1899  *  Return Value:
1900  *  NONE.
1901  */
do_s2io_write_bits(u64 value,int flag,void __iomem * addr)1902 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1903 {
1904 	u64 temp64;
1905 
1906 	temp64 = readq(addr);
1907 
1908 	if (flag == ENABLE_INTRS)
1909 		temp64 &= ~((u64)value);
1910 	else
1911 		temp64 |= ((u64)value);
1912 	writeq(temp64, addr);
1913 }
1914 
en_dis_err_alarms(struct s2io_nic * nic,u16 mask,int flag)1915 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1916 {
1917 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1918 	register u64 gen_int_mask = 0;
1919 	u64 interruptible;
1920 
1921 	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1922 	if (mask & TX_DMA_INTR) {
1923 		gen_int_mask |= TXDMA_INT_M;
1924 
1925 		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1926 				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1927 				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1928 				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1929 
1930 		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1931 				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1932 				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1933 				   &bar0->pfc_err_mask);
1934 
1935 		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1936 				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1937 				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1938 
1939 		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1940 				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1941 				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1942 				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1943 				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1944 				   PCC_TXB_ECC_SG_ERR,
1945 				   flag, &bar0->pcc_err_mask);
1946 
1947 		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1948 				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1949 
1950 		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1951 				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1952 				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1953 				   flag, &bar0->lso_err_mask);
1954 
1955 		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1956 				   flag, &bar0->tpa_err_mask);
1957 
1958 		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1959 	}
1960 
1961 	if (mask & TX_MAC_INTR) {
1962 		gen_int_mask |= TXMAC_INT_M;
1963 		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1964 				   &bar0->mac_int_mask);
1965 		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1966 				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1967 				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1968 				   flag, &bar0->mac_tmac_err_mask);
1969 	}
1970 
1971 	if (mask & TX_XGXS_INTR) {
1972 		gen_int_mask |= TXXGXS_INT_M;
1973 		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1974 				   &bar0->xgxs_int_mask);
1975 		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1976 				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1977 				   flag, &bar0->xgxs_txgxs_err_mask);
1978 	}
1979 
1980 	if (mask & RX_DMA_INTR) {
1981 		gen_int_mask |= RXDMA_INT_M;
1982 		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1983 				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1984 				   flag, &bar0->rxdma_int_mask);
1985 		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1986 				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1987 				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1988 				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1989 		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1990 				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1991 				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1992 				   &bar0->prc_pcix_err_mask);
1993 		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1994 				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1995 				   &bar0->rpa_err_mask);
1996 		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1997 				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1998 				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1999 				   RDA_FRM_ECC_SG_ERR |
2000 				   RDA_MISC_ERR|RDA_PCIX_ERR,
2001 				   flag, &bar0->rda_err_mask);
2002 		do_s2io_write_bits(RTI_SM_ERR_ALARM |
2003 				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2004 				   flag, &bar0->rti_err_mask);
2005 	}
2006 
2007 	if (mask & RX_MAC_INTR) {
2008 		gen_int_mask |= RXMAC_INT_M;
2009 		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2010 				   &bar0->mac_int_mask);
2011 		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2012 				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2013 				 RMAC_DOUBLE_ECC_ERR);
2014 		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2015 			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2016 		do_s2io_write_bits(interruptible,
2017 				   flag, &bar0->mac_rmac_err_mask);
2018 	}
2019 
2020 	if (mask & RX_XGXS_INTR) {
2021 		gen_int_mask |= RXXGXS_INT_M;
2022 		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2023 				   &bar0->xgxs_int_mask);
2024 		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2025 				   &bar0->xgxs_rxgxs_err_mask);
2026 	}
2027 
2028 	if (mask & MC_INTR) {
2029 		gen_int_mask |= MC_INT_M;
2030 		do_s2io_write_bits(MC_INT_MASK_MC_INT,
2031 				   flag, &bar0->mc_int_mask);
2032 		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2033 				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2034 				   &bar0->mc_err_mask);
2035 	}
2036 	nic->general_int_mask = gen_int_mask;
2037 
2038 	/* Remove this line when alarm interrupts are enabled */
2039 	nic->general_int_mask = 0;
2040 }
2041 
2042 /**
2043  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2044  *  @nic: device private variable,
2045  *  @mask: A mask indicating which Intr block must be modified and,
2046  *  @flag: A flag indicating whether to enable or disable the Intrs.
2047  *  Description: This function will either disable or enable the interrupts
2048  *  depending on the flag argument. The mask argument can be used to
2049  *  enable/disable any Intr block.
2050  *  Return Value: NONE.
2051  */
2052 
en_dis_able_nic_intrs(struct s2io_nic * nic,u16 mask,int flag)2053 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2054 {
2055 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2056 	register u64 temp64 = 0, intr_mask = 0;
2057 
2058 	intr_mask = nic->general_int_mask;
2059 
2060 	/*  Top level interrupt classification */
2061 	/*  PIC Interrupts */
2062 	if (mask & TX_PIC_INTR) {
2063 		/*  Enable PIC Intrs in the general intr mask register */
2064 		intr_mask |= TXPIC_INT_M;
2065 		if (flag == ENABLE_INTRS) {
2066 			/*
2067 			 * If Hercules adapter enable GPIO otherwise
2068 			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2069 			 * interrupts for now.
2070 			 * TODO
2071 			 */
2072 			if (s2io_link_fault_indication(nic) ==
2073 			    LINK_UP_DOWN_INTERRUPT) {
2074 				do_s2io_write_bits(PIC_INT_GPIO, flag,
2075 						   &bar0->pic_int_mask);
2076 				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2077 						   &bar0->gpio_int_mask);
2078 			} else
2079 				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2080 		} else if (flag == DISABLE_INTRS) {
2081 			/*
2082 			 * Disable PIC Intrs in the general
2083 			 * intr mask register
2084 			 */
2085 			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2086 		}
2087 	}
2088 
2089 	/*  Tx traffic interrupts */
2090 	if (mask & TX_TRAFFIC_INTR) {
2091 		intr_mask |= TXTRAFFIC_INT_M;
2092 		if (flag == ENABLE_INTRS) {
2093 			/*
2094 			 * Enable all the Tx side interrupts
2095 			 * writing 0 Enables all 64 TX interrupt levels
2096 			 */
2097 			writeq(0x0, &bar0->tx_traffic_mask);
2098 		} else if (flag == DISABLE_INTRS) {
2099 			/*
2100 			 * Disable Tx Traffic Intrs in the general intr mask
2101 			 * register.
2102 			 */
2103 			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2104 		}
2105 	}
2106 
2107 	/*  Rx traffic interrupts */
2108 	if (mask & RX_TRAFFIC_INTR) {
2109 		intr_mask |= RXTRAFFIC_INT_M;
2110 		if (flag == ENABLE_INTRS) {
2111 			/* writing 0 Enables all 8 RX interrupt levels */
2112 			writeq(0x0, &bar0->rx_traffic_mask);
2113 		} else if (flag == DISABLE_INTRS) {
2114 			/*
2115 			 * Disable Rx Traffic Intrs in the general intr mask
2116 			 * register.
2117 			 */
2118 			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2119 		}
2120 	}
2121 
2122 	temp64 = readq(&bar0->general_int_mask);
2123 	if (flag == ENABLE_INTRS)
2124 		temp64 &= ~((u64)intr_mask);
2125 	else
2126 		temp64 = DISABLE_ALL_INTRS;
2127 	writeq(temp64, &bar0->general_int_mask);
2128 
2129 	nic->general_int_mask = readq(&bar0->general_int_mask);
2130 }
2131 
2132 /**
2133  *  verify_pcc_quiescent- Checks for PCC quiescent state
2134  *  Return: 1 If PCC is quiescence
2135  *          0 If PCC is not quiescence
2136  */
verify_pcc_quiescent(struct s2io_nic * sp,int flag)2137 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2138 {
2139 	int ret = 0, herc;
2140 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2141 	u64 val64 = readq(&bar0->adapter_status);
2142 
2143 	herc = (sp->device_type == XFRAME_II_DEVICE);
2144 
2145 	if (flag == false) {
2146 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2147 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2148 				ret = 1;
2149 		} else {
2150 			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2151 				ret = 1;
2152 		}
2153 	} else {
2154 		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2155 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2156 			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2157 				ret = 1;
2158 		} else {
2159 			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2160 			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2161 				ret = 1;
2162 		}
2163 	}
2164 
2165 	return ret;
2166 }
2167 /**
2168  *  verify_xena_quiescence - Checks whether the H/W is ready
2169  *  Description: Returns whether the H/W is ready to go or not. Depending
2170  *  on whether adapter enable bit was written or not the comparison
2171  *  differs and the calling function passes the input argument flag to
2172  *  indicate this.
2173  *  Return: 1 If xena is quiescence
2174  *          0 If Xena is not quiescence
2175  */
2176 
verify_xena_quiescence(struct s2io_nic * sp)2177 static int verify_xena_quiescence(struct s2io_nic *sp)
2178 {
2179 	int  mode;
2180 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2181 	u64 val64 = readq(&bar0->adapter_status);
2182 	mode = s2io_verify_pci_mode(sp);
2183 
2184 	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2185 		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2186 		return 0;
2187 	}
2188 	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2189 		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2190 		return 0;
2191 	}
2192 	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2193 		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2194 		return 0;
2195 	}
2196 	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2197 		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2198 		return 0;
2199 	}
2200 	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2201 		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2202 		return 0;
2203 	}
2204 	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2205 		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2206 		return 0;
2207 	}
2208 	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2209 		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2210 		return 0;
2211 	}
2212 	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2213 		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2214 		return 0;
2215 	}
2216 
2217 	/*
2218 	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2219 	 * the the P_PLL_LOCK bit in the adapter_status register will
2220 	 * not be asserted.
2221 	 */
2222 	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2223 	    sp->device_type == XFRAME_II_DEVICE &&
2224 	    mode != PCI_MODE_PCI_33) {
2225 		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2226 		return 0;
2227 	}
2228 	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2229 	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2230 		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2231 		return 0;
2232 	}
2233 	return 1;
2234 }
2235 
2236 /**
2237  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2238  * @sp: Pointer to device specifc structure
2239  * Description :
2240  * New procedure to clear mac address reading  problems on Alpha platforms
2241  *
2242  */
2243 
fix_mac_address(struct s2io_nic * sp)2244 static void fix_mac_address(struct s2io_nic *sp)
2245 {
2246 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2247 	u64 val64;
2248 	int i = 0;
2249 
2250 	while (fix_mac[i] != END_SIGN) {
2251 		writeq(fix_mac[i++], &bar0->gpio_control);
2252 		udelay(10);
2253 		val64 = readq(&bar0->gpio_control);
2254 	}
2255 }
2256 
2257 /**
2258  *  start_nic - Turns the device on
2259  *  @nic : device private variable.
2260  *  Description:
2261  *  This function actually turns the device on. Before this  function is
2262  *  called,all Registers are configured from their reset states
2263  *  and shared memory is allocated but the NIC is still quiescent. On
2264  *  calling this function, the device interrupts are cleared and the NIC is
2265  *  literally switched on by writing into the adapter control register.
2266  *  Return Value:
2267  *  SUCCESS on success and -1 on failure.
2268  */
2269 
start_nic(struct s2io_nic * nic)2270 static int start_nic(struct s2io_nic *nic)
2271 {
2272 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2273 	struct net_device *dev = nic->dev;
2274 	register u64 val64 = 0;
2275 	u16 subid, i;
2276 	struct config_param *config = &nic->config;
2277 	struct mac_info *mac_control = &nic->mac_control;
2278 
2279 	/*  PRC Initialization and configuration */
2280 	for (i = 0; i < config->rx_ring_num; i++) {
2281 		struct ring_info *ring = &mac_control->rings[i];
2282 
2283 		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2284 		       &bar0->prc_rxd0_n[i]);
2285 
2286 		val64 = readq(&bar0->prc_ctrl_n[i]);
2287 		if (nic->rxd_mode == RXD_MODE_1)
2288 			val64 |= PRC_CTRL_RC_ENABLED;
2289 		else
2290 			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2291 		if (nic->device_type == XFRAME_II_DEVICE)
2292 			val64 |= PRC_CTRL_GROUP_READS;
2293 		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294 		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2295 		writeq(val64, &bar0->prc_ctrl_n[i]);
2296 	}
2297 
2298 	if (nic->rxd_mode == RXD_MODE_3B) {
2299 		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300 		val64 = readq(&bar0->rx_pa_cfg);
2301 		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2302 		writeq(val64, &bar0->rx_pa_cfg);
2303 	}
2304 
2305 	if (vlan_tag_strip == 0) {
2306 		val64 = readq(&bar0->rx_pa_cfg);
2307 		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2308 		writeq(val64, &bar0->rx_pa_cfg);
2309 		nic->vlan_strip_flag = 0;
2310 	}
2311 
2312 	/*
2313 	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2314 	 * for around 100ms, which is approximately the time required
2315 	 * for the device to be ready for operation.
2316 	 */
2317 	val64 = readq(&bar0->mc_rldram_mrs);
2318 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2319 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2320 	val64 = readq(&bar0->mc_rldram_mrs);
2321 
2322 	msleep(100);	/* Delay by around 100 ms. */
2323 
2324 	/* Enabling ECC Protection. */
2325 	val64 = readq(&bar0->adapter_control);
2326 	val64 &= ~ADAPTER_ECC_EN;
2327 	writeq(val64, &bar0->adapter_control);
2328 
2329 	/*
2330 	 * Verify if the device is ready to be enabled, if so enable
2331 	 * it.
2332 	 */
2333 	val64 = readq(&bar0->adapter_status);
2334 	if (!verify_xena_quiescence(nic)) {
2335 		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2336 			  "Adapter status reads: 0x%llx\n",
2337 			  dev->name, (unsigned long long)val64);
2338 		return FAILURE;
2339 	}
2340 
2341 	/*
2342 	 * With some switches, link might be already up at this point.
2343 	 * Because of this weird behavior, when we enable laser,
2344 	 * we may not get link. We need to handle this. We cannot
2345 	 * figure out which switch is misbehaving. So we are forced to
2346 	 * make a global change.
2347 	 */
2348 
2349 	/* Enabling Laser. */
2350 	val64 = readq(&bar0->adapter_control);
2351 	val64 |= ADAPTER_EOI_TX_ON;
2352 	writeq(val64, &bar0->adapter_control);
2353 
2354 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2355 		/*
2356 		 * Dont see link state interrupts initially on some switches,
2357 		 * so directly scheduling the link state task here.
2358 		 */
2359 		schedule_work(&nic->set_link_task);
2360 	}
2361 	/* SXE-002: Initialize link and activity LED */
2362 	subid = nic->pdev->subsystem_device;
2363 	if (((subid & 0xFF) >= 0x07) &&
2364 	    (nic->device_type == XFRAME_I_DEVICE)) {
2365 		val64 = readq(&bar0->gpio_control);
2366 		val64 |= 0x0000800000000000ULL;
2367 		writeq(val64, &bar0->gpio_control);
2368 		val64 = 0x0411040400000000ULL;
2369 		writeq(val64, (void __iomem *)bar0 + 0x2700);
2370 	}
2371 
2372 	return SUCCESS;
2373 }
2374 /**
2375  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2376  */
s2io_txdl_getskb(struct fifo_info * fifo_data,struct TxD * txdlp,int get_off)2377 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2378 					struct TxD *txdlp, int get_off)
2379 {
2380 	struct s2io_nic *nic = fifo_data->nic;
2381 	struct sk_buff *skb;
2382 	struct TxD *txds;
2383 	u16 j, frg_cnt;
2384 
2385 	txds = txdlp;
2386 	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2387 		pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2388 				 sizeof(u64), PCI_DMA_TODEVICE);
2389 		txds++;
2390 	}
2391 
2392 	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2393 	if (!skb) {
2394 		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2395 		return NULL;
2396 	}
2397 	pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2398 			 skb_headlen(skb), PCI_DMA_TODEVICE);
2399 	frg_cnt = skb_shinfo(skb)->nr_frags;
2400 	if (frg_cnt) {
2401 		txds++;
2402 		for (j = 0; j < frg_cnt; j++, txds++) {
2403 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404 			if (!txds->Buffer_Pointer)
2405 				break;
2406 			pci_unmap_page(nic->pdev,
2407 				       (dma_addr_t)txds->Buffer_Pointer,
2408 				       frag->size, PCI_DMA_TODEVICE);
2409 		}
2410 	}
2411 	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2412 	return skb;
2413 }
2414 
2415 /**
2416  *  free_tx_buffers - Free all queued Tx buffers
2417  *  @nic : device private variable.
2418  *  Description:
2419  *  Free all queued Tx buffers.
2420  *  Return Value: void
2421  */
2422 
free_tx_buffers(struct s2io_nic * nic)2423 static void free_tx_buffers(struct s2io_nic *nic)
2424 {
2425 	struct net_device *dev = nic->dev;
2426 	struct sk_buff *skb;
2427 	struct TxD *txdp;
2428 	int i, j;
2429 	int cnt = 0;
2430 	struct config_param *config = &nic->config;
2431 	struct mac_info *mac_control = &nic->mac_control;
2432 	struct stat_block *stats = mac_control->stats_info;
2433 	struct swStat *swstats = &stats->sw_stat;
2434 
2435 	for (i = 0; i < config->tx_fifo_num; i++) {
2436 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2437 		struct fifo_info *fifo = &mac_control->fifos[i];
2438 		unsigned long flags;
2439 
2440 		spin_lock_irqsave(&fifo->tx_lock, flags);
2441 		for (j = 0; j < tx_cfg->fifo_len; j++) {
2442 			txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2443 			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444 			if (skb) {
2445 				swstats->mem_freed += skb->truesize;
2446 				dev_kfree_skb(skb);
2447 				cnt++;
2448 			}
2449 		}
2450 		DBG_PRINT(INTR_DBG,
2451 			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2452 			  dev->name, cnt, i);
2453 		fifo->tx_curr_get_info.offset = 0;
2454 		fifo->tx_curr_put_info.offset = 0;
2455 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2456 	}
2457 }
2458 
2459 /**
2460  *   stop_nic -  To stop the nic
2461  *   @nic ; device private variable.
2462  *   Description:
2463  *   This function does exactly the opposite of what the start_nic()
2464  *   function does. This function is called to stop the device.
2465  *   Return Value:
2466  *   void.
2467  */
2468 
stop_nic(struct s2io_nic * nic)2469 static void stop_nic(struct s2io_nic *nic)
2470 {
2471 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472 	register u64 val64 = 0;
2473 	u16 interruptible;
2474 
2475 	/*  Disable all interrupts */
2476 	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2477 	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2478 	interruptible |= TX_PIC_INTR;
2479 	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2480 
2481 	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482 	val64 = readq(&bar0->adapter_control);
2483 	val64 &= ~(ADAPTER_CNTL_EN);
2484 	writeq(val64, &bar0->adapter_control);
2485 }
2486 
2487 /**
2488  *  fill_rx_buffers - Allocates the Rx side skbs
2489  *  @ring_info: per ring structure
2490  *  @from_card_up: If this is true, we will map the buffer to get
2491  *     the dma address for buf0 and buf1 to give it to the card.
2492  *     Else we will sync the already mapped buffer to give it to the card.
2493  *  Description:
2494  *  The function allocates Rx side skbs and puts the physical
2495  *  address of these buffers into the RxD buffer pointers, so that the NIC
2496  *  can DMA the received frame into these locations.
2497  *  The NIC supports 3 receive modes, viz
2498  *  1. single buffer,
2499  *  2. three buffer and
2500  *  3. Five buffer modes.
2501  *  Each mode defines how many fragments the received frame will be split
2502  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2503  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504  *  is split into 3 fragments. As of now only single buffer mode is
2505  *  supported.
2506  *   Return Value:
2507  *  SUCCESS on success or an appropriate -ve value on failure.
2508  */
fill_rx_buffers(struct s2io_nic * nic,struct ring_info * ring,int from_card_up)2509 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2510 			   int from_card_up)
2511 {
2512 	struct sk_buff *skb;
2513 	struct RxD_t *rxdp;
2514 	int off, size, block_no, block_no1;
2515 	u32 alloc_tab = 0;
2516 	u32 alloc_cnt;
2517 	u64 tmp;
2518 	struct buffAdd *ba;
2519 	struct RxD_t *first_rxdp = NULL;
2520 	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2521 	int rxd_index = 0;
2522 	struct RxD1 *rxdp1;
2523 	struct RxD3 *rxdp3;
2524 	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2525 
2526 	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2527 
2528 	block_no1 = ring->rx_curr_get_info.block_index;
2529 	while (alloc_tab < alloc_cnt) {
2530 		block_no = ring->rx_curr_put_info.block_index;
2531 
2532 		off = ring->rx_curr_put_info.offset;
2533 
2534 		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2535 
2536 		rxd_index = off + 1;
2537 		if (block_no)
2538 			rxd_index += (block_no * ring->rxd_count);
2539 
2540 		if ((block_no == block_no1) &&
2541 		    (off == ring->rx_curr_get_info.offset) &&
2542 		    (rxdp->Host_Control)) {
2543 			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2544 				  ring->dev->name);
2545 			goto end;
2546 		}
2547 		if (off && (off == ring->rxd_count)) {
2548 			ring->rx_curr_put_info.block_index++;
2549 			if (ring->rx_curr_put_info.block_index ==
2550 			    ring->block_count)
2551 				ring->rx_curr_put_info.block_index = 0;
2552 			block_no = ring->rx_curr_put_info.block_index;
2553 			off = 0;
2554 			ring->rx_curr_put_info.offset = off;
2555 			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2556 			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2557 				  ring->dev->name, rxdp);
2558 
2559 		}
2560 
2561 		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2562 		    ((ring->rxd_mode == RXD_MODE_3B) &&
2563 		     (rxdp->Control_2 & s2BIT(0)))) {
2564 			ring->rx_curr_put_info.offset = off;
2565 			goto end;
2566 		}
2567 		/* calculate size of skb based on ring mode */
2568 		size = ring->mtu +
2569 			HEADER_ETHERNET_II_802_3_SIZE +
2570 			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2571 		if (ring->rxd_mode == RXD_MODE_1)
2572 			size += NET_IP_ALIGN;
2573 		else
2574 			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2575 
2576 		/* allocate skb */
2577 		skb = dev_alloc_skb(size);
2578 		if (!skb) {
2579 			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2580 				  ring->dev->name);
2581 			if (first_rxdp) {
2582 				wmb();
2583 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2584 			}
2585 			swstats->mem_alloc_fail_cnt++;
2586 
2587 			return -ENOMEM ;
2588 		}
2589 		swstats->mem_allocated += skb->truesize;
2590 
2591 		if (ring->rxd_mode == RXD_MODE_1) {
2592 			/* 1 buffer mode - normal operation mode */
2593 			rxdp1 = (struct RxD1 *)rxdp;
2594 			memset(rxdp, 0, sizeof(struct RxD1));
2595 			skb_reserve(skb, NET_IP_ALIGN);
2596 			rxdp1->Buffer0_ptr =
2597 				pci_map_single(ring->pdev, skb->data,
2598 					       size - NET_IP_ALIGN,
2599 					       PCI_DMA_FROMDEVICE);
2600 			if (pci_dma_mapping_error(nic->pdev,
2601 						  rxdp1->Buffer0_ptr))
2602 				goto pci_map_failed;
2603 
2604 			rxdp->Control_2 =
2605 				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2606 			rxdp->Host_Control = (unsigned long)skb;
2607 		} else if (ring->rxd_mode == RXD_MODE_3B) {
2608 			/*
2609 			 * 2 buffer mode -
2610 			 * 2 buffer mode provides 128
2611 			 * byte aligned receive buffers.
2612 			 */
2613 
2614 			rxdp3 = (struct RxD3 *)rxdp;
2615 			/* save buffer pointers to avoid frequent dma mapping */
2616 			Buffer0_ptr = rxdp3->Buffer0_ptr;
2617 			Buffer1_ptr = rxdp3->Buffer1_ptr;
2618 			memset(rxdp, 0, sizeof(struct RxD3));
2619 			/* restore the buffer pointers for dma sync*/
2620 			rxdp3->Buffer0_ptr = Buffer0_ptr;
2621 			rxdp3->Buffer1_ptr = Buffer1_ptr;
2622 
2623 			ba = &ring->ba[block_no][off];
2624 			skb_reserve(skb, BUF0_LEN);
2625 			tmp = (u64)(unsigned long)skb->data;
2626 			tmp += ALIGN_SIZE;
2627 			tmp &= ~ALIGN_SIZE;
2628 			skb->data = (void *) (unsigned long)tmp;
2629 			skb_reset_tail_pointer(skb);
2630 
2631 			if (from_card_up) {
2632 				rxdp3->Buffer0_ptr =
2633 					pci_map_single(ring->pdev, ba->ba_0,
2634 						       BUF0_LEN,
2635 						       PCI_DMA_FROMDEVICE);
2636 				if (pci_dma_mapping_error(nic->pdev,
2637 							  rxdp3->Buffer0_ptr))
2638 					goto pci_map_failed;
2639 			} else
2640 				pci_dma_sync_single_for_device(ring->pdev,
2641 							       (dma_addr_t)rxdp3->Buffer0_ptr,
2642 							       BUF0_LEN,
2643 							       PCI_DMA_FROMDEVICE);
2644 
2645 			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2646 			if (ring->rxd_mode == RXD_MODE_3B) {
2647 				/* Two buffer mode */
2648 
2649 				/*
2650 				 * Buffer2 will have L3/L4 header plus
2651 				 * L4 payload
2652 				 */
2653 				rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2654 								    skb->data,
2655 								    ring->mtu + 4,
2656 								    PCI_DMA_FROMDEVICE);
2657 
2658 				if (pci_dma_mapping_error(nic->pdev,
2659 							  rxdp3->Buffer2_ptr))
2660 					goto pci_map_failed;
2661 
2662 				if (from_card_up) {
2663 					rxdp3->Buffer1_ptr =
2664 						pci_map_single(ring->pdev,
2665 							       ba->ba_1,
2666 							       BUF1_LEN,
2667 							       PCI_DMA_FROMDEVICE);
2668 
2669 					if (pci_dma_mapping_error(nic->pdev,
2670 								  rxdp3->Buffer1_ptr)) {
2671 						pci_unmap_single(ring->pdev,
2672 								 (dma_addr_t)(unsigned long)
2673 								 skb->data,
2674 								 ring->mtu + 4,
2675 								 PCI_DMA_FROMDEVICE);
2676 						goto pci_map_failed;
2677 					}
2678 				}
2679 				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680 				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2681 					(ring->mtu + 4);
2682 			}
2683 			rxdp->Control_2 |= s2BIT(0);
2684 			rxdp->Host_Control = (unsigned long) (skb);
2685 		}
2686 		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687 			rxdp->Control_1 |= RXD_OWN_XENA;
2688 		off++;
2689 		if (off == (ring->rxd_count + 1))
2690 			off = 0;
2691 		ring->rx_curr_put_info.offset = off;
2692 
2693 		rxdp->Control_2 |= SET_RXD_MARKER;
2694 		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695 			if (first_rxdp) {
2696 				wmb();
2697 				first_rxdp->Control_1 |= RXD_OWN_XENA;
2698 			}
2699 			first_rxdp = rxdp;
2700 		}
2701 		ring->rx_bufs_left += 1;
2702 		alloc_tab++;
2703 	}
2704 
2705 end:
2706 	/* Transfer ownership of first descriptor to adapter just before
2707 	 * exiting. Before that, use memory barrier so that ownership
2708 	 * and other fields are seen by adapter correctly.
2709 	 */
2710 	if (first_rxdp) {
2711 		wmb();
2712 		first_rxdp->Control_1 |= RXD_OWN_XENA;
2713 	}
2714 
2715 	return SUCCESS;
2716 
2717 pci_map_failed:
2718 	swstats->pci_map_fail_cnt++;
2719 	swstats->mem_freed += skb->truesize;
2720 	dev_kfree_skb_irq(skb);
2721 	return -ENOMEM;
2722 }
2723 
free_rxd_blk(struct s2io_nic * sp,int ring_no,int blk)2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2725 {
2726 	struct net_device *dev = sp->dev;
2727 	int j;
2728 	struct sk_buff *skb;
2729 	struct RxD_t *rxdp;
2730 	struct buffAdd *ba;
2731 	struct RxD1 *rxdp1;
2732 	struct RxD3 *rxdp3;
2733 	struct mac_info *mac_control = &sp->mac_control;
2734 	struct stat_block *stats = mac_control->stats_info;
2735 	struct swStat *swstats = &stats->sw_stat;
2736 
2737 	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2738 		rxdp = mac_control->rings[ring_no].
2739 			rx_blocks[blk].rxds[j].virt_addr;
2740 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2741 		if (!skb)
2742 			continue;
2743 		if (sp->rxd_mode == RXD_MODE_1) {
2744 			rxdp1 = (struct RxD1 *)rxdp;
2745 			pci_unmap_single(sp->pdev,
2746 					 (dma_addr_t)rxdp1->Buffer0_ptr,
2747 					 dev->mtu +
2748 					 HEADER_ETHERNET_II_802_3_SIZE +
2749 					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2750 					 PCI_DMA_FROMDEVICE);
2751 			memset(rxdp, 0, sizeof(struct RxD1));
2752 		} else if (sp->rxd_mode == RXD_MODE_3B) {
2753 			rxdp3 = (struct RxD3 *)rxdp;
2754 			ba = &mac_control->rings[ring_no].ba[blk][j];
2755 			pci_unmap_single(sp->pdev,
2756 					 (dma_addr_t)rxdp3->Buffer0_ptr,
2757 					 BUF0_LEN,
2758 					 PCI_DMA_FROMDEVICE);
2759 			pci_unmap_single(sp->pdev,
2760 					 (dma_addr_t)rxdp3->Buffer1_ptr,
2761 					 BUF1_LEN,
2762 					 PCI_DMA_FROMDEVICE);
2763 			pci_unmap_single(sp->pdev,
2764 					 (dma_addr_t)rxdp3->Buffer2_ptr,
2765 					 dev->mtu + 4,
2766 					 PCI_DMA_FROMDEVICE);
2767 			memset(rxdp, 0, sizeof(struct RxD3));
2768 		}
2769 		swstats->mem_freed += skb->truesize;
2770 		dev_kfree_skb(skb);
2771 		mac_control->rings[ring_no].rx_bufs_left -= 1;
2772 	}
2773 }
2774 
2775 /**
2776  *  free_rx_buffers - Frees all Rx buffers
2777  *  @sp: device private variable.
2778  *  Description:
2779  *  This function will free all Rx buffers allocated by host.
2780  *  Return Value:
2781  *  NONE.
2782  */
2783 
free_rx_buffers(struct s2io_nic * sp)2784 static void free_rx_buffers(struct s2io_nic *sp)
2785 {
2786 	struct net_device *dev = sp->dev;
2787 	int i, blk = 0, buf_cnt = 0;
2788 	struct config_param *config = &sp->config;
2789 	struct mac_info *mac_control = &sp->mac_control;
2790 
2791 	for (i = 0; i < config->rx_ring_num; i++) {
2792 		struct ring_info *ring = &mac_control->rings[i];
2793 
2794 		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2795 			free_rxd_blk(sp, i, blk);
2796 
2797 		ring->rx_curr_put_info.block_index = 0;
2798 		ring->rx_curr_get_info.block_index = 0;
2799 		ring->rx_curr_put_info.offset = 0;
2800 		ring->rx_curr_get_info.offset = 0;
2801 		ring->rx_bufs_left = 0;
2802 		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2803 			  dev->name, buf_cnt, i);
2804 	}
2805 }
2806 
s2io_chk_rx_buffers(struct s2io_nic * nic,struct ring_info * ring)2807 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2808 {
2809 	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2810 		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2811 			  ring->dev->name);
2812 	}
2813 	return 0;
2814 }
2815 
2816 /**
2817  * s2io_poll - Rx interrupt handler for NAPI support
2818  * @napi : pointer to the napi structure.
2819  * @budget : The number of packets that were budgeted to be processed
2820  * during  one pass through the 'Poll" function.
2821  * Description:
2822  * Comes into picture only if NAPI support has been incorporated. It does
2823  * the same thing that rx_intr_handler does, but not in a interrupt context
2824  * also It will process only a given number of packets.
2825  * Return value:
2826  * 0 on success and 1 if there are No Rx packets to be processed.
2827  */
2828 
s2io_poll_msix(struct napi_struct * napi,int budget)2829 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2830 {
2831 	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2832 	struct net_device *dev = ring->dev;
2833 	int pkts_processed = 0;
2834 	u8 __iomem *addr = NULL;
2835 	u8 val8 = 0;
2836 	struct s2io_nic *nic = netdev_priv(dev);
2837 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2838 	int budget_org = budget;
2839 
2840 	if (unlikely(!is_s2io_card_up(nic)))
2841 		return 0;
2842 
2843 	pkts_processed = rx_intr_handler(ring, budget);
2844 	s2io_chk_rx_buffers(nic, ring);
2845 
2846 	if (pkts_processed < budget_org) {
2847 		napi_complete(napi);
2848 		/*Re Enable MSI-Rx Vector*/
2849 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2850 		addr += 7 - ring->ring_no;
2851 		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2852 		writeb(val8, addr);
2853 		val8 = readb(addr);
2854 	}
2855 	return pkts_processed;
2856 }
2857 
s2io_poll_inta(struct napi_struct * napi,int budget)2858 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2859 {
2860 	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2861 	int pkts_processed = 0;
2862 	int ring_pkts_processed, i;
2863 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2864 	int budget_org = budget;
2865 	struct config_param *config = &nic->config;
2866 	struct mac_info *mac_control = &nic->mac_control;
2867 
2868 	if (unlikely(!is_s2io_card_up(nic)))
2869 		return 0;
2870 
2871 	for (i = 0; i < config->rx_ring_num; i++) {
2872 		struct ring_info *ring = &mac_control->rings[i];
2873 		ring_pkts_processed = rx_intr_handler(ring, budget);
2874 		s2io_chk_rx_buffers(nic, ring);
2875 		pkts_processed += ring_pkts_processed;
2876 		budget -= ring_pkts_processed;
2877 		if (budget <= 0)
2878 			break;
2879 	}
2880 	if (pkts_processed < budget_org) {
2881 		napi_complete(napi);
2882 		/* Re enable the Rx interrupts for the ring */
2883 		writeq(0, &bar0->rx_traffic_mask);
2884 		readl(&bar0->rx_traffic_mask);
2885 	}
2886 	return pkts_processed;
2887 }
2888 
2889 #ifdef CONFIG_NET_POLL_CONTROLLER
2890 /**
2891  * s2io_netpoll - netpoll event handler entry point
2892  * @dev : pointer to the device structure.
2893  * Description:
2894  * 	This function will be called by upper layer to check for events on the
2895  * interface in situations where interrupts are disabled. It is used for
2896  * specific in-kernel networking tasks, such as remote consoles and kernel
2897  * debugging over the network (example netdump in RedHat).
2898  */
s2io_netpoll(struct net_device * dev)2899 static void s2io_netpoll(struct net_device *dev)
2900 {
2901 	struct s2io_nic *nic = netdev_priv(dev);
2902 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2903 	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2904 	int i;
2905 	struct config_param *config = &nic->config;
2906 	struct mac_info *mac_control = &nic->mac_control;
2907 
2908 	if (pci_channel_offline(nic->pdev))
2909 		return;
2910 
2911 	disable_irq(dev->irq);
2912 
2913 	writeq(val64, &bar0->rx_traffic_int);
2914 	writeq(val64, &bar0->tx_traffic_int);
2915 
2916 	/* we need to free up the transmitted skbufs or else netpoll will
2917 	 * run out of skbs and will fail and eventually netpoll application such
2918 	 * as netdump will fail.
2919 	 */
2920 	for (i = 0; i < config->tx_fifo_num; i++)
2921 		tx_intr_handler(&mac_control->fifos[i]);
2922 
2923 	/* check for received packet and indicate up to network */
2924 	for (i = 0; i < config->rx_ring_num; i++) {
2925 		struct ring_info *ring = &mac_control->rings[i];
2926 
2927 		rx_intr_handler(ring, 0);
2928 	}
2929 
2930 	for (i = 0; i < config->rx_ring_num; i++) {
2931 		struct ring_info *ring = &mac_control->rings[i];
2932 
2933 		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2934 			DBG_PRINT(INFO_DBG,
2935 				  "%s: Out of memory in Rx Netpoll!!\n",
2936 				  dev->name);
2937 			break;
2938 		}
2939 	}
2940 	enable_irq(dev->irq);
2941 }
2942 #endif
2943 
2944 /**
2945  *  rx_intr_handler - Rx interrupt handler
2946  *  @ring_info: per ring structure.
2947  *  @budget: budget for napi processing.
2948  *  Description:
2949  *  If the interrupt is because of a received frame or if the
2950  *  receive ring contains fresh as yet un-processed frames,this function is
2951  *  called. It picks out the RxD at which place the last Rx processing had
2952  *  stopped and sends the skb to the OSM's Rx handler and then increments
2953  *  the offset.
2954  *  Return Value:
2955  *  No. of napi packets processed.
2956  */
rx_intr_handler(struct ring_info * ring_data,int budget)2957 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2958 {
2959 	int get_block, put_block;
2960 	struct rx_curr_get_info get_info, put_info;
2961 	struct RxD_t *rxdp;
2962 	struct sk_buff *skb;
2963 	int pkt_cnt = 0, napi_pkts = 0;
2964 	int i;
2965 	struct RxD1 *rxdp1;
2966 	struct RxD3 *rxdp3;
2967 
2968 	get_info = ring_data->rx_curr_get_info;
2969 	get_block = get_info.block_index;
2970 	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2971 	put_block = put_info.block_index;
2972 	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2973 
2974 	while (RXD_IS_UP2DT(rxdp)) {
2975 		/*
2976 		 * If your are next to put index then it's
2977 		 * FIFO full condition
2978 		 */
2979 		if ((get_block == put_block) &&
2980 		    (get_info.offset + 1) == put_info.offset) {
2981 			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2982 				  ring_data->dev->name);
2983 			break;
2984 		}
2985 		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2986 		if (skb == NULL) {
2987 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2988 				  ring_data->dev->name);
2989 			return 0;
2990 		}
2991 		if (ring_data->rxd_mode == RXD_MODE_1) {
2992 			rxdp1 = (struct RxD1 *)rxdp;
2993 			pci_unmap_single(ring_data->pdev, (dma_addr_t)
2994 					 rxdp1->Buffer0_ptr,
2995 					 ring_data->mtu +
2996 					 HEADER_ETHERNET_II_802_3_SIZE +
2997 					 HEADER_802_2_SIZE +
2998 					 HEADER_SNAP_SIZE,
2999 					 PCI_DMA_FROMDEVICE);
3000 		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
3001 			rxdp3 = (struct RxD3 *)rxdp;
3002 			pci_dma_sync_single_for_cpu(ring_data->pdev,
3003 						    (dma_addr_t)rxdp3->Buffer0_ptr,
3004 						    BUF0_LEN,
3005 						    PCI_DMA_FROMDEVICE);
3006 			pci_unmap_single(ring_data->pdev,
3007 					 (dma_addr_t)rxdp3->Buffer2_ptr,
3008 					 ring_data->mtu + 4,
3009 					 PCI_DMA_FROMDEVICE);
3010 		}
3011 		prefetch(skb->data);
3012 		rx_osm_handler(ring_data, rxdp);
3013 		get_info.offset++;
3014 		ring_data->rx_curr_get_info.offset = get_info.offset;
3015 		rxdp = ring_data->rx_blocks[get_block].
3016 			rxds[get_info.offset].virt_addr;
3017 		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3018 			get_info.offset = 0;
3019 			ring_data->rx_curr_get_info.offset = get_info.offset;
3020 			get_block++;
3021 			if (get_block == ring_data->block_count)
3022 				get_block = 0;
3023 			ring_data->rx_curr_get_info.block_index = get_block;
3024 			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3025 		}
3026 
3027 		if (ring_data->nic->config.napi) {
3028 			budget--;
3029 			napi_pkts++;
3030 			if (!budget)
3031 				break;
3032 		}
3033 		pkt_cnt++;
3034 		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3035 			break;
3036 	}
3037 	if (ring_data->lro) {
3038 		/* Clear all LRO sessions before exiting */
3039 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3040 			struct lro *lro = &ring_data->lro0_n[i];
3041 			if (lro->in_use) {
3042 				update_L3L4_header(ring_data->nic, lro);
3043 				queue_rx_frame(lro->parent, lro->vlan_tag);
3044 				clear_lro_session(lro);
3045 			}
3046 		}
3047 	}
3048 	return napi_pkts;
3049 }
3050 
3051 /**
3052  *  tx_intr_handler - Transmit interrupt handler
3053  *  @nic : device private variable
3054  *  Description:
3055  *  If an interrupt was raised to indicate DMA complete of the
3056  *  Tx packet, this function is called. It identifies the last TxD
3057  *  whose buffer was freed and frees all skbs whose data have already
3058  *  DMA'ed into the NICs internal memory.
3059  *  Return Value:
3060  *  NONE
3061  */
3062 
tx_intr_handler(struct fifo_info * fifo_data)3063 static void tx_intr_handler(struct fifo_info *fifo_data)
3064 {
3065 	struct s2io_nic *nic = fifo_data->nic;
3066 	struct tx_curr_get_info get_info, put_info;
3067 	struct sk_buff *skb = NULL;
3068 	struct TxD *txdlp;
3069 	int pkt_cnt = 0;
3070 	unsigned long flags = 0;
3071 	u8 err_mask;
3072 	struct stat_block *stats = nic->mac_control.stats_info;
3073 	struct swStat *swstats = &stats->sw_stat;
3074 
3075 	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3076 		return;
3077 
3078 	get_info = fifo_data->tx_curr_get_info;
3079 	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3080 	txdlp = (struct TxD *)
3081 		fifo_data->list_info[get_info.offset].list_virt_addr;
3082 	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3083 	       (get_info.offset != put_info.offset) &&
3084 	       (txdlp->Host_Control)) {
3085 		/* Check for TxD errors */
3086 		if (txdlp->Control_1 & TXD_T_CODE) {
3087 			unsigned long long err;
3088 			err = txdlp->Control_1 & TXD_T_CODE;
3089 			if (err & 0x1) {
3090 				swstats->parity_err_cnt++;
3091 			}
3092 
3093 			/* update t_code statistics */
3094 			err_mask = err >> 48;
3095 			switch (err_mask) {
3096 			case 2:
3097 				swstats->tx_buf_abort_cnt++;
3098 				break;
3099 
3100 			case 3:
3101 				swstats->tx_desc_abort_cnt++;
3102 				break;
3103 
3104 			case 7:
3105 				swstats->tx_parity_err_cnt++;
3106 				break;
3107 
3108 			case 10:
3109 				swstats->tx_link_loss_cnt++;
3110 				break;
3111 
3112 			case 15:
3113 				swstats->tx_list_proc_err_cnt++;
3114 				break;
3115 			}
3116 		}
3117 
3118 		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3119 		if (skb == NULL) {
3120 			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3121 			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3122 				  __func__);
3123 			return;
3124 		}
3125 		pkt_cnt++;
3126 
3127 		/* Updating the statistics block */
3128 		swstats->mem_freed += skb->truesize;
3129 		dev_kfree_skb_irq(skb);
3130 
3131 		get_info.offset++;
3132 		if (get_info.offset == get_info.fifo_len + 1)
3133 			get_info.offset = 0;
3134 		txdlp = (struct TxD *)
3135 			fifo_data->list_info[get_info.offset].list_virt_addr;
3136 		fifo_data->tx_curr_get_info.offset = get_info.offset;
3137 	}
3138 
3139 	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3140 
3141 	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3142 }
3143 
3144 /**
3145  *  s2io_mdio_write - Function to write in to MDIO registers
3146  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3147  *  @addr     : address value
3148  *  @value    : data value
3149  *  @dev      : pointer to net_device structure
3150  *  Description:
3151  *  This function is used to write values to the MDIO registers
3152  *  NONE
3153  */
s2io_mdio_write(u32 mmd_type,u64 addr,u16 value,struct net_device * dev)3154 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3155 			    struct net_device *dev)
3156 {
3157 	u64 val64;
3158 	struct s2io_nic *sp = netdev_priv(dev);
3159 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3160 
3161 	/* address transaction */
3162 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3163 		MDIO_MMD_DEV_ADDR(mmd_type) |
3164 		MDIO_MMS_PRT_ADDR(0x0);
3165 	writeq(val64, &bar0->mdio_control);
3166 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3167 	writeq(val64, &bar0->mdio_control);
3168 	udelay(100);
3169 
3170 	/* Data transaction */
3171 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3172 		MDIO_MMD_DEV_ADDR(mmd_type) |
3173 		MDIO_MMS_PRT_ADDR(0x0) |
3174 		MDIO_MDIO_DATA(value) |
3175 		MDIO_OP(MDIO_OP_WRITE_TRANS);
3176 	writeq(val64, &bar0->mdio_control);
3177 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3178 	writeq(val64, &bar0->mdio_control);
3179 	udelay(100);
3180 
3181 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3182 		MDIO_MMD_DEV_ADDR(mmd_type) |
3183 		MDIO_MMS_PRT_ADDR(0x0) |
3184 		MDIO_OP(MDIO_OP_READ_TRANS);
3185 	writeq(val64, &bar0->mdio_control);
3186 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3187 	writeq(val64, &bar0->mdio_control);
3188 	udelay(100);
3189 }
3190 
3191 /**
3192  *  s2io_mdio_read - Function to write in to MDIO registers
3193  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3194  *  @addr     : address value
3195  *  @dev      : pointer to net_device structure
3196  *  Description:
3197  *  This function is used to read values to the MDIO registers
3198  *  NONE
3199  */
s2io_mdio_read(u32 mmd_type,u64 addr,struct net_device * dev)3200 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3201 {
3202 	u64 val64 = 0x0;
3203 	u64 rval64 = 0x0;
3204 	struct s2io_nic *sp = netdev_priv(dev);
3205 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3206 
3207 	/* address transaction */
3208 	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3209 			 | MDIO_MMD_DEV_ADDR(mmd_type)
3210 			 | MDIO_MMS_PRT_ADDR(0x0));
3211 	writeq(val64, &bar0->mdio_control);
3212 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213 	writeq(val64, &bar0->mdio_control);
3214 	udelay(100);
3215 
3216 	/* Data transaction */
3217 	val64 = MDIO_MMD_INDX_ADDR(addr) |
3218 		MDIO_MMD_DEV_ADDR(mmd_type) |
3219 		MDIO_MMS_PRT_ADDR(0x0) |
3220 		MDIO_OP(MDIO_OP_READ_TRANS);
3221 	writeq(val64, &bar0->mdio_control);
3222 	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3223 	writeq(val64, &bar0->mdio_control);
3224 	udelay(100);
3225 
3226 	/* Read the value from regs */
3227 	rval64 = readq(&bar0->mdio_control);
3228 	rval64 = rval64 & 0xFFFF0000;
3229 	rval64 = rval64 >> 16;
3230 	return rval64;
3231 }
3232 
3233 /**
3234  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3235  *  @counter      : counter value to be updated
3236  *  @flag         : flag to indicate the status
3237  *  @type         : counter type
3238  *  Description:
3239  *  This function is to check the status of the xpak counters value
3240  *  NONE
3241  */
3242 
s2io_chk_xpak_counter(u64 * counter,u64 * regs_stat,u32 index,u16 flag,u16 type)3243 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3244 				  u16 flag, u16 type)
3245 {
3246 	u64 mask = 0x3;
3247 	u64 val64;
3248 	int i;
3249 	for (i = 0; i < index; i++)
3250 		mask = mask << 0x2;
3251 
3252 	if (flag > 0) {
3253 		*counter = *counter + 1;
3254 		val64 = *regs_stat & mask;
3255 		val64 = val64 >> (index * 0x2);
3256 		val64 = val64 + 1;
3257 		if (val64 == 3) {
3258 			switch (type) {
3259 			case 1:
3260 				DBG_PRINT(ERR_DBG,
3261 					  "Take Xframe NIC out of service.\n");
3262 				DBG_PRINT(ERR_DBG,
3263 "Excessive temperatures may result in premature transceiver failure.\n");
3264 				break;
3265 			case 2:
3266 				DBG_PRINT(ERR_DBG,
3267 					  "Take Xframe NIC out of service.\n");
3268 				DBG_PRINT(ERR_DBG,
3269 "Excessive bias currents may indicate imminent laser diode failure.\n");
3270 				break;
3271 			case 3:
3272 				DBG_PRINT(ERR_DBG,
3273 					  "Take Xframe NIC out of service.\n");
3274 				DBG_PRINT(ERR_DBG,
3275 "Excessive laser output power may saturate far-end receiver.\n");
3276 				break;
3277 			default:
3278 				DBG_PRINT(ERR_DBG,
3279 					  "Incorrect XPAK Alarm type\n");
3280 			}
3281 			val64 = 0x0;
3282 		}
3283 		val64 = val64 << (index * 0x2);
3284 		*regs_stat = (*regs_stat & (~mask)) | (val64);
3285 
3286 	} else {
3287 		*regs_stat = *regs_stat & (~mask);
3288 	}
3289 }
3290 
3291 /**
3292  *  s2io_updt_xpak_counter - Function to update the xpak counters
3293  *  @dev         : pointer to net_device struct
3294  *  Description:
3295  *  This function is to upate the status of the xpak counters value
3296  *  NONE
3297  */
s2io_updt_xpak_counter(struct net_device * dev)3298 static void s2io_updt_xpak_counter(struct net_device *dev)
3299 {
3300 	u16 flag  = 0x0;
3301 	u16 type  = 0x0;
3302 	u16 val16 = 0x0;
3303 	u64 val64 = 0x0;
3304 	u64 addr  = 0x0;
3305 
3306 	struct s2io_nic *sp = netdev_priv(dev);
3307 	struct stat_block *stats = sp->mac_control.stats_info;
3308 	struct xpakStat *xstats = &stats->xpak_stat;
3309 
3310 	/* Check the communication with the MDIO slave */
3311 	addr = MDIO_CTRL1;
3312 	val64 = 0x0;
3313 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3314 	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3315 		DBG_PRINT(ERR_DBG,
3316 			  "ERR: MDIO slave access failed - Returned %llx\n",
3317 			  (unsigned long long)val64);
3318 		return;
3319 	}
3320 
3321 	/* Check for the expected value of control reg 1 */
3322 	if (val64 != MDIO_CTRL1_SPEED10G) {
3323 		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3324 			  "Returned: %llx- Expected: 0x%x\n",
3325 			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3326 		return;
3327 	}
3328 
3329 	/* Loading the DOM register to MDIO register */
3330 	addr = 0xA100;
3331 	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3332 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3333 
3334 	/* Reading the Alarm flags */
3335 	addr = 0xA070;
3336 	val64 = 0x0;
3337 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3338 
3339 	flag = CHECKBIT(val64, 0x7);
3340 	type = 1;
3341 	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3342 			      &xstats->xpak_regs_stat,
3343 			      0x0, flag, type);
3344 
3345 	if (CHECKBIT(val64, 0x6))
3346 		xstats->alarm_transceiver_temp_low++;
3347 
3348 	flag = CHECKBIT(val64, 0x3);
3349 	type = 2;
3350 	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3351 			      &xstats->xpak_regs_stat,
3352 			      0x2, flag, type);
3353 
3354 	if (CHECKBIT(val64, 0x2))
3355 		xstats->alarm_laser_bias_current_low++;
3356 
3357 	flag = CHECKBIT(val64, 0x1);
3358 	type = 3;
3359 	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3360 			      &xstats->xpak_regs_stat,
3361 			      0x4, flag, type);
3362 
3363 	if (CHECKBIT(val64, 0x0))
3364 		xstats->alarm_laser_output_power_low++;
3365 
3366 	/* Reading the Warning flags */
3367 	addr = 0xA074;
3368 	val64 = 0x0;
3369 	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3370 
3371 	if (CHECKBIT(val64, 0x7))
3372 		xstats->warn_transceiver_temp_high++;
3373 
3374 	if (CHECKBIT(val64, 0x6))
3375 		xstats->warn_transceiver_temp_low++;
3376 
3377 	if (CHECKBIT(val64, 0x3))
3378 		xstats->warn_laser_bias_current_high++;
3379 
3380 	if (CHECKBIT(val64, 0x2))
3381 		xstats->warn_laser_bias_current_low++;
3382 
3383 	if (CHECKBIT(val64, 0x1))
3384 		xstats->warn_laser_output_power_high++;
3385 
3386 	if (CHECKBIT(val64, 0x0))
3387 		xstats->warn_laser_output_power_low++;
3388 }
3389 
3390 /**
3391  *  wait_for_cmd_complete - waits for a command to complete.
3392  *  @sp : private member of the device structure, which is a pointer to the
3393  *  s2io_nic structure.
3394  *  Description: Function that waits for a command to Write into RMAC
3395  *  ADDR DATA registers to be completed and returns either success or
3396  *  error depending on whether the command was complete or not.
3397  *  Return value:
3398  *   SUCCESS on success and FAILURE on failure.
3399  */
3400 
wait_for_cmd_complete(void __iomem * addr,u64 busy_bit,int bit_state)3401 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3402 				 int bit_state)
3403 {
3404 	int ret = FAILURE, cnt = 0, delay = 1;
3405 	u64 val64;
3406 
3407 	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3408 		return FAILURE;
3409 
3410 	do {
3411 		val64 = readq(addr);
3412 		if (bit_state == S2IO_BIT_RESET) {
3413 			if (!(val64 & busy_bit)) {
3414 				ret = SUCCESS;
3415 				break;
3416 			}
3417 		} else {
3418 			if (val64 & busy_bit) {
3419 				ret = SUCCESS;
3420 				break;
3421 			}
3422 		}
3423 
3424 		if (in_interrupt())
3425 			mdelay(delay);
3426 		else
3427 			msleep(delay);
3428 
3429 		if (++cnt >= 10)
3430 			delay = 50;
3431 	} while (cnt < 20);
3432 	return ret;
3433 }
3434 /*
3435  * check_pci_device_id - Checks if the device id is supported
3436  * @id : device id
3437  * Description: Function to check if the pci device id is supported by driver.
3438  * Return value: Actual device id if supported else PCI_ANY_ID
3439  */
check_pci_device_id(u16 id)3440 static u16 check_pci_device_id(u16 id)
3441 {
3442 	switch (id) {
3443 	case PCI_DEVICE_ID_HERC_WIN:
3444 	case PCI_DEVICE_ID_HERC_UNI:
3445 		return XFRAME_II_DEVICE;
3446 	case PCI_DEVICE_ID_S2IO_UNI:
3447 	case PCI_DEVICE_ID_S2IO_WIN:
3448 		return XFRAME_I_DEVICE;
3449 	default:
3450 		return PCI_ANY_ID;
3451 	}
3452 }
3453 
3454 /**
3455  *  s2io_reset - Resets the card.
3456  *  @sp : private member of the device structure.
3457  *  Description: Function to Reset the card. This function then also
3458  *  restores the previously saved PCI configuration space registers as
3459  *  the card reset also resets the configuration space.
3460  *  Return value:
3461  *  void.
3462  */
3463 
s2io_reset(struct s2io_nic * sp)3464 static void s2io_reset(struct s2io_nic *sp)
3465 {
3466 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3467 	u64 val64;
3468 	u16 subid, pci_cmd;
3469 	int i;
3470 	u16 val16;
3471 	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3472 	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3473 	struct stat_block *stats;
3474 	struct swStat *swstats;
3475 
3476 	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3477 		  __func__, pci_name(sp->pdev));
3478 
3479 	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3480 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3481 
3482 	val64 = SW_RESET_ALL;
3483 	writeq(val64, &bar0->sw_reset);
3484 	if (strstr(sp->product_name, "CX4"))
3485 		msleep(750);
3486 	msleep(250);
3487 	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3488 
3489 		/* Restore the PCI state saved during initialization. */
3490 		pci_restore_state(sp->pdev);
3491 		pci_save_state(sp->pdev);
3492 		pci_read_config_word(sp->pdev, 0x2, &val16);
3493 		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3494 			break;
3495 		msleep(200);
3496 	}
3497 
3498 	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3499 		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3500 
3501 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3502 
3503 	s2io_init_pci(sp);
3504 
3505 	/* Set swapper to enable I/O register access */
3506 	s2io_set_swapper(sp);
3507 
3508 	/* restore mac_addr entries */
3509 	do_s2io_restore_unicast_mc(sp);
3510 
3511 	/* Restore the MSIX table entries from local variables */
3512 	restore_xmsi_data(sp);
3513 
3514 	/* Clear certain PCI/PCI-X fields after reset */
3515 	if (sp->device_type == XFRAME_II_DEVICE) {
3516 		/* Clear "detected parity error" bit */
3517 		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3518 
3519 		/* Clearing PCIX Ecc status register */
3520 		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3521 
3522 		/* Clearing PCI_STATUS error reflected here */
3523 		writeq(s2BIT(62), &bar0->txpic_int_reg);
3524 	}
3525 
3526 	/* Reset device statistics maintained by OS */
3527 	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3528 
3529 	stats = sp->mac_control.stats_info;
3530 	swstats = &stats->sw_stat;
3531 
3532 	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3533 	up_cnt = swstats->link_up_cnt;
3534 	down_cnt = swstats->link_down_cnt;
3535 	up_time = swstats->link_up_time;
3536 	down_time = swstats->link_down_time;
3537 	reset_cnt = swstats->soft_reset_cnt;
3538 	mem_alloc_cnt = swstats->mem_allocated;
3539 	mem_free_cnt = swstats->mem_freed;
3540 	watchdog_cnt = swstats->watchdog_timer_cnt;
3541 
3542 	memset(stats, 0, sizeof(struct stat_block));
3543 
3544 	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3545 	swstats->link_up_cnt = up_cnt;
3546 	swstats->link_down_cnt = down_cnt;
3547 	swstats->link_up_time = up_time;
3548 	swstats->link_down_time = down_time;
3549 	swstats->soft_reset_cnt = reset_cnt;
3550 	swstats->mem_allocated = mem_alloc_cnt;
3551 	swstats->mem_freed = mem_free_cnt;
3552 	swstats->watchdog_timer_cnt = watchdog_cnt;
3553 
3554 	/* SXE-002: Configure link and activity LED to turn it off */
3555 	subid = sp->pdev->subsystem_device;
3556 	if (((subid & 0xFF) >= 0x07) &&
3557 	    (sp->device_type == XFRAME_I_DEVICE)) {
3558 		val64 = readq(&bar0->gpio_control);
3559 		val64 |= 0x0000800000000000ULL;
3560 		writeq(val64, &bar0->gpio_control);
3561 		val64 = 0x0411040400000000ULL;
3562 		writeq(val64, (void __iomem *)bar0 + 0x2700);
3563 	}
3564 
3565 	/*
3566 	 * Clear spurious ECC interrupts that would have occurred on
3567 	 * XFRAME II cards after reset.
3568 	 */
3569 	if (sp->device_type == XFRAME_II_DEVICE) {
3570 		val64 = readq(&bar0->pcc_err_reg);
3571 		writeq(val64, &bar0->pcc_err_reg);
3572 	}
3573 
3574 	sp->device_enabled_once = false;
3575 }
3576 
3577 /**
3578  *  s2io_set_swapper - to set the swapper controle on the card
3579  *  @sp : private member of the device structure,
3580  *  pointer to the s2io_nic structure.
3581  *  Description: Function to set the swapper control on the card
3582  *  correctly depending on the 'endianness' of the system.
3583  *  Return value:
3584  *  SUCCESS on success and FAILURE on failure.
3585  */
3586 
s2io_set_swapper(struct s2io_nic * sp)3587 static int s2io_set_swapper(struct s2io_nic *sp)
3588 {
3589 	struct net_device *dev = sp->dev;
3590 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3591 	u64 val64, valt, valr;
3592 
3593 	/*
3594 	 * Set proper endian settings and verify the same by reading
3595 	 * the PIF Feed-back register.
3596 	 */
3597 
3598 	val64 = readq(&bar0->pif_rd_swapper_fb);
3599 	if (val64 != 0x0123456789ABCDEFULL) {
3600 		int i = 0;
3601 		static const u64 value[] = {
3602 			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3603 			0x8100008181000081ULL,	/* FE=1, SE=0 */
3604 			0x4200004242000042ULL,	/* FE=0, SE=1 */
3605 			0			/* FE=0, SE=0 */
3606 		};
3607 
3608 		while (i < 4) {
3609 			writeq(value[i], &bar0->swapper_ctrl);
3610 			val64 = readq(&bar0->pif_rd_swapper_fb);
3611 			if (val64 == 0x0123456789ABCDEFULL)
3612 				break;
3613 			i++;
3614 		}
3615 		if (i == 4) {
3616 			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3617 				  "feedback read %llx\n",
3618 				  dev->name, (unsigned long long)val64);
3619 			return FAILURE;
3620 		}
3621 		valr = value[i];
3622 	} else {
3623 		valr = readq(&bar0->swapper_ctrl);
3624 	}
3625 
3626 	valt = 0x0123456789ABCDEFULL;
3627 	writeq(valt, &bar0->xmsi_address);
3628 	val64 = readq(&bar0->xmsi_address);
3629 
3630 	if (val64 != valt) {
3631 		int i = 0;
3632 		static const u64 value[] = {
3633 			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3634 			0x0081810000818100ULL,	/* FE=1, SE=0 */
3635 			0x0042420000424200ULL,	/* FE=0, SE=1 */
3636 			0			/* FE=0, SE=0 */
3637 		};
3638 
3639 		while (i < 4) {
3640 			writeq((value[i] | valr), &bar0->swapper_ctrl);
3641 			writeq(valt, &bar0->xmsi_address);
3642 			val64 = readq(&bar0->xmsi_address);
3643 			if (val64 == valt)
3644 				break;
3645 			i++;
3646 		}
3647 		if (i == 4) {
3648 			unsigned long long x = val64;
3649 			DBG_PRINT(ERR_DBG,
3650 				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3651 			return FAILURE;
3652 		}
3653 	}
3654 	val64 = readq(&bar0->swapper_ctrl);
3655 	val64 &= 0xFFFF000000000000ULL;
3656 
3657 #ifdef __BIG_ENDIAN
3658 	/*
3659 	 * The device by default set to a big endian format, so a
3660 	 * big endian driver need not set anything.
3661 	 */
3662 	val64 |= (SWAPPER_CTRL_TXP_FE |
3663 		  SWAPPER_CTRL_TXP_SE |
3664 		  SWAPPER_CTRL_TXD_R_FE |
3665 		  SWAPPER_CTRL_TXD_W_FE |
3666 		  SWAPPER_CTRL_TXF_R_FE |
3667 		  SWAPPER_CTRL_RXD_R_FE |
3668 		  SWAPPER_CTRL_RXD_W_FE |
3669 		  SWAPPER_CTRL_RXF_W_FE |
3670 		  SWAPPER_CTRL_XMSI_FE |
3671 		  SWAPPER_CTRL_STATS_FE |
3672 		  SWAPPER_CTRL_STATS_SE);
3673 	if (sp->config.intr_type == INTA)
3674 		val64 |= SWAPPER_CTRL_XMSI_SE;
3675 	writeq(val64, &bar0->swapper_ctrl);
3676 #else
3677 	/*
3678 	 * Initially we enable all bits to make it accessible by the
3679 	 * driver, then we selectively enable only those bits that
3680 	 * we want to set.
3681 	 */
3682 	val64 |= (SWAPPER_CTRL_TXP_FE |
3683 		  SWAPPER_CTRL_TXP_SE |
3684 		  SWAPPER_CTRL_TXD_R_FE |
3685 		  SWAPPER_CTRL_TXD_R_SE |
3686 		  SWAPPER_CTRL_TXD_W_FE |
3687 		  SWAPPER_CTRL_TXD_W_SE |
3688 		  SWAPPER_CTRL_TXF_R_FE |
3689 		  SWAPPER_CTRL_RXD_R_FE |
3690 		  SWAPPER_CTRL_RXD_R_SE |
3691 		  SWAPPER_CTRL_RXD_W_FE |
3692 		  SWAPPER_CTRL_RXD_W_SE |
3693 		  SWAPPER_CTRL_RXF_W_FE |
3694 		  SWAPPER_CTRL_XMSI_FE |
3695 		  SWAPPER_CTRL_STATS_FE |
3696 		  SWAPPER_CTRL_STATS_SE);
3697 	if (sp->config.intr_type == INTA)
3698 		val64 |= SWAPPER_CTRL_XMSI_SE;
3699 	writeq(val64, &bar0->swapper_ctrl);
3700 #endif
3701 	val64 = readq(&bar0->swapper_ctrl);
3702 
3703 	/*
3704 	 * Verifying if endian settings are accurate by reading a
3705 	 * feedback register.
3706 	 */
3707 	val64 = readq(&bar0->pif_rd_swapper_fb);
3708 	if (val64 != 0x0123456789ABCDEFULL) {
3709 		/* Endian settings are incorrect, calls for another dekko. */
3710 		DBG_PRINT(ERR_DBG,
3711 			  "%s: Endian settings are wrong, feedback read %llx\n",
3712 			  dev->name, (unsigned long long)val64);
3713 		return FAILURE;
3714 	}
3715 
3716 	return SUCCESS;
3717 }
3718 
wait_for_msix_trans(struct s2io_nic * nic,int i)3719 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3720 {
3721 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3722 	u64 val64;
3723 	int ret = 0, cnt = 0;
3724 
3725 	do {
3726 		val64 = readq(&bar0->xmsi_access);
3727 		if (!(val64 & s2BIT(15)))
3728 			break;
3729 		mdelay(1);
3730 		cnt++;
3731 	} while (cnt < 5);
3732 	if (cnt == 5) {
3733 		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3734 		ret = 1;
3735 	}
3736 
3737 	return ret;
3738 }
3739 
restore_xmsi_data(struct s2io_nic * nic)3740 static void restore_xmsi_data(struct s2io_nic *nic)
3741 {
3742 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3743 	u64 val64;
3744 	int i, msix_index;
3745 
3746 	if (nic->device_type == XFRAME_I_DEVICE)
3747 		return;
3748 
3749 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3750 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3751 		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3752 		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3753 		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3754 		writeq(val64, &bar0->xmsi_access);
3755 		if (wait_for_msix_trans(nic, msix_index)) {
3756 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3757 				  __func__, msix_index);
3758 			continue;
3759 		}
3760 	}
3761 }
3762 
store_xmsi_data(struct s2io_nic * nic)3763 static void store_xmsi_data(struct s2io_nic *nic)
3764 {
3765 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3766 	u64 val64, addr, data;
3767 	int i, msix_index;
3768 
3769 	if (nic->device_type == XFRAME_I_DEVICE)
3770 		return;
3771 
3772 	/* Store and display */
3773 	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3774 		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3775 		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3776 		writeq(val64, &bar0->xmsi_access);
3777 		if (wait_for_msix_trans(nic, msix_index)) {
3778 			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3779 				  __func__, msix_index);
3780 			continue;
3781 		}
3782 		addr = readq(&bar0->xmsi_address);
3783 		data = readq(&bar0->xmsi_data);
3784 		if (addr && data) {
3785 			nic->msix_info[i].addr = addr;
3786 			nic->msix_info[i].data = data;
3787 		}
3788 	}
3789 }
3790 
s2io_enable_msi_x(struct s2io_nic * nic)3791 static int s2io_enable_msi_x(struct s2io_nic *nic)
3792 {
3793 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3794 	u64 rx_mat;
3795 	u16 msi_control; /* Temp variable */
3796 	int ret, i, j, msix_indx = 1;
3797 	int size;
3798 	struct stat_block *stats = nic->mac_control.stats_info;
3799 	struct swStat *swstats = &stats->sw_stat;
3800 
3801 	size = nic->num_entries * sizeof(struct msix_entry);
3802 	nic->entries = kzalloc(size, GFP_KERNEL);
3803 	if (!nic->entries) {
3804 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3805 			  __func__);
3806 		swstats->mem_alloc_fail_cnt++;
3807 		return -ENOMEM;
3808 	}
3809 	swstats->mem_allocated += size;
3810 
3811 	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3812 	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3813 	if (!nic->s2io_entries) {
3814 		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3815 			  __func__);
3816 		swstats->mem_alloc_fail_cnt++;
3817 		kfree(nic->entries);
3818 		swstats->mem_freed
3819 			+= (nic->num_entries * sizeof(struct msix_entry));
3820 		return -ENOMEM;
3821 	}
3822 	swstats->mem_allocated += size;
3823 
3824 	nic->entries[0].entry = 0;
3825 	nic->s2io_entries[0].entry = 0;
3826 	nic->s2io_entries[0].in_use = MSIX_FLG;
3827 	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3828 	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3829 
3830 	for (i = 1; i < nic->num_entries; i++) {
3831 		nic->entries[i].entry = ((i - 1) * 8) + 1;
3832 		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3833 		nic->s2io_entries[i].arg = NULL;
3834 		nic->s2io_entries[i].in_use = 0;
3835 	}
3836 
3837 	rx_mat = readq(&bar0->rx_mat);
3838 	for (j = 0; j < nic->config.rx_ring_num; j++) {
3839 		rx_mat |= RX_MAT_SET(j, msix_indx);
3840 		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3841 		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3842 		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3843 		msix_indx += 8;
3844 	}
3845 	writeq(rx_mat, &bar0->rx_mat);
3846 	readq(&bar0->rx_mat);
3847 
3848 	ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3849 	/* We fail init if error or we get less vectors than min required */
3850 	if (ret) {
3851 		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3852 		kfree(nic->entries);
3853 		swstats->mem_freed += nic->num_entries *
3854 			sizeof(struct msix_entry);
3855 		kfree(nic->s2io_entries);
3856 		swstats->mem_freed += nic->num_entries *
3857 			sizeof(struct s2io_msix_entry);
3858 		nic->entries = NULL;
3859 		nic->s2io_entries = NULL;
3860 		return -ENOMEM;
3861 	}
3862 
3863 	/*
3864 	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3865 	 * in the herc NIC. (Temp change, needs to be removed later)
3866 	 */
3867 	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3868 	msi_control |= 0x1; /* Enable MSI */
3869 	pci_write_config_word(nic->pdev, 0x42, msi_control);
3870 
3871 	return 0;
3872 }
3873 
3874 /* Handle software interrupt used during MSI(X) test */
s2io_test_intr(int irq,void * dev_id)3875 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3876 {
3877 	struct s2io_nic *sp = dev_id;
3878 
3879 	sp->msi_detected = 1;
3880 	wake_up(&sp->msi_wait);
3881 
3882 	return IRQ_HANDLED;
3883 }
3884 
3885 /* Test interrupt path by forcing a a software IRQ */
s2io_test_msi(struct s2io_nic * sp)3886 static int s2io_test_msi(struct s2io_nic *sp)
3887 {
3888 	struct pci_dev *pdev = sp->pdev;
3889 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3890 	int err;
3891 	u64 val64, saved64;
3892 
3893 	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3894 			  sp->name, sp);
3895 	if (err) {
3896 		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3897 			  sp->dev->name, pci_name(pdev), pdev->irq);
3898 		return err;
3899 	}
3900 
3901 	init_waitqueue_head(&sp->msi_wait);
3902 	sp->msi_detected = 0;
3903 
3904 	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3905 	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3906 	val64 |= SCHED_INT_CTRL_TIMER_EN;
3907 	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3908 	writeq(val64, &bar0->scheduled_int_ctrl);
3909 
3910 	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3911 
3912 	if (!sp->msi_detected) {
3913 		/* MSI(X) test failed, go back to INTx mode */
3914 		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3915 			  "using MSI(X) during test\n",
3916 			  sp->dev->name, pci_name(pdev));
3917 
3918 		err = -EOPNOTSUPP;
3919 	}
3920 
3921 	free_irq(sp->entries[1].vector, sp);
3922 
3923 	writeq(saved64, &bar0->scheduled_int_ctrl);
3924 
3925 	return err;
3926 }
3927 
remove_msix_isr(struct s2io_nic * sp)3928 static void remove_msix_isr(struct s2io_nic *sp)
3929 {
3930 	int i;
3931 	u16 msi_control;
3932 
3933 	for (i = 0; i < sp->num_entries; i++) {
3934 		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3935 			int vector = sp->entries[i].vector;
3936 			void *arg = sp->s2io_entries[i].arg;
3937 			free_irq(vector, arg);
3938 		}
3939 	}
3940 
3941 	kfree(sp->entries);
3942 	kfree(sp->s2io_entries);
3943 	sp->entries = NULL;
3944 	sp->s2io_entries = NULL;
3945 
3946 	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3947 	msi_control &= 0xFFFE; /* Disable MSI */
3948 	pci_write_config_word(sp->pdev, 0x42, msi_control);
3949 
3950 	pci_disable_msix(sp->pdev);
3951 }
3952 
remove_inta_isr(struct s2io_nic * sp)3953 static void remove_inta_isr(struct s2io_nic *sp)
3954 {
3955 	struct net_device *dev = sp->dev;
3956 
3957 	free_irq(sp->pdev->irq, dev);
3958 }
3959 
3960 /* ********************************************************* *
3961  * Functions defined below concern the OS part of the driver *
3962  * ********************************************************* */
3963 
3964 /**
3965  *  s2io_open - open entry point of the driver
3966  *  @dev : pointer to the device structure.
3967  *  Description:
3968  *  This function is the open entry point of the driver. It mainly calls a
3969  *  function to allocate Rx buffers and inserts them into the buffer
3970  *  descriptors and then enables the Rx part of the NIC.
3971  *  Return value:
3972  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3973  *   file on failure.
3974  */
3975 
s2io_open(struct net_device * dev)3976 static int s2io_open(struct net_device *dev)
3977 {
3978 	struct s2io_nic *sp = netdev_priv(dev);
3979 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3980 	int err = 0;
3981 
3982 	/*
3983 	 * Make sure you have link off by default every time
3984 	 * Nic is initialized
3985 	 */
3986 	netif_carrier_off(dev);
3987 	sp->last_link_state = 0;
3988 
3989 	/* Initialize H/W and enable interrupts */
3990 	err = s2io_card_up(sp);
3991 	if (err) {
3992 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3993 			  dev->name);
3994 		goto hw_init_failed;
3995 	}
3996 
3997 	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3998 		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3999 		s2io_card_down(sp);
4000 		err = -ENODEV;
4001 		goto hw_init_failed;
4002 	}
4003 	s2io_start_all_tx_queue(sp);
4004 	return 0;
4005 
4006 hw_init_failed:
4007 	if (sp->config.intr_type == MSI_X) {
4008 		if (sp->entries) {
4009 			kfree(sp->entries);
4010 			swstats->mem_freed += sp->num_entries *
4011 				sizeof(struct msix_entry);
4012 		}
4013 		if (sp->s2io_entries) {
4014 			kfree(sp->s2io_entries);
4015 			swstats->mem_freed += sp->num_entries *
4016 				sizeof(struct s2io_msix_entry);
4017 		}
4018 	}
4019 	return err;
4020 }
4021 
4022 /**
4023  *  s2io_close -close entry point of the driver
4024  *  @dev : device pointer.
4025  *  Description:
4026  *  This is the stop entry point of the driver. It needs to undo exactly
4027  *  whatever was done by the open entry point,thus it's usually referred to
4028  *  as the close function.Among other things this function mainly stops the
4029  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4030  *  Return value:
4031  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4032  *  file on failure.
4033  */
4034 
s2io_close(struct net_device * dev)4035 static int s2io_close(struct net_device *dev)
4036 {
4037 	struct s2io_nic *sp = netdev_priv(dev);
4038 	struct config_param *config = &sp->config;
4039 	u64 tmp64;
4040 	int offset;
4041 
4042 	/* Return if the device is already closed               *
4043 	 *  Can happen when s2io_card_up failed in change_mtu    *
4044 	 */
4045 	if (!is_s2io_card_up(sp))
4046 		return 0;
4047 
4048 	s2io_stop_all_tx_queue(sp);
4049 	/* delete all populated mac entries */
4050 	for (offset = 1; offset < config->max_mc_addr; offset++) {
4051 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
4052 		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4053 			do_s2io_delete_unicast_mc(sp, tmp64);
4054 	}
4055 
4056 	s2io_card_down(sp);
4057 
4058 	return 0;
4059 }
4060 
4061 /**
4062  *  s2io_xmit - Tx entry point of te driver
4063  *  @skb : the socket buffer containing the Tx data.
4064  *  @dev : device pointer.
4065  *  Description :
4066  *  This function is the Tx entry point of the driver. S2IO NIC supports
4067  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4068  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4069  *  not be upadted.
4070  *  Return value:
4071  *  0 on success & 1 on failure.
4072  */
4073 
s2io_xmit(struct sk_buff * skb,struct net_device * dev)4074 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4075 {
4076 	struct s2io_nic *sp = netdev_priv(dev);
4077 	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4078 	register u64 val64;
4079 	struct TxD *txdp;
4080 	struct TxFIFO_element __iomem *tx_fifo;
4081 	unsigned long flags = 0;
4082 	u16 vlan_tag = 0;
4083 	struct fifo_info *fifo = NULL;
4084 	int do_spin_lock = 1;
4085 	int offload_type;
4086 	int enable_per_list_interrupt = 0;
4087 	struct config_param *config = &sp->config;
4088 	struct mac_info *mac_control = &sp->mac_control;
4089 	struct stat_block *stats = mac_control->stats_info;
4090 	struct swStat *swstats = &stats->sw_stat;
4091 
4092 	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4093 
4094 	if (unlikely(skb->len <= 0)) {
4095 		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4096 		dev_kfree_skb_any(skb);
4097 		return NETDEV_TX_OK;
4098 	}
4099 
4100 	if (!is_s2io_card_up(sp)) {
4101 		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4102 			  dev->name);
4103 		dev_kfree_skb(skb);
4104 		return NETDEV_TX_OK;
4105 	}
4106 
4107 	queue = 0;
4108 	if (vlan_tx_tag_present(skb))
4109 		vlan_tag = vlan_tx_tag_get(skb);
4110 	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4111 		if (skb->protocol == htons(ETH_P_IP)) {
4112 			struct iphdr *ip;
4113 			struct tcphdr *th;
4114 			ip = ip_hdr(skb);
4115 
4116 			if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4117 				th = (struct tcphdr *)(((unsigned char *)ip) +
4118 						       ip->ihl*4);
4119 
4120 				if (ip->protocol == IPPROTO_TCP) {
4121 					queue_len = sp->total_tcp_fifos;
4122 					queue = (ntohs(th->source) +
4123 						 ntohs(th->dest)) &
4124 						sp->fifo_selector[queue_len - 1];
4125 					if (queue >= queue_len)
4126 						queue = queue_len - 1;
4127 				} else if (ip->protocol == IPPROTO_UDP) {
4128 					queue_len = sp->total_udp_fifos;
4129 					queue = (ntohs(th->source) +
4130 						 ntohs(th->dest)) &
4131 						sp->fifo_selector[queue_len - 1];
4132 					if (queue >= queue_len)
4133 						queue = queue_len - 1;
4134 					queue += sp->udp_fifo_idx;
4135 					if (skb->len > 1024)
4136 						enable_per_list_interrupt = 1;
4137 					do_spin_lock = 0;
4138 				}
4139 			}
4140 		}
4141 	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4142 		/* get fifo number based on skb->priority value */
4143 		queue = config->fifo_mapping
4144 			[skb->priority & (MAX_TX_FIFOS - 1)];
4145 	fifo = &mac_control->fifos[queue];
4146 
4147 	if (do_spin_lock)
4148 		spin_lock_irqsave(&fifo->tx_lock, flags);
4149 	else {
4150 		if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4151 			return NETDEV_TX_LOCKED;
4152 	}
4153 
4154 	if (sp->config.multiq) {
4155 		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4156 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4157 			return NETDEV_TX_BUSY;
4158 		}
4159 	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4160 		if (netif_queue_stopped(dev)) {
4161 			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4162 			return NETDEV_TX_BUSY;
4163 		}
4164 	}
4165 
4166 	put_off = (u16)fifo->tx_curr_put_info.offset;
4167 	get_off = (u16)fifo->tx_curr_get_info.offset;
4168 	txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4169 
4170 	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4171 	/* Avoid "put" pointer going beyond "get" pointer */
4172 	if (txdp->Host_Control ||
4173 	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4174 		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4175 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4176 		dev_kfree_skb(skb);
4177 		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178 		return NETDEV_TX_OK;
4179 	}
4180 
4181 	offload_type = s2io_offload_type(skb);
4182 	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4183 		txdp->Control_1 |= TXD_TCP_LSO_EN;
4184 		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4185 	}
4186 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4187 		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4188 				    TXD_TX_CKO_TCP_EN |
4189 				    TXD_TX_CKO_UDP_EN);
4190 	}
4191 	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4192 	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4193 	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4194 	if (enable_per_list_interrupt)
4195 		if (put_off & (queue_len >> 5))
4196 			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4197 	if (vlan_tag) {
4198 		txdp->Control_2 |= TXD_VLAN_ENABLE;
4199 		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4200 	}
4201 
4202 	frg_len = skb_headlen(skb);
4203 	if (offload_type == SKB_GSO_UDP) {
4204 		int ufo_size;
4205 
4206 		ufo_size = s2io_udp_mss(skb);
4207 		ufo_size &= ~7;
4208 		txdp->Control_1 |= TXD_UFO_EN;
4209 		txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4210 		txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4211 #ifdef __BIG_ENDIAN
4212 		/* both variants do cpu_to_be64(be32_to_cpu(...)) */
4213 		fifo->ufo_in_band_v[put_off] =
4214 			(__force u64)skb_shinfo(skb)->ip6_frag_id;
4215 #else
4216 		fifo->ufo_in_band_v[put_off] =
4217 			(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4218 #endif
4219 		txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4220 		txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4221 						      fifo->ufo_in_band_v,
4222 						      sizeof(u64),
4223 						      PCI_DMA_TODEVICE);
4224 		if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4225 			goto pci_map_failed;
4226 		txdp++;
4227 	}
4228 
4229 	txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4230 					      frg_len, PCI_DMA_TODEVICE);
4231 	if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4232 		goto pci_map_failed;
4233 
4234 	txdp->Host_Control = (unsigned long)skb;
4235 	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4236 	if (offload_type == SKB_GSO_UDP)
4237 		txdp->Control_1 |= TXD_UFO_EN;
4238 
4239 	frg_cnt = skb_shinfo(skb)->nr_frags;
4240 	/* For fragmented SKB. */
4241 	for (i = 0; i < frg_cnt; i++) {
4242 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4243 		/* A '0' length fragment will be ignored */
4244 		if (!frag->size)
4245 			continue;
4246 		txdp++;
4247 		txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4248 							 frag->page_offset,
4249 							 frag->size,
4250 							 PCI_DMA_TODEVICE);
4251 		txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4252 		if (offload_type == SKB_GSO_UDP)
4253 			txdp->Control_1 |= TXD_UFO_EN;
4254 	}
4255 	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4256 
4257 	if (offload_type == SKB_GSO_UDP)
4258 		frg_cnt++; /* as Txd0 was used for inband header */
4259 
4260 	tx_fifo = mac_control->tx_FIFO_start[queue];
4261 	val64 = fifo->list_info[put_off].list_phy_addr;
4262 	writeq(val64, &tx_fifo->TxDL_Pointer);
4263 
4264 	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4265 		 TX_FIFO_LAST_LIST);
4266 	if (offload_type)
4267 		val64 |= TX_FIFO_SPECIAL_FUNC;
4268 
4269 	writeq(val64, &tx_fifo->List_Control);
4270 
4271 	mmiowb();
4272 
4273 	put_off++;
4274 	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4275 		put_off = 0;
4276 	fifo->tx_curr_put_info.offset = put_off;
4277 
4278 	/* Avoid "put" pointer going beyond "get" pointer */
4279 	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4280 		swstats->fifo_full_cnt++;
4281 		DBG_PRINT(TX_DBG,
4282 			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4283 			  put_off, get_off);
4284 		s2io_stop_tx_queue(sp, fifo->fifo_no);
4285 	}
4286 	swstats->mem_allocated += skb->truesize;
4287 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4288 
4289 	if (sp->config.intr_type == MSI_X)
4290 		tx_intr_handler(fifo);
4291 
4292 	return NETDEV_TX_OK;
4293 
4294 pci_map_failed:
4295 	swstats->pci_map_fail_cnt++;
4296 	s2io_stop_tx_queue(sp, fifo->fifo_no);
4297 	swstats->mem_freed += skb->truesize;
4298 	dev_kfree_skb(skb);
4299 	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4300 	return NETDEV_TX_OK;
4301 }
4302 
4303 static void
s2io_alarm_handle(unsigned long data)4304 s2io_alarm_handle(unsigned long data)
4305 {
4306 	struct s2io_nic *sp = (struct s2io_nic *)data;
4307 	struct net_device *dev = sp->dev;
4308 
4309 	s2io_handle_errors(dev);
4310 	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4311 }
4312 
s2io_msix_ring_handle(int irq,void * dev_id)4313 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4314 {
4315 	struct ring_info *ring = (struct ring_info *)dev_id;
4316 	struct s2io_nic *sp = ring->nic;
4317 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4318 
4319 	if (unlikely(!is_s2io_card_up(sp)))
4320 		return IRQ_HANDLED;
4321 
4322 	if (sp->config.napi) {
4323 		u8 __iomem *addr = NULL;
4324 		u8 val8 = 0;
4325 
4326 		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4327 		addr += (7 - ring->ring_no);
4328 		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4329 		writeb(val8, addr);
4330 		val8 = readb(addr);
4331 		napi_schedule(&ring->napi);
4332 	} else {
4333 		rx_intr_handler(ring, 0);
4334 		s2io_chk_rx_buffers(sp, ring);
4335 	}
4336 
4337 	return IRQ_HANDLED;
4338 }
4339 
s2io_msix_fifo_handle(int irq,void * dev_id)4340 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4341 {
4342 	int i;
4343 	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4344 	struct s2io_nic *sp = fifos->nic;
4345 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4346 	struct config_param *config  = &sp->config;
4347 	u64 reason;
4348 
4349 	if (unlikely(!is_s2io_card_up(sp)))
4350 		return IRQ_NONE;
4351 
4352 	reason = readq(&bar0->general_int_status);
4353 	if (unlikely(reason == S2IO_MINUS_ONE))
4354 		/* Nothing much can be done. Get out */
4355 		return IRQ_HANDLED;
4356 
4357 	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4358 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4359 
4360 		if (reason & GEN_INTR_TXPIC)
4361 			s2io_txpic_intr_handle(sp);
4362 
4363 		if (reason & GEN_INTR_TXTRAFFIC)
4364 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4365 
4366 		for (i = 0; i < config->tx_fifo_num; i++)
4367 			tx_intr_handler(&fifos[i]);
4368 
4369 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4370 		readl(&bar0->general_int_status);
4371 		return IRQ_HANDLED;
4372 	}
4373 	/* The interrupt was not raised by us */
4374 	return IRQ_NONE;
4375 }
4376 
s2io_txpic_intr_handle(struct s2io_nic * sp)4377 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4378 {
4379 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4380 	u64 val64;
4381 
4382 	val64 = readq(&bar0->pic_int_status);
4383 	if (val64 & PIC_INT_GPIO) {
4384 		val64 = readq(&bar0->gpio_int_reg);
4385 		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4386 		    (val64 & GPIO_INT_REG_LINK_UP)) {
4387 			/*
4388 			 * This is unstable state so clear both up/down
4389 			 * interrupt and adapter to re-evaluate the link state.
4390 			 */
4391 			val64 |= GPIO_INT_REG_LINK_DOWN;
4392 			val64 |= GPIO_INT_REG_LINK_UP;
4393 			writeq(val64, &bar0->gpio_int_reg);
4394 			val64 = readq(&bar0->gpio_int_mask);
4395 			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4396 				   GPIO_INT_MASK_LINK_DOWN);
4397 			writeq(val64, &bar0->gpio_int_mask);
4398 		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4399 			val64 = readq(&bar0->adapter_status);
4400 			/* Enable Adapter */
4401 			val64 = readq(&bar0->adapter_control);
4402 			val64 |= ADAPTER_CNTL_EN;
4403 			writeq(val64, &bar0->adapter_control);
4404 			val64 |= ADAPTER_LED_ON;
4405 			writeq(val64, &bar0->adapter_control);
4406 			if (!sp->device_enabled_once)
4407 				sp->device_enabled_once = 1;
4408 
4409 			s2io_link(sp, LINK_UP);
4410 			/*
4411 			 * unmask link down interrupt and mask link-up
4412 			 * intr
4413 			 */
4414 			val64 = readq(&bar0->gpio_int_mask);
4415 			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4416 			val64 |= GPIO_INT_MASK_LINK_UP;
4417 			writeq(val64, &bar0->gpio_int_mask);
4418 
4419 		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4420 			val64 = readq(&bar0->adapter_status);
4421 			s2io_link(sp, LINK_DOWN);
4422 			/* Link is down so unmaks link up interrupt */
4423 			val64 = readq(&bar0->gpio_int_mask);
4424 			val64 &= ~GPIO_INT_MASK_LINK_UP;
4425 			val64 |= GPIO_INT_MASK_LINK_DOWN;
4426 			writeq(val64, &bar0->gpio_int_mask);
4427 
4428 			/* turn off LED */
4429 			val64 = readq(&bar0->adapter_control);
4430 			val64 = val64 & (~ADAPTER_LED_ON);
4431 			writeq(val64, &bar0->adapter_control);
4432 		}
4433 	}
4434 	val64 = readq(&bar0->gpio_int_mask);
4435 }
4436 
4437 /**
4438  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4439  *  @value: alarm bits
4440  *  @addr: address value
4441  *  @cnt: counter variable
4442  *  Description: Check for alarm and increment the counter
4443  *  Return Value:
4444  *  1 - if alarm bit set
4445  *  0 - if alarm bit is not set
4446  */
do_s2io_chk_alarm_bit(u64 value,void __iomem * addr,unsigned long long * cnt)4447 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4448 				 unsigned long long *cnt)
4449 {
4450 	u64 val64;
4451 	val64 = readq(addr);
4452 	if (val64 & value) {
4453 		writeq(val64, addr);
4454 		(*cnt)++;
4455 		return 1;
4456 	}
4457 	return 0;
4458 
4459 }
4460 
4461 /**
4462  *  s2io_handle_errors - Xframe error indication handler
4463  *  @nic: device private variable
4464  *  Description: Handle alarms such as loss of link, single or
4465  *  double ECC errors, critical and serious errors.
4466  *  Return Value:
4467  *  NONE
4468  */
s2io_handle_errors(void * dev_id)4469 static void s2io_handle_errors(void *dev_id)
4470 {
4471 	struct net_device *dev = (struct net_device *)dev_id;
4472 	struct s2io_nic *sp = netdev_priv(dev);
4473 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4474 	u64 temp64 = 0, val64 = 0;
4475 	int i = 0;
4476 
4477 	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4478 	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4479 
4480 	if (!is_s2io_card_up(sp))
4481 		return;
4482 
4483 	if (pci_channel_offline(sp->pdev))
4484 		return;
4485 
4486 	memset(&sw_stat->ring_full_cnt, 0,
4487 	       sizeof(sw_stat->ring_full_cnt));
4488 
4489 	/* Handling the XPAK counters update */
4490 	if (stats->xpak_timer_count < 72000) {
4491 		/* waiting for an hour */
4492 		stats->xpak_timer_count++;
4493 	} else {
4494 		s2io_updt_xpak_counter(dev);
4495 		/* reset the count to zero */
4496 		stats->xpak_timer_count = 0;
4497 	}
4498 
4499 	/* Handling link status change error Intr */
4500 	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4501 		val64 = readq(&bar0->mac_rmac_err_reg);
4502 		writeq(val64, &bar0->mac_rmac_err_reg);
4503 		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4504 			schedule_work(&sp->set_link_task);
4505 	}
4506 
4507 	/* In case of a serious error, the device will be Reset. */
4508 	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4509 				  &sw_stat->serious_err_cnt))
4510 		goto reset;
4511 
4512 	/* Check for data parity error */
4513 	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4514 				  &sw_stat->parity_err_cnt))
4515 		goto reset;
4516 
4517 	/* Check for ring full counter */
4518 	if (sp->device_type == XFRAME_II_DEVICE) {
4519 		val64 = readq(&bar0->ring_bump_counter1);
4520 		for (i = 0; i < 4; i++) {
4521 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4522 			temp64 >>= 64 - ((i+1)*16);
4523 			sw_stat->ring_full_cnt[i] += temp64;
4524 		}
4525 
4526 		val64 = readq(&bar0->ring_bump_counter2);
4527 		for (i = 0; i < 4; i++) {
4528 			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4529 			temp64 >>= 64 - ((i+1)*16);
4530 			sw_stat->ring_full_cnt[i+4] += temp64;
4531 		}
4532 	}
4533 
4534 	val64 = readq(&bar0->txdma_int_status);
4535 	/*check for pfc_err*/
4536 	if (val64 & TXDMA_PFC_INT) {
4537 		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4538 					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4539 					  PFC_PCIX_ERR,
4540 					  &bar0->pfc_err_reg,
4541 					  &sw_stat->pfc_err_cnt))
4542 			goto reset;
4543 		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4544 				      &bar0->pfc_err_reg,
4545 				      &sw_stat->pfc_err_cnt);
4546 	}
4547 
4548 	/*check for tda_err*/
4549 	if (val64 & TXDMA_TDA_INT) {
4550 		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4551 					  TDA_SM0_ERR_ALARM |
4552 					  TDA_SM1_ERR_ALARM,
4553 					  &bar0->tda_err_reg,
4554 					  &sw_stat->tda_err_cnt))
4555 			goto reset;
4556 		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4557 				      &bar0->tda_err_reg,
4558 				      &sw_stat->tda_err_cnt);
4559 	}
4560 	/*check for pcc_err*/
4561 	if (val64 & TXDMA_PCC_INT) {
4562 		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4563 					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4564 					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4565 					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4566 					  PCC_TXB_ECC_DB_ERR,
4567 					  &bar0->pcc_err_reg,
4568 					  &sw_stat->pcc_err_cnt))
4569 			goto reset;
4570 		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4571 				      &bar0->pcc_err_reg,
4572 				      &sw_stat->pcc_err_cnt);
4573 	}
4574 
4575 	/*check for tti_err*/
4576 	if (val64 & TXDMA_TTI_INT) {
4577 		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4578 					  &bar0->tti_err_reg,
4579 					  &sw_stat->tti_err_cnt))
4580 			goto reset;
4581 		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4582 				      &bar0->tti_err_reg,
4583 				      &sw_stat->tti_err_cnt);
4584 	}
4585 
4586 	/*check for lso_err*/
4587 	if (val64 & TXDMA_LSO_INT) {
4588 		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4589 					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4590 					  &bar0->lso_err_reg,
4591 					  &sw_stat->lso_err_cnt))
4592 			goto reset;
4593 		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4594 				      &bar0->lso_err_reg,
4595 				      &sw_stat->lso_err_cnt);
4596 	}
4597 
4598 	/*check for tpa_err*/
4599 	if (val64 & TXDMA_TPA_INT) {
4600 		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4601 					  &bar0->tpa_err_reg,
4602 					  &sw_stat->tpa_err_cnt))
4603 			goto reset;
4604 		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4605 				      &bar0->tpa_err_reg,
4606 				      &sw_stat->tpa_err_cnt);
4607 	}
4608 
4609 	/*check for sm_err*/
4610 	if (val64 & TXDMA_SM_INT) {
4611 		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4612 					  &bar0->sm_err_reg,
4613 					  &sw_stat->sm_err_cnt))
4614 			goto reset;
4615 	}
4616 
4617 	val64 = readq(&bar0->mac_int_status);
4618 	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4619 		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4620 					  &bar0->mac_tmac_err_reg,
4621 					  &sw_stat->mac_tmac_err_cnt))
4622 			goto reset;
4623 		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4624 				      TMAC_DESC_ECC_SG_ERR |
4625 				      TMAC_DESC_ECC_DB_ERR,
4626 				      &bar0->mac_tmac_err_reg,
4627 				      &sw_stat->mac_tmac_err_cnt);
4628 	}
4629 
4630 	val64 = readq(&bar0->xgxs_int_status);
4631 	if (val64 & XGXS_INT_STATUS_TXGXS) {
4632 		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633 					  &bar0->xgxs_txgxs_err_reg,
4634 					  &sw_stat->xgxs_txgxs_err_cnt))
4635 			goto reset;
4636 		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637 				      &bar0->xgxs_txgxs_err_reg,
4638 				      &sw_stat->xgxs_txgxs_err_cnt);
4639 	}
4640 
4641 	val64 = readq(&bar0->rxdma_int_status);
4642 	if (val64 & RXDMA_INT_RC_INT_M) {
4643 		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4644 					  RC_FTC_ECC_DB_ERR |
4645 					  RC_PRCn_SM_ERR_ALARM |
4646 					  RC_FTC_SM_ERR_ALARM,
4647 					  &bar0->rc_err_reg,
4648 					  &sw_stat->rc_err_cnt))
4649 			goto reset;
4650 		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4651 				      RC_FTC_ECC_SG_ERR |
4652 				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4653 				      &sw_stat->rc_err_cnt);
4654 		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4655 					  PRC_PCI_AB_WR_Rn |
4656 					  PRC_PCI_AB_F_WR_Rn,
4657 					  &bar0->prc_pcix_err_reg,
4658 					  &sw_stat->prc_pcix_err_cnt))
4659 			goto reset;
4660 		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4661 				      PRC_PCI_DP_WR_Rn |
4662 				      PRC_PCI_DP_F_WR_Rn,
4663 				      &bar0->prc_pcix_err_reg,
4664 				      &sw_stat->prc_pcix_err_cnt);
4665 	}
4666 
4667 	if (val64 & RXDMA_INT_RPA_INT_M) {
4668 		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4669 					  &bar0->rpa_err_reg,
4670 					  &sw_stat->rpa_err_cnt))
4671 			goto reset;
4672 		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4673 				      &bar0->rpa_err_reg,
4674 				      &sw_stat->rpa_err_cnt);
4675 	}
4676 
4677 	if (val64 & RXDMA_INT_RDA_INT_M) {
4678 		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4679 					  RDA_FRM_ECC_DB_N_AERR |
4680 					  RDA_SM1_ERR_ALARM |
4681 					  RDA_SM0_ERR_ALARM |
4682 					  RDA_RXD_ECC_DB_SERR,
4683 					  &bar0->rda_err_reg,
4684 					  &sw_stat->rda_err_cnt))
4685 			goto reset;
4686 		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4687 				      RDA_FRM_ECC_SG_ERR |
4688 				      RDA_MISC_ERR |
4689 				      RDA_PCIX_ERR,
4690 				      &bar0->rda_err_reg,
4691 				      &sw_stat->rda_err_cnt);
4692 	}
4693 
4694 	if (val64 & RXDMA_INT_RTI_INT_M) {
4695 		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4696 					  &bar0->rti_err_reg,
4697 					  &sw_stat->rti_err_cnt))
4698 			goto reset;
4699 		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4700 				      &bar0->rti_err_reg,
4701 				      &sw_stat->rti_err_cnt);
4702 	}
4703 
4704 	val64 = readq(&bar0->mac_int_status);
4705 	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4706 		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4707 					  &bar0->mac_rmac_err_reg,
4708 					  &sw_stat->mac_rmac_err_cnt))
4709 			goto reset;
4710 		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4711 				      RMAC_SINGLE_ECC_ERR |
4712 				      RMAC_DOUBLE_ECC_ERR,
4713 				      &bar0->mac_rmac_err_reg,
4714 				      &sw_stat->mac_rmac_err_cnt);
4715 	}
4716 
4717 	val64 = readq(&bar0->xgxs_int_status);
4718 	if (val64 & XGXS_INT_STATUS_RXGXS) {
4719 		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4720 					  &bar0->xgxs_rxgxs_err_reg,
4721 					  &sw_stat->xgxs_rxgxs_err_cnt))
4722 			goto reset;
4723 	}
4724 
4725 	val64 = readq(&bar0->mc_int_status);
4726 	if (val64 & MC_INT_STATUS_MC_INT) {
4727 		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4728 					  &bar0->mc_err_reg,
4729 					  &sw_stat->mc_err_cnt))
4730 			goto reset;
4731 
4732 		/* Handling Ecc errors */
4733 		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4734 			writeq(val64, &bar0->mc_err_reg);
4735 			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4736 				sw_stat->double_ecc_errs++;
4737 				if (sp->device_type != XFRAME_II_DEVICE) {
4738 					/*
4739 					 * Reset XframeI only if critical error
4740 					 */
4741 					if (val64 &
4742 					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4743 					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4744 						goto reset;
4745 				}
4746 			} else
4747 				sw_stat->single_ecc_errs++;
4748 		}
4749 	}
4750 	return;
4751 
4752 reset:
4753 	s2io_stop_all_tx_queue(sp);
4754 	schedule_work(&sp->rst_timer_task);
4755 	sw_stat->soft_reset_cnt++;
4756 }
4757 
4758 /**
4759  *  s2io_isr - ISR handler of the device .
4760  *  @irq: the irq of the device.
4761  *  @dev_id: a void pointer to the dev structure of the NIC.
4762  *  Description:  This function is the ISR handler of the device. It
4763  *  identifies the reason for the interrupt and calls the relevant
4764  *  service routines. As a contongency measure, this ISR allocates the
4765  *  recv buffers, if their numbers are below the panic value which is
4766  *  presently set to 25% of the original number of rcv buffers allocated.
4767  *  Return value:
4768  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4769  *   IRQ_NONE: will be returned if interrupt is not from our device
4770  */
s2io_isr(int irq,void * dev_id)4771 static irqreturn_t s2io_isr(int irq, void *dev_id)
4772 {
4773 	struct net_device *dev = (struct net_device *)dev_id;
4774 	struct s2io_nic *sp = netdev_priv(dev);
4775 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4776 	int i;
4777 	u64 reason = 0;
4778 	struct mac_info *mac_control;
4779 	struct config_param *config;
4780 
4781 	/* Pretend we handled any irq's from a disconnected card */
4782 	if (pci_channel_offline(sp->pdev))
4783 		return IRQ_NONE;
4784 
4785 	if (!is_s2io_card_up(sp))
4786 		return IRQ_NONE;
4787 
4788 	config = &sp->config;
4789 	mac_control = &sp->mac_control;
4790 
4791 	/*
4792 	 * Identify the cause for interrupt and call the appropriate
4793 	 * interrupt handler. Causes for the interrupt could be;
4794 	 * 1. Rx of packet.
4795 	 * 2. Tx complete.
4796 	 * 3. Link down.
4797 	 */
4798 	reason = readq(&bar0->general_int_status);
4799 
4800 	if (unlikely(reason == S2IO_MINUS_ONE))
4801 		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4802 
4803 	if (reason &
4804 	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4805 		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4806 
4807 		if (config->napi) {
4808 			if (reason & GEN_INTR_RXTRAFFIC) {
4809 				napi_schedule(&sp->napi);
4810 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4811 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4812 				readl(&bar0->rx_traffic_int);
4813 			}
4814 		} else {
4815 			/*
4816 			 * rx_traffic_int reg is an R1 register, writing all 1's
4817 			 * will ensure that the actual interrupt causing bit
4818 			 * get's cleared and hence a read can be avoided.
4819 			 */
4820 			if (reason & GEN_INTR_RXTRAFFIC)
4821 				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4822 
4823 			for (i = 0; i < config->rx_ring_num; i++) {
4824 				struct ring_info *ring = &mac_control->rings[i];
4825 
4826 				rx_intr_handler(ring, 0);
4827 			}
4828 		}
4829 
4830 		/*
4831 		 * tx_traffic_int reg is an R1 register, writing all 1's
4832 		 * will ensure that the actual interrupt causing bit get's
4833 		 * cleared and hence a read can be avoided.
4834 		 */
4835 		if (reason & GEN_INTR_TXTRAFFIC)
4836 			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4837 
4838 		for (i = 0; i < config->tx_fifo_num; i++)
4839 			tx_intr_handler(&mac_control->fifos[i]);
4840 
4841 		if (reason & GEN_INTR_TXPIC)
4842 			s2io_txpic_intr_handle(sp);
4843 
4844 		/*
4845 		 * Reallocate the buffers from the interrupt handler itself.
4846 		 */
4847 		if (!config->napi) {
4848 			for (i = 0; i < config->rx_ring_num; i++) {
4849 				struct ring_info *ring = &mac_control->rings[i];
4850 
4851 				s2io_chk_rx_buffers(sp, ring);
4852 			}
4853 		}
4854 		writeq(sp->general_int_mask, &bar0->general_int_mask);
4855 		readl(&bar0->general_int_status);
4856 
4857 		return IRQ_HANDLED;
4858 
4859 	} else if (!reason) {
4860 		/* The interrupt was not raised by us */
4861 		return IRQ_NONE;
4862 	}
4863 
4864 	return IRQ_HANDLED;
4865 }
4866 
4867 /**
4868  * s2io_updt_stats -
4869  */
s2io_updt_stats(struct s2io_nic * sp)4870 static void s2io_updt_stats(struct s2io_nic *sp)
4871 {
4872 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4873 	u64 val64;
4874 	int cnt = 0;
4875 
4876 	if (is_s2io_card_up(sp)) {
4877 		/* Apprx 30us on a 133 MHz bus */
4878 		val64 = SET_UPDT_CLICKS(10) |
4879 			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4880 		writeq(val64, &bar0->stat_cfg);
4881 		do {
4882 			udelay(100);
4883 			val64 = readq(&bar0->stat_cfg);
4884 			if (!(val64 & s2BIT(0)))
4885 				break;
4886 			cnt++;
4887 			if (cnt == 5)
4888 				break; /* Updt failed */
4889 		} while (1);
4890 	}
4891 }
4892 
4893 /**
4894  *  s2io_get_stats - Updates the device statistics structure.
4895  *  @dev : pointer to the device structure.
4896  *  Description:
4897  *  This function updates the device statistics structure in the s2io_nic
4898  *  structure and returns a pointer to the same.
4899  *  Return value:
4900  *  pointer to the updated net_device_stats structure.
4901  */
s2io_get_stats(struct net_device * dev)4902 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4903 {
4904 	struct s2io_nic *sp = netdev_priv(dev);
4905 	struct mac_info *mac_control = &sp->mac_control;
4906 	struct stat_block *stats = mac_control->stats_info;
4907 	u64 delta;
4908 
4909 	/* Configure Stats for immediate updt */
4910 	s2io_updt_stats(sp);
4911 
4912 	/* A device reset will cause the on-adapter statistics to be zero'ed.
4913 	 * This can be done while running by changing the MTU.  To prevent the
4914 	 * system from having the stats zero'ed, the driver keeps a copy of the
4915 	 * last update to the system (which is also zero'ed on reset).  This
4916 	 * enables the driver to accurately know the delta between the last
4917 	 * update and the current update.
4918 	 */
4919 	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4920 		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4921 	sp->stats.rx_packets += delta;
4922 	dev->stats.rx_packets += delta;
4923 
4924 	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4925 		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4926 	sp->stats.tx_packets += delta;
4927 	dev->stats.tx_packets += delta;
4928 
4929 	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4930 		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4931 	sp->stats.rx_bytes += delta;
4932 	dev->stats.rx_bytes += delta;
4933 
4934 	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4935 		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4936 	sp->stats.tx_bytes += delta;
4937 	dev->stats.tx_bytes += delta;
4938 
4939 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4940 	sp->stats.rx_errors += delta;
4941 	dev->stats.rx_errors += delta;
4942 
4943 	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4944 		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4945 	sp->stats.tx_errors += delta;
4946 	dev->stats.tx_errors += delta;
4947 
4948 	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4949 	sp->stats.rx_dropped += delta;
4950 	dev->stats.rx_dropped += delta;
4951 
4952 	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4953 	sp->stats.tx_dropped += delta;
4954 	dev->stats.tx_dropped += delta;
4955 
4956 	/* The adapter MAC interprets pause frames as multicast packets, but
4957 	 * does not pass them up.  This erroneously increases the multicast
4958 	 * packet count and needs to be deducted when the multicast frame count
4959 	 * is queried.
4960 	 */
4961 	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4962 		le32_to_cpu(stats->rmac_vld_mcst_frms);
4963 	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4964 	delta -= sp->stats.multicast;
4965 	sp->stats.multicast += delta;
4966 	dev->stats.multicast += delta;
4967 
4968 	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4969 		le32_to_cpu(stats->rmac_usized_frms)) +
4970 		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4971 	sp->stats.rx_length_errors += delta;
4972 	dev->stats.rx_length_errors += delta;
4973 
4974 	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4975 	sp->stats.rx_crc_errors += delta;
4976 	dev->stats.rx_crc_errors += delta;
4977 
4978 	return &dev->stats;
4979 }
4980 
4981 /**
4982  *  s2io_set_multicast - entry point for multicast address enable/disable.
4983  *  @dev : pointer to the device structure
4984  *  Description:
4985  *  This function is a driver entry point which gets called by the kernel
4986  *  whenever multicast addresses must be enabled/disabled. This also gets
4987  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4988  *  determine, if multicast address must be enabled or if promiscuous mode
4989  *  is to be disabled etc.
4990  *  Return value:
4991  *  void.
4992  */
4993 
s2io_set_multicast(struct net_device * dev)4994 static void s2io_set_multicast(struct net_device *dev)
4995 {
4996 	int i, j, prev_cnt;
4997 	struct netdev_hw_addr *ha;
4998 	struct s2io_nic *sp = netdev_priv(dev);
4999 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5000 	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
5001 		0xfeffffffffffULL;
5002 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5003 	void __iomem *add;
5004 	struct config_param *config = &sp->config;
5005 
5006 	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5007 		/*  Enable all Multicast addresses */
5008 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5009 		       &bar0->rmac_addr_data0_mem);
5010 		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5011 		       &bar0->rmac_addr_data1_mem);
5012 		val64 = RMAC_ADDR_CMD_MEM_WE |
5013 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5014 			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5015 		writeq(val64, &bar0->rmac_addr_cmd_mem);
5016 		/* Wait till command completes */
5017 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5018 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5019 				      S2IO_BIT_RESET);
5020 
5021 		sp->m_cast_flg = 1;
5022 		sp->all_multi_pos = config->max_mc_addr - 1;
5023 	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5024 		/*  Disable all Multicast addresses */
5025 		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5026 		       &bar0->rmac_addr_data0_mem);
5027 		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5028 		       &bar0->rmac_addr_data1_mem);
5029 		val64 = RMAC_ADDR_CMD_MEM_WE |
5030 			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031 			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5032 		writeq(val64, &bar0->rmac_addr_cmd_mem);
5033 		/* Wait till command completes */
5034 		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5035 				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5036 				      S2IO_BIT_RESET);
5037 
5038 		sp->m_cast_flg = 0;
5039 		sp->all_multi_pos = 0;
5040 	}
5041 
5042 	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5043 		/*  Put the NIC into promiscuous mode */
5044 		add = &bar0->mac_cfg;
5045 		val64 = readq(&bar0->mac_cfg);
5046 		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5047 
5048 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5049 		writel((u32)val64, add);
5050 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5051 		writel((u32) (val64 >> 32), (add + 4));
5052 
5053 		if (vlan_tag_strip != 1) {
5054 			val64 = readq(&bar0->rx_pa_cfg);
5055 			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5056 			writeq(val64, &bar0->rx_pa_cfg);
5057 			sp->vlan_strip_flag = 0;
5058 		}
5059 
5060 		val64 = readq(&bar0->mac_cfg);
5061 		sp->promisc_flg = 1;
5062 		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5063 			  dev->name);
5064 	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5065 		/*  Remove the NIC from promiscuous mode */
5066 		add = &bar0->mac_cfg;
5067 		val64 = readq(&bar0->mac_cfg);
5068 		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5069 
5070 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5071 		writel((u32)val64, add);
5072 		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5073 		writel((u32) (val64 >> 32), (add + 4));
5074 
5075 		if (vlan_tag_strip != 0) {
5076 			val64 = readq(&bar0->rx_pa_cfg);
5077 			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5078 			writeq(val64, &bar0->rx_pa_cfg);
5079 			sp->vlan_strip_flag = 1;
5080 		}
5081 
5082 		val64 = readq(&bar0->mac_cfg);
5083 		sp->promisc_flg = 0;
5084 		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5085 	}
5086 
5087 	/*  Update individual M_CAST address list */
5088 	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5089 		if (netdev_mc_count(dev) >
5090 		    (config->max_mc_addr - config->max_mac_addr)) {
5091 			DBG_PRINT(ERR_DBG,
5092 				  "%s: No more Rx filters can be added - "
5093 				  "please enable ALL_MULTI instead\n",
5094 				  dev->name);
5095 			return;
5096 		}
5097 
5098 		prev_cnt = sp->mc_addr_count;
5099 		sp->mc_addr_count = netdev_mc_count(dev);
5100 
5101 		/* Clear out the previous list of Mc in the H/W. */
5102 		for (i = 0; i < prev_cnt; i++) {
5103 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5104 			       &bar0->rmac_addr_data0_mem);
5105 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5106 			       &bar0->rmac_addr_data1_mem);
5107 			val64 = RMAC_ADDR_CMD_MEM_WE |
5108 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5109 				RMAC_ADDR_CMD_MEM_OFFSET
5110 				(config->mc_start_offset + i);
5111 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5112 
5113 			/* Wait for command completes */
5114 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5115 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5116 						  S2IO_BIT_RESET)) {
5117 				DBG_PRINT(ERR_DBG,
5118 					  "%s: Adding Multicasts failed\n",
5119 					  dev->name);
5120 				return;
5121 			}
5122 		}
5123 
5124 		/* Create the new Rx filter list and update the same in H/W. */
5125 		i = 0;
5126 		netdev_for_each_mc_addr(ha, dev) {
5127 			mac_addr = 0;
5128 			for (j = 0; j < ETH_ALEN; j++) {
5129 				mac_addr |= ha->addr[j];
5130 				mac_addr <<= 8;
5131 			}
5132 			mac_addr >>= 8;
5133 			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5134 			       &bar0->rmac_addr_data0_mem);
5135 			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5136 			       &bar0->rmac_addr_data1_mem);
5137 			val64 = RMAC_ADDR_CMD_MEM_WE |
5138 				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5139 				RMAC_ADDR_CMD_MEM_OFFSET
5140 				(i + config->mc_start_offset);
5141 			writeq(val64, &bar0->rmac_addr_cmd_mem);
5142 
5143 			/* Wait for command completes */
5144 			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5145 						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5146 						  S2IO_BIT_RESET)) {
5147 				DBG_PRINT(ERR_DBG,
5148 					  "%s: Adding Multicasts failed\n",
5149 					  dev->name);
5150 				return;
5151 			}
5152 			i++;
5153 		}
5154 	}
5155 }
5156 
5157 /* read from CAM unicast & multicast addresses and store it in
5158  * def_mac_addr structure
5159  */
do_s2io_store_unicast_mc(struct s2io_nic * sp)5160 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5161 {
5162 	int offset;
5163 	u64 mac_addr = 0x0;
5164 	struct config_param *config = &sp->config;
5165 
5166 	/* store unicast & multicast mac addresses */
5167 	for (offset = 0; offset < config->max_mc_addr; offset++) {
5168 		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5169 		/* if read fails disable the entry */
5170 		if (mac_addr == FAILURE)
5171 			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5172 		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5173 	}
5174 }
5175 
5176 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
do_s2io_restore_unicast_mc(struct s2io_nic * sp)5177 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5178 {
5179 	int offset;
5180 	struct config_param *config = &sp->config;
5181 	/* restore unicast mac address */
5182 	for (offset = 0; offset < config->max_mac_addr; offset++)
5183 		do_s2io_prog_unicast(sp->dev,
5184 				     sp->def_mac_addr[offset].mac_addr);
5185 
5186 	/* restore multicast mac address */
5187 	for (offset = config->mc_start_offset;
5188 	     offset < config->max_mc_addr; offset++)
5189 		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5190 }
5191 
5192 /* add a multicast MAC address to CAM */
do_s2io_add_mc(struct s2io_nic * sp,u8 * addr)5193 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5194 {
5195 	int i;
5196 	u64 mac_addr = 0;
5197 	struct config_param *config = &sp->config;
5198 
5199 	for (i = 0; i < ETH_ALEN; i++) {
5200 		mac_addr <<= 8;
5201 		mac_addr |= addr[i];
5202 	}
5203 	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5204 		return SUCCESS;
5205 
5206 	/* check if the multicast mac already preset in CAM */
5207 	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5208 		u64 tmp64;
5209 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5210 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5211 			break;
5212 
5213 		if (tmp64 == mac_addr)
5214 			return SUCCESS;
5215 	}
5216 	if (i == config->max_mc_addr) {
5217 		DBG_PRINT(ERR_DBG,
5218 			  "CAM full no space left for multicast MAC\n");
5219 		return FAILURE;
5220 	}
5221 	/* Update the internal structure with this new mac address */
5222 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5223 
5224 	return do_s2io_add_mac(sp, mac_addr, i);
5225 }
5226 
5227 /* add MAC address to CAM */
do_s2io_add_mac(struct s2io_nic * sp,u64 addr,int off)5228 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5229 {
5230 	u64 val64;
5231 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5232 
5233 	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5234 	       &bar0->rmac_addr_data0_mem);
5235 
5236 	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5237 		RMAC_ADDR_CMD_MEM_OFFSET(off);
5238 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5239 
5240 	/* Wait till command completes */
5241 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5242 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243 				  S2IO_BIT_RESET)) {
5244 		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5245 		return FAILURE;
5246 	}
5247 	return SUCCESS;
5248 }
5249 /* deletes a specified unicast/multicast mac entry from CAM */
do_s2io_delete_unicast_mc(struct s2io_nic * sp,u64 addr)5250 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5251 {
5252 	int offset;
5253 	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5254 	struct config_param *config = &sp->config;
5255 
5256 	for (offset = 1;
5257 	     offset < config->max_mc_addr; offset++) {
5258 		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5259 		if (tmp64 == addr) {
5260 			/* disable the entry by writing  0xffffffffffffULL */
5261 			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5262 				return FAILURE;
5263 			/* store the new mac list from CAM */
5264 			do_s2io_store_unicast_mc(sp);
5265 			return SUCCESS;
5266 		}
5267 	}
5268 	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5269 		  (unsigned long long)addr);
5270 	return FAILURE;
5271 }
5272 
5273 /* read mac entries from CAM */
do_s2io_read_unicast_mc(struct s2io_nic * sp,int offset)5274 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5275 {
5276 	u64 tmp64 = 0xffffffffffff0000ULL, val64;
5277 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5278 
5279 	/* read mac addr */
5280 	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5281 		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5282 	writeq(val64, &bar0->rmac_addr_cmd_mem);
5283 
5284 	/* Wait till command completes */
5285 	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5286 				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5287 				  S2IO_BIT_RESET)) {
5288 		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5289 		return FAILURE;
5290 	}
5291 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5292 
5293 	return tmp64 >> 16;
5294 }
5295 
5296 /**
5297  * s2io_set_mac_addr driver entry point
5298  */
5299 
s2io_set_mac_addr(struct net_device * dev,void * p)5300 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5301 {
5302 	struct sockaddr *addr = p;
5303 
5304 	if (!is_valid_ether_addr(addr->sa_data))
5305 		return -EINVAL;
5306 
5307 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5308 
5309 	/* store the MAC address in CAM */
5310 	return do_s2io_prog_unicast(dev, dev->dev_addr);
5311 }
5312 /**
5313  *  do_s2io_prog_unicast - Programs the Xframe mac address
5314  *  @dev : pointer to the device structure.
5315  *  @addr: a uchar pointer to the new mac address which is to be set.
5316  *  Description : This procedure will program the Xframe to receive
5317  *  frames with new Mac Address
5318  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5319  *  as defined in errno.h file on failure.
5320  */
5321 
do_s2io_prog_unicast(struct net_device * dev,u8 * addr)5322 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5323 {
5324 	struct s2io_nic *sp = netdev_priv(dev);
5325 	register u64 mac_addr = 0, perm_addr = 0;
5326 	int i;
5327 	u64 tmp64;
5328 	struct config_param *config = &sp->config;
5329 
5330 	/*
5331 	 * Set the new MAC address as the new unicast filter and reflect this
5332 	 * change on the device address registered with the OS. It will be
5333 	 * at offset 0.
5334 	 */
5335 	for (i = 0; i < ETH_ALEN; i++) {
5336 		mac_addr <<= 8;
5337 		mac_addr |= addr[i];
5338 		perm_addr <<= 8;
5339 		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5340 	}
5341 
5342 	/* check if the dev_addr is different than perm_addr */
5343 	if (mac_addr == perm_addr)
5344 		return SUCCESS;
5345 
5346 	/* check if the mac already preset in CAM */
5347 	for (i = 1; i < config->max_mac_addr; i++) {
5348 		tmp64 = do_s2io_read_unicast_mc(sp, i);
5349 		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5350 			break;
5351 
5352 		if (tmp64 == mac_addr) {
5353 			DBG_PRINT(INFO_DBG,
5354 				  "MAC addr:0x%llx already present in CAM\n",
5355 				  (unsigned long long)mac_addr);
5356 			return SUCCESS;
5357 		}
5358 	}
5359 	if (i == config->max_mac_addr) {
5360 		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5361 		return FAILURE;
5362 	}
5363 	/* Update the internal structure with this new mac address */
5364 	do_s2io_copy_mac_addr(sp, i, mac_addr);
5365 
5366 	return do_s2io_add_mac(sp, mac_addr, i);
5367 }
5368 
5369 /**
5370  * s2io_ethtool_sset - Sets different link parameters.
5371  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5372  * @info: pointer to the structure with parameters given by ethtool to set
5373  * link information.
5374  * Description:
5375  * The function sets different link parameters provided by the user onto
5376  * the NIC.
5377  * Return value:
5378  * 0 on success.
5379  */
5380 
s2io_ethtool_sset(struct net_device * dev,struct ethtool_cmd * info)5381 static int s2io_ethtool_sset(struct net_device *dev,
5382 			     struct ethtool_cmd *info)
5383 {
5384 	struct s2io_nic *sp = netdev_priv(dev);
5385 	if ((info->autoneg == AUTONEG_ENABLE) ||
5386 	    (info->speed != SPEED_10000) ||
5387 	    (info->duplex != DUPLEX_FULL))
5388 		return -EINVAL;
5389 	else {
5390 		s2io_close(sp->dev);
5391 		s2io_open(sp->dev);
5392 	}
5393 
5394 	return 0;
5395 }
5396 
5397 /**
5398  * s2io_ethtol_gset - Return link specific information.
5399  * @sp : private member of the device structure, pointer to the
5400  *      s2io_nic structure.
5401  * @info : pointer to the structure with parameters given by ethtool
5402  * to return link information.
5403  * Description:
5404  * Returns link specific information like speed, duplex etc.. to ethtool.
5405  * Return value :
5406  * return 0 on success.
5407  */
5408 
s2io_ethtool_gset(struct net_device * dev,struct ethtool_cmd * info)5409 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5410 {
5411 	struct s2io_nic *sp = netdev_priv(dev);
5412 	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5413 	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5414 	info->port = PORT_FIBRE;
5415 
5416 	/* info->transceiver */
5417 	info->transceiver = XCVR_EXTERNAL;
5418 
5419 	if (netif_carrier_ok(sp->dev)) {
5420 		info->speed = 10000;
5421 		info->duplex = DUPLEX_FULL;
5422 	} else {
5423 		info->speed = -1;
5424 		info->duplex = -1;
5425 	}
5426 
5427 	info->autoneg = AUTONEG_DISABLE;
5428 	return 0;
5429 }
5430 
5431 /**
5432  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5433  * @sp : private member of the device structure, which is a pointer to the
5434  * s2io_nic structure.
5435  * @info : pointer to the structure with parameters given by ethtool to
5436  * return driver information.
5437  * Description:
5438  * Returns driver specefic information like name, version etc.. to ethtool.
5439  * Return value:
5440  *  void
5441  */
5442 
s2io_ethtool_gdrvinfo(struct net_device * dev,struct ethtool_drvinfo * info)5443 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5444 				  struct ethtool_drvinfo *info)
5445 {
5446 	struct s2io_nic *sp = netdev_priv(dev);
5447 
5448 	strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5449 	strncpy(info->version, s2io_driver_version, sizeof(info->version));
5450 	strncpy(info->fw_version, "", sizeof(info->fw_version));
5451 	strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5452 	info->regdump_len = XENA_REG_SPACE;
5453 	info->eedump_len = XENA_EEPROM_SPACE;
5454 }
5455 
5456 /**
5457  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5458  *  @sp: private member of the device structure, which is a pointer to the
5459  *  s2io_nic structure.
5460  *  @regs : pointer to the structure with parameters given by ethtool for
5461  *  dumping the registers.
5462  *  @reg_space: The input argumnet into which all the registers are dumped.
5463  *  Description:
5464  *  Dumps the entire register space of xFrame NIC into the user given
5465  *  buffer area.
5466  * Return value :
5467  * void .
5468  */
5469 
s2io_ethtool_gregs(struct net_device * dev,struct ethtool_regs * regs,void * space)5470 static void s2io_ethtool_gregs(struct net_device *dev,
5471 			       struct ethtool_regs *regs, void *space)
5472 {
5473 	int i;
5474 	u64 reg;
5475 	u8 *reg_space = (u8 *)space;
5476 	struct s2io_nic *sp = netdev_priv(dev);
5477 
5478 	regs->len = XENA_REG_SPACE;
5479 	regs->version = sp->pdev->subsystem_device;
5480 
5481 	for (i = 0; i < regs->len; i += 8) {
5482 		reg = readq(sp->bar0 + i);
5483 		memcpy((reg_space + i), &reg, 8);
5484 	}
5485 }
5486 
5487 /**
5488  *  s2io_phy_id  - timer function that alternates adapter LED.
5489  *  @data : address of the private member of the device structure, which
5490  *  is a pointer to the s2io_nic structure, provided as an u32.
5491  * Description: This is actually the timer function that alternates the
5492  * adapter LED bit of the adapter control bit to set/reset every time on
5493  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5494  *  once every second.
5495  */
s2io_phy_id(unsigned long data)5496 static void s2io_phy_id(unsigned long data)
5497 {
5498 	struct s2io_nic *sp = (struct s2io_nic *)data;
5499 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5500 	u64 val64 = 0;
5501 	u16 subid;
5502 
5503 	subid = sp->pdev->subsystem_device;
5504 	if ((sp->device_type == XFRAME_II_DEVICE) ||
5505 	    ((subid & 0xFF) >= 0x07)) {
5506 		val64 = readq(&bar0->gpio_control);
5507 		val64 ^= GPIO_CTRL_GPIO_0;
5508 		writeq(val64, &bar0->gpio_control);
5509 	} else {
5510 		val64 = readq(&bar0->adapter_control);
5511 		val64 ^= ADAPTER_LED_ON;
5512 		writeq(val64, &bar0->adapter_control);
5513 	}
5514 
5515 	mod_timer(&sp->id_timer, jiffies + HZ / 2);
5516 }
5517 
5518 /**
5519  * s2io_ethtool_idnic - To physically identify the nic on the system.
5520  * @sp : private member of the device structure, which is a pointer to the
5521  * s2io_nic structure.
5522  * @id : pointer to the structure with identification parameters given by
5523  * ethtool.
5524  * Description: Used to physically identify the NIC on the system.
5525  * The Link LED will blink for a time specified by the user for
5526  * identification.
5527  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5528  * identification is possible only if it's link is up.
5529  * Return value:
5530  * int , returns 0 on success
5531  */
5532 
s2io_ethtool_idnic(struct net_device * dev,u32 data)5533 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5534 {
5535 	u64 val64 = 0, last_gpio_ctrl_val;
5536 	struct s2io_nic *sp = netdev_priv(dev);
5537 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5538 	u16 subid;
5539 
5540 	subid = sp->pdev->subsystem_device;
5541 	last_gpio_ctrl_val = readq(&bar0->gpio_control);
5542 	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5543 		val64 = readq(&bar0->adapter_control);
5544 		if (!(val64 & ADAPTER_CNTL_EN)) {
5545 			pr_err("Adapter Link down, cannot blink LED\n");
5546 			return -EFAULT;
5547 		}
5548 	}
5549 	if (sp->id_timer.function == NULL) {
5550 		init_timer(&sp->id_timer);
5551 		sp->id_timer.function = s2io_phy_id;
5552 		sp->id_timer.data = (unsigned long)sp;
5553 	}
5554 	mod_timer(&sp->id_timer, jiffies);
5555 	if (data)
5556 		msleep_interruptible(data * HZ);
5557 	else
5558 		msleep_interruptible(MAX_FLICKER_TIME);
5559 	del_timer_sync(&sp->id_timer);
5560 
5561 	if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5562 		writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5563 		last_gpio_ctrl_val = readq(&bar0->gpio_control);
5564 	}
5565 
5566 	return 0;
5567 }
5568 
s2io_ethtool_gringparam(struct net_device * dev,struct ethtool_ringparam * ering)5569 static void s2io_ethtool_gringparam(struct net_device *dev,
5570 				    struct ethtool_ringparam *ering)
5571 {
5572 	struct s2io_nic *sp = netdev_priv(dev);
5573 	int i, tx_desc_count = 0, rx_desc_count = 0;
5574 
5575 	if (sp->rxd_mode == RXD_MODE_1) {
5576 		ering->rx_max_pending = MAX_RX_DESC_1;
5577 		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5578 	} else {
5579 		ering->rx_max_pending = MAX_RX_DESC_2;
5580 		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5581 	}
5582 
5583 	ering->rx_mini_max_pending = 0;
5584 	ering->tx_max_pending = MAX_TX_DESC;
5585 
5586 	for (i = 0; i < sp->config.rx_ring_num; i++)
5587 		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5588 	ering->rx_pending = rx_desc_count;
5589 	ering->rx_jumbo_pending = rx_desc_count;
5590 	ering->rx_mini_pending = 0;
5591 
5592 	for (i = 0; i < sp->config.tx_fifo_num; i++)
5593 		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5594 	ering->tx_pending = tx_desc_count;
5595 	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5596 }
5597 
5598 /**
5599  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5600  * @sp : private member of the device structure, which is a pointer to the
5601  *	s2io_nic structure.
5602  * @ep : pointer to the structure with pause parameters given by ethtool.
5603  * Description:
5604  * Returns the Pause frame generation and reception capability of the NIC.
5605  * Return value:
5606  *  void
5607  */
s2io_ethtool_getpause_data(struct net_device * dev,struct ethtool_pauseparam * ep)5608 static void s2io_ethtool_getpause_data(struct net_device *dev,
5609 				       struct ethtool_pauseparam *ep)
5610 {
5611 	u64 val64;
5612 	struct s2io_nic *sp = netdev_priv(dev);
5613 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5614 
5615 	val64 = readq(&bar0->rmac_pause_cfg);
5616 	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5617 		ep->tx_pause = true;
5618 	if (val64 & RMAC_PAUSE_RX_ENABLE)
5619 		ep->rx_pause = true;
5620 	ep->autoneg = false;
5621 }
5622 
5623 /**
5624  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5625  * @sp : private member of the device structure, which is a pointer to the
5626  *      s2io_nic structure.
5627  * @ep : pointer to the structure with pause parameters given by ethtool.
5628  * Description:
5629  * It can be used to set or reset Pause frame generation or reception
5630  * support of the NIC.
5631  * Return value:
5632  * int, returns 0 on Success
5633  */
5634 
s2io_ethtool_setpause_data(struct net_device * dev,struct ethtool_pauseparam * ep)5635 static int s2io_ethtool_setpause_data(struct net_device *dev,
5636 				      struct ethtool_pauseparam *ep)
5637 {
5638 	u64 val64;
5639 	struct s2io_nic *sp = netdev_priv(dev);
5640 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5641 
5642 	val64 = readq(&bar0->rmac_pause_cfg);
5643 	if (ep->tx_pause)
5644 		val64 |= RMAC_PAUSE_GEN_ENABLE;
5645 	else
5646 		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5647 	if (ep->rx_pause)
5648 		val64 |= RMAC_PAUSE_RX_ENABLE;
5649 	else
5650 		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5651 	writeq(val64, &bar0->rmac_pause_cfg);
5652 	return 0;
5653 }
5654 
5655 /**
5656  * read_eeprom - reads 4 bytes of data from user given offset.
5657  * @sp : private member of the device structure, which is a pointer to the
5658  *      s2io_nic structure.
5659  * @off : offset at which the data must be written
5660  * @data : Its an output parameter where the data read at the given
5661  *	offset is stored.
5662  * Description:
5663  * Will read 4 bytes of data from the user given offset and return the
5664  * read data.
5665  * NOTE: Will allow to read only part of the EEPROM visible through the
5666  *   I2C bus.
5667  * Return value:
5668  *  -1 on failure and 0 on success.
5669  */
5670 
5671 #define S2IO_DEV_ID		5
read_eeprom(struct s2io_nic * sp,int off,u64 * data)5672 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5673 {
5674 	int ret = -1;
5675 	u32 exit_cnt = 0;
5676 	u64 val64;
5677 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5678 
5679 	if (sp->device_type == XFRAME_I_DEVICE) {
5680 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5681 			I2C_CONTROL_ADDR(off) |
5682 			I2C_CONTROL_BYTE_CNT(0x3) |
5683 			I2C_CONTROL_READ |
5684 			I2C_CONTROL_CNTL_START;
5685 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5686 
5687 		while (exit_cnt < 5) {
5688 			val64 = readq(&bar0->i2c_control);
5689 			if (I2C_CONTROL_CNTL_END(val64)) {
5690 				*data = I2C_CONTROL_GET_DATA(val64);
5691 				ret = 0;
5692 				break;
5693 			}
5694 			msleep(50);
5695 			exit_cnt++;
5696 		}
5697 	}
5698 
5699 	if (sp->device_type == XFRAME_II_DEVICE) {
5700 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5701 			SPI_CONTROL_BYTECNT(0x3) |
5702 			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5703 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5704 		val64 |= SPI_CONTROL_REQ;
5705 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5706 		while (exit_cnt < 5) {
5707 			val64 = readq(&bar0->spi_control);
5708 			if (val64 & SPI_CONTROL_NACK) {
5709 				ret = 1;
5710 				break;
5711 			} else if (val64 & SPI_CONTROL_DONE) {
5712 				*data = readq(&bar0->spi_data);
5713 				*data &= 0xffffff;
5714 				ret = 0;
5715 				break;
5716 			}
5717 			msleep(50);
5718 			exit_cnt++;
5719 		}
5720 	}
5721 	return ret;
5722 }
5723 
5724 /**
5725  *  write_eeprom - actually writes the relevant part of the data value.
5726  *  @sp : private member of the device structure, which is a pointer to the
5727  *       s2io_nic structure.
5728  *  @off : offset at which the data must be written
5729  *  @data : The data that is to be written
5730  *  @cnt : Number of bytes of the data that are actually to be written into
5731  *  the Eeprom. (max of 3)
5732  * Description:
5733  *  Actually writes the relevant part of the data value into the Eeprom
5734  *  through the I2C bus.
5735  * Return value:
5736  *  0 on success, -1 on failure.
5737  */
5738 
write_eeprom(struct s2io_nic * sp,int off,u64 data,int cnt)5739 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5740 {
5741 	int exit_cnt = 0, ret = -1;
5742 	u64 val64;
5743 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5744 
5745 	if (sp->device_type == XFRAME_I_DEVICE) {
5746 		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5747 			I2C_CONTROL_ADDR(off) |
5748 			I2C_CONTROL_BYTE_CNT(cnt) |
5749 			I2C_CONTROL_SET_DATA((u32)data) |
5750 			I2C_CONTROL_CNTL_START;
5751 		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5752 
5753 		while (exit_cnt < 5) {
5754 			val64 = readq(&bar0->i2c_control);
5755 			if (I2C_CONTROL_CNTL_END(val64)) {
5756 				if (!(val64 & I2C_CONTROL_NACK))
5757 					ret = 0;
5758 				break;
5759 			}
5760 			msleep(50);
5761 			exit_cnt++;
5762 		}
5763 	}
5764 
5765 	if (sp->device_type == XFRAME_II_DEVICE) {
5766 		int write_cnt = (cnt == 8) ? 0 : cnt;
5767 		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5768 
5769 		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5770 			SPI_CONTROL_BYTECNT(write_cnt) |
5771 			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5772 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5773 		val64 |= SPI_CONTROL_REQ;
5774 		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5775 		while (exit_cnt < 5) {
5776 			val64 = readq(&bar0->spi_control);
5777 			if (val64 & SPI_CONTROL_NACK) {
5778 				ret = 1;
5779 				break;
5780 			} else if (val64 & SPI_CONTROL_DONE) {
5781 				ret = 0;
5782 				break;
5783 			}
5784 			msleep(50);
5785 			exit_cnt++;
5786 		}
5787 	}
5788 	return ret;
5789 }
s2io_vpd_read(struct s2io_nic * nic)5790 static void s2io_vpd_read(struct s2io_nic *nic)
5791 {
5792 	u8 *vpd_data;
5793 	u8 data;
5794 	int i = 0, cnt, len, fail = 0;
5795 	int vpd_addr = 0x80;
5796 	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5797 
5798 	if (nic->device_type == XFRAME_II_DEVICE) {
5799 		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5800 		vpd_addr = 0x80;
5801 	} else {
5802 		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5803 		vpd_addr = 0x50;
5804 	}
5805 	strcpy(nic->serial_num, "NOT AVAILABLE");
5806 
5807 	vpd_data = kmalloc(256, GFP_KERNEL);
5808 	if (!vpd_data) {
5809 		swstats->mem_alloc_fail_cnt++;
5810 		return;
5811 	}
5812 	swstats->mem_allocated += 256;
5813 
5814 	for (i = 0; i < 256; i += 4) {
5815 		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5816 		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5817 		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5818 		for (cnt = 0; cnt < 5; cnt++) {
5819 			msleep(2);
5820 			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5821 			if (data == 0x80)
5822 				break;
5823 		}
5824 		if (cnt >= 5) {
5825 			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5826 			fail = 1;
5827 			break;
5828 		}
5829 		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5830 				      (u32 *)&vpd_data[i]);
5831 	}
5832 
5833 	if (!fail) {
5834 		/* read serial number of adapter */
5835 		for (cnt = 0; cnt < 252; cnt++) {
5836 			if ((vpd_data[cnt] == 'S') &&
5837 			    (vpd_data[cnt+1] == 'N')) {
5838 				len = vpd_data[cnt+2];
5839 				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5840 					memcpy(nic->serial_num,
5841 					       &vpd_data[cnt + 3],
5842 					       len);
5843 					memset(nic->serial_num+len,
5844 					       0,
5845 					       VPD_STRING_LEN-len);
5846 					break;
5847 				}
5848 			}
5849 		}
5850 	}
5851 
5852 	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5853 		len = vpd_data[1];
5854 		memcpy(nic->product_name, &vpd_data[3], len);
5855 		nic->product_name[len] = 0;
5856 	}
5857 	kfree(vpd_data);
5858 	swstats->mem_freed += 256;
5859 }
5860 
5861 /**
5862  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5863  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5864  *  @eeprom : pointer to the user level structure provided by ethtool,
5865  *  containing all relevant information.
5866  *  @data_buf : user defined value to be written into Eeprom.
5867  *  Description: Reads the values stored in the Eeprom at given offset
5868  *  for a given length. Stores these values int the input argument data
5869  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5870  *  Return value:
5871  *  int  0 on success
5872  */
5873 
s2io_ethtool_geeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data_buf)5874 static int s2io_ethtool_geeprom(struct net_device *dev,
5875 				struct ethtool_eeprom *eeprom, u8 * data_buf)
5876 {
5877 	u32 i, valid;
5878 	u64 data;
5879 	struct s2io_nic *sp = netdev_priv(dev);
5880 
5881 	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5882 
5883 	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5884 		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5885 
5886 	for (i = 0; i < eeprom->len; i += 4) {
5887 		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5888 			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5889 			return -EFAULT;
5890 		}
5891 		valid = INV(data);
5892 		memcpy((data_buf + i), &valid, 4);
5893 	}
5894 	return 0;
5895 }
5896 
5897 /**
5898  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5899  *  @sp : private member of the device structure, which is a pointer to the
5900  *  s2io_nic structure.
5901  *  @eeprom : pointer to the user level structure provided by ethtool,
5902  *  containing all relevant information.
5903  *  @data_buf ; user defined value to be written into Eeprom.
5904  *  Description:
5905  *  Tries to write the user provided value in the Eeprom, at the offset
5906  *  given by the user.
5907  *  Return value:
5908  *  0 on success, -EFAULT on failure.
5909  */
5910 
s2io_ethtool_seeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data_buf)5911 static int s2io_ethtool_seeprom(struct net_device *dev,
5912 				struct ethtool_eeprom *eeprom,
5913 				u8 *data_buf)
5914 {
5915 	int len = eeprom->len, cnt = 0;
5916 	u64 valid = 0, data;
5917 	struct s2io_nic *sp = netdev_priv(dev);
5918 
5919 	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5920 		DBG_PRINT(ERR_DBG,
5921 			  "ETHTOOL_WRITE_EEPROM Err: "
5922 			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5923 			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5924 			  eeprom->magic);
5925 		return -EFAULT;
5926 	}
5927 
5928 	while (len) {
5929 		data = (u32)data_buf[cnt] & 0x000000FF;
5930 		if (data)
5931 			valid = (u32)(data << 24);
5932 		else
5933 			valid = data;
5934 
5935 		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5936 			DBG_PRINT(ERR_DBG,
5937 				  "ETHTOOL_WRITE_EEPROM Err: "
5938 				  "Cannot write into the specified offset\n");
5939 			return -EFAULT;
5940 		}
5941 		cnt++;
5942 		len--;
5943 	}
5944 
5945 	return 0;
5946 }
5947 
5948 /**
5949  * s2io_register_test - reads and writes into all clock domains.
5950  * @sp : private member of the device structure, which is a pointer to the
5951  * s2io_nic structure.
5952  * @data : variable that returns the result of each of the test conducted b
5953  * by the driver.
5954  * Description:
5955  * Read and write into all clock domains. The NIC has 3 clock domains,
5956  * see that registers in all the three regions are accessible.
5957  * Return value:
5958  * 0 on success.
5959  */
5960 
s2io_register_test(struct s2io_nic * sp,uint64_t * data)5961 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5962 {
5963 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5964 	u64 val64 = 0, exp_val;
5965 	int fail = 0;
5966 
5967 	val64 = readq(&bar0->pif_rd_swapper_fb);
5968 	if (val64 != 0x123456789abcdefULL) {
5969 		fail = 1;
5970 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5971 	}
5972 
5973 	val64 = readq(&bar0->rmac_pause_cfg);
5974 	if (val64 != 0xc000ffff00000000ULL) {
5975 		fail = 1;
5976 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5977 	}
5978 
5979 	val64 = readq(&bar0->rx_queue_cfg);
5980 	if (sp->device_type == XFRAME_II_DEVICE)
5981 		exp_val = 0x0404040404040404ULL;
5982 	else
5983 		exp_val = 0x0808080808080808ULL;
5984 	if (val64 != exp_val) {
5985 		fail = 1;
5986 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5987 	}
5988 
5989 	val64 = readq(&bar0->xgxs_efifo_cfg);
5990 	if (val64 != 0x000000001923141EULL) {
5991 		fail = 1;
5992 		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5993 	}
5994 
5995 	val64 = 0x5A5A5A5A5A5A5A5AULL;
5996 	writeq(val64, &bar0->xmsi_data);
5997 	val64 = readq(&bar0->xmsi_data);
5998 	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5999 		fail = 1;
6000 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
6001 	}
6002 
6003 	val64 = 0xA5A5A5A5A5A5A5A5ULL;
6004 	writeq(val64, &bar0->xmsi_data);
6005 	val64 = readq(&bar0->xmsi_data);
6006 	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6007 		fail = 1;
6008 		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6009 	}
6010 
6011 	*data = fail;
6012 	return fail;
6013 }
6014 
6015 /**
6016  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6017  * @sp : private member of the device structure, which is a pointer to the
6018  * s2io_nic structure.
6019  * @data:variable that returns the result of each of the test conducted by
6020  * the driver.
6021  * Description:
6022  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6023  * register.
6024  * Return value:
6025  * 0 on success.
6026  */
6027 
s2io_eeprom_test(struct s2io_nic * sp,uint64_t * data)6028 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6029 {
6030 	int fail = 0;
6031 	u64 ret_data, org_4F0, org_7F0;
6032 	u8 saved_4F0 = 0, saved_7F0 = 0;
6033 	struct net_device *dev = sp->dev;
6034 
6035 	/* Test Write Error at offset 0 */
6036 	/* Note that SPI interface allows write access to all areas
6037 	 * of EEPROM. Hence doing all negative testing only for Xframe I.
6038 	 */
6039 	if (sp->device_type == XFRAME_I_DEVICE)
6040 		if (!write_eeprom(sp, 0, 0, 3))
6041 			fail = 1;
6042 
6043 	/* Save current values at offsets 0x4F0 and 0x7F0 */
6044 	if (!read_eeprom(sp, 0x4F0, &org_4F0))
6045 		saved_4F0 = 1;
6046 	if (!read_eeprom(sp, 0x7F0, &org_7F0))
6047 		saved_7F0 = 1;
6048 
6049 	/* Test Write at offset 4f0 */
6050 	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6051 		fail = 1;
6052 	if (read_eeprom(sp, 0x4F0, &ret_data))
6053 		fail = 1;
6054 
6055 	if (ret_data != 0x012345) {
6056 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6057 			  "Data written %llx Data read %llx\n",
6058 			  dev->name, (unsigned long long)0x12345,
6059 			  (unsigned long long)ret_data);
6060 		fail = 1;
6061 	}
6062 
6063 	/* Reset the EEPROM data go FFFF */
6064 	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6065 
6066 	/* Test Write Request Error at offset 0x7c */
6067 	if (sp->device_type == XFRAME_I_DEVICE)
6068 		if (!write_eeprom(sp, 0x07C, 0, 3))
6069 			fail = 1;
6070 
6071 	/* Test Write Request at offset 0x7f0 */
6072 	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6073 		fail = 1;
6074 	if (read_eeprom(sp, 0x7F0, &ret_data))
6075 		fail = 1;
6076 
6077 	if (ret_data != 0x012345) {
6078 		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6079 			  "Data written %llx Data read %llx\n",
6080 			  dev->name, (unsigned long long)0x12345,
6081 			  (unsigned long long)ret_data);
6082 		fail = 1;
6083 	}
6084 
6085 	/* Reset the EEPROM data go FFFF */
6086 	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6087 
6088 	if (sp->device_type == XFRAME_I_DEVICE) {
6089 		/* Test Write Error at offset 0x80 */
6090 		if (!write_eeprom(sp, 0x080, 0, 3))
6091 			fail = 1;
6092 
6093 		/* Test Write Error at offset 0xfc */
6094 		if (!write_eeprom(sp, 0x0FC, 0, 3))
6095 			fail = 1;
6096 
6097 		/* Test Write Error at offset 0x100 */
6098 		if (!write_eeprom(sp, 0x100, 0, 3))
6099 			fail = 1;
6100 
6101 		/* Test Write Error at offset 4ec */
6102 		if (!write_eeprom(sp, 0x4EC, 0, 3))
6103 			fail = 1;
6104 	}
6105 
6106 	/* Restore values at offsets 0x4F0 and 0x7F0 */
6107 	if (saved_4F0)
6108 		write_eeprom(sp, 0x4F0, org_4F0, 3);
6109 	if (saved_7F0)
6110 		write_eeprom(sp, 0x7F0, org_7F0, 3);
6111 
6112 	*data = fail;
6113 	return fail;
6114 }
6115 
6116 /**
6117  * s2io_bist_test - invokes the MemBist test of the card .
6118  * @sp : private member of the device structure, which is a pointer to the
6119  * s2io_nic structure.
6120  * @data:variable that returns the result of each of the test conducted by
6121  * the driver.
6122  * Description:
6123  * This invokes the MemBist test of the card. We give around
6124  * 2 secs time for the Test to complete. If it's still not complete
6125  * within this peiod, we consider that the test failed.
6126  * Return value:
6127  * 0 on success and -1 on failure.
6128  */
6129 
s2io_bist_test(struct s2io_nic * sp,uint64_t * data)6130 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6131 {
6132 	u8 bist = 0;
6133 	int cnt = 0, ret = -1;
6134 
6135 	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6136 	bist |= PCI_BIST_START;
6137 	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6138 
6139 	while (cnt < 20) {
6140 		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6141 		if (!(bist & PCI_BIST_START)) {
6142 			*data = (bist & PCI_BIST_CODE_MASK);
6143 			ret = 0;
6144 			break;
6145 		}
6146 		msleep(100);
6147 		cnt++;
6148 	}
6149 
6150 	return ret;
6151 }
6152 
6153 /**
6154  * s2io-link_test - verifies the link state of the nic
6155  * @sp ; private member of the device structure, which is a pointer to the
6156  * s2io_nic structure.
6157  * @data: variable that returns the result of each of the test conducted by
6158  * the driver.
6159  * Description:
6160  * The function verifies the link state of the NIC and updates the input
6161  * argument 'data' appropriately.
6162  * Return value:
6163  * 0 on success.
6164  */
6165 
s2io_link_test(struct s2io_nic * sp,uint64_t * data)6166 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6167 {
6168 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6169 	u64 val64;
6170 
6171 	val64 = readq(&bar0->adapter_status);
6172 	if (!(LINK_IS_UP(val64)))
6173 		*data = 1;
6174 	else
6175 		*data = 0;
6176 
6177 	return *data;
6178 }
6179 
6180 /**
6181  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6182  * @sp - private member of the device structure, which is a pointer to the
6183  * s2io_nic structure.
6184  * @data - variable that returns the result of each of the test
6185  * conducted by the driver.
6186  * Description:
6187  *  This is one of the offline test that tests the read and write
6188  *  access to the RldRam chip on the NIC.
6189  * Return value:
6190  *  0 on success.
6191  */
6192 
s2io_rldram_test(struct s2io_nic * sp,uint64_t * data)6193 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6194 {
6195 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6196 	u64 val64;
6197 	int cnt, iteration = 0, test_fail = 0;
6198 
6199 	val64 = readq(&bar0->adapter_control);
6200 	val64 &= ~ADAPTER_ECC_EN;
6201 	writeq(val64, &bar0->adapter_control);
6202 
6203 	val64 = readq(&bar0->mc_rldram_test_ctrl);
6204 	val64 |= MC_RLDRAM_TEST_MODE;
6205 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6206 
6207 	val64 = readq(&bar0->mc_rldram_mrs);
6208 	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6209 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6210 
6211 	val64 |= MC_RLDRAM_MRS_ENABLE;
6212 	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6213 
6214 	while (iteration < 2) {
6215 		val64 = 0x55555555aaaa0000ULL;
6216 		if (iteration == 1)
6217 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6218 		writeq(val64, &bar0->mc_rldram_test_d0);
6219 
6220 		val64 = 0xaaaa5a5555550000ULL;
6221 		if (iteration == 1)
6222 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6223 		writeq(val64, &bar0->mc_rldram_test_d1);
6224 
6225 		val64 = 0x55aaaaaaaa5a0000ULL;
6226 		if (iteration == 1)
6227 			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6228 		writeq(val64, &bar0->mc_rldram_test_d2);
6229 
6230 		val64 = (u64) (0x0000003ffffe0100ULL);
6231 		writeq(val64, &bar0->mc_rldram_test_add);
6232 
6233 		val64 = MC_RLDRAM_TEST_MODE |
6234 			MC_RLDRAM_TEST_WRITE |
6235 			MC_RLDRAM_TEST_GO;
6236 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6237 
6238 		for (cnt = 0; cnt < 5; cnt++) {
6239 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6240 			if (val64 & MC_RLDRAM_TEST_DONE)
6241 				break;
6242 			msleep(200);
6243 		}
6244 
6245 		if (cnt == 5)
6246 			break;
6247 
6248 		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6249 		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6250 
6251 		for (cnt = 0; cnt < 5; cnt++) {
6252 			val64 = readq(&bar0->mc_rldram_test_ctrl);
6253 			if (val64 & MC_RLDRAM_TEST_DONE)
6254 				break;
6255 			msleep(500);
6256 		}
6257 
6258 		if (cnt == 5)
6259 			break;
6260 
6261 		val64 = readq(&bar0->mc_rldram_test_ctrl);
6262 		if (!(val64 & MC_RLDRAM_TEST_PASS))
6263 			test_fail = 1;
6264 
6265 		iteration++;
6266 	}
6267 
6268 	*data = test_fail;
6269 
6270 	/* Bring the adapter out of test mode */
6271 	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6272 
6273 	return test_fail;
6274 }
6275 
6276 /**
6277  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6278  *  @sp : private member of the device structure, which is a pointer to the
6279  *  s2io_nic structure.
6280  *  @ethtest : pointer to a ethtool command specific structure that will be
6281  *  returned to the user.
6282  *  @data : variable that returns the result of each of the test
6283  * conducted by the driver.
6284  * Description:
6285  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6286  *  the health of the card.
6287  * Return value:
6288  *  void
6289  */
6290 
s2io_ethtool_test(struct net_device * dev,struct ethtool_test * ethtest,uint64_t * data)6291 static void s2io_ethtool_test(struct net_device *dev,
6292 			      struct ethtool_test *ethtest,
6293 			      uint64_t *data)
6294 {
6295 	struct s2io_nic *sp = netdev_priv(dev);
6296 	int orig_state = netif_running(sp->dev);
6297 
6298 	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6299 		/* Offline Tests. */
6300 		if (orig_state)
6301 			s2io_close(sp->dev);
6302 
6303 		if (s2io_register_test(sp, &data[0]))
6304 			ethtest->flags |= ETH_TEST_FL_FAILED;
6305 
6306 		s2io_reset(sp);
6307 
6308 		if (s2io_rldram_test(sp, &data[3]))
6309 			ethtest->flags |= ETH_TEST_FL_FAILED;
6310 
6311 		s2io_reset(sp);
6312 
6313 		if (s2io_eeprom_test(sp, &data[1]))
6314 			ethtest->flags |= ETH_TEST_FL_FAILED;
6315 
6316 		if (s2io_bist_test(sp, &data[4]))
6317 			ethtest->flags |= ETH_TEST_FL_FAILED;
6318 
6319 		if (orig_state)
6320 			s2io_open(sp->dev);
6321 
6322 		data[2] = 0;
6323 	} else {
6324 		/* Online Tests. */
6325 		if (!orig_state) {
6326 			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6327 				  dev->name);
6328 			data[0] = -1;
6329 			data[1] = -1;
6330 			data[2] = -1;
6331 			data[3] = -1;
6332 			data[4] = -1;
6333 		}
6334 
6335 		if (s2io_link_test(sp, &data[2]))
6336 			ethtest->flags |= ETH_TEST_FL_FAILED;
6337 
6338 		data[0] = 0;
6339 		data[1] = 0;
6340 		data[3] = 0;
6341 		data[4] = 0;
6342 	}
6343 }
6344 
s2io_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)6345 static void s2io_get_ethtool_stats(struct net_device *dev,
6346 				   struct ethtool_stats *estats,
6347 				   u64 *tmp_stats)
6348 {
6349 	int i = 0, k;
6350 	struct s2io_nic *sp = netdev_priv(dev);
6351 	struct stat_block *stats = sp->mac_control.stats_info;
6352 	struct swStat *swstats = &stats->sw_stat;
6353 	struct xpakStat *xstats = &stats->xpak_stat;
6354 
6355 	s2io_updt_stats(sp);
6356 	tmp_stats[i++] =
6357 		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6358 		le32_to_cpu(stats->tmac_frms);
6359 	tmp_stats[i++] =
6360 		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6361 		le32_to_cpu(stats->tmac_data_octets);
6362 	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6363 	tmp_stats[i++] =
6364 		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6365 		le32_to_cpu(stats->tmac_mcst_frms);
6366 	tmp_stats[i++] =
6367 		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6368 		le32_to_cpu(stats->tmac_bcst_frms);
6369 	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6370 	tmp_stats[i++] =
6371 		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6372 		le32_to_cpu(stats->tmac_ttl_octets);
6373 	tmp_stats[i++] =
6374 		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6375 		le32_to_cpu(stats->tmac_ucst_frms);
6376 	tmp_stats[i++] =
6377 		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6378 		le32_to_cpu(stats->tmac_nucst_frms);
6379 	tmp_stats[i++] =
6380 		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6381 		le32_to_cpu(stats->tmac_any_err_frms);
6382 	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6383 	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6384 	tmp_stats[i++] =
6385 		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6386 		le32_to_cpu(stats->tmac_vld_ip);
6387 	tmp_stats[i++] =
6388 		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6389 		le32_to_cpu(stats->tmac_drop_ip);
6390 	tmp_stats[i++] =
6391 		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6392 		le32_to_cpu(stats->tmac_icmp);
6393 	tmp_stats[i++] =
6394 		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6395 		le32_to_cpu(stats->tmac_rst_tcp);
6396 	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6397 	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6398 		le32_to_cpu(stats->tmac_udp);
6399 	tmp_stats[i++] =
6400 		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6401 		le32_to_cpu(stats->rmac_vld_frms);
6402 	tmp_stats[i++] =
6403 		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6404 		le32_to_cpu(stats->rmac_data_octets);
6405 	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6406 	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6407 	tmp_stats[i++] =
6408 		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6409 		le32_to_cpu(stats->rmac_vld_mcst_frms);
6410 	tmp_stats[i++] =
6411 		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6412 		le32_to_cpu(stats->rmac_vld_bcst_frms);
6413 	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6414 	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6415 	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6416 	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6417 	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6418 	tmp_stats[i++] =
6419 		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6420 		le32_to_cpu(stats->rmac_ttl_octets);
6421 	tmp_stats[i++] =
6422 		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6423 		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6424 	tmp_stats[i++] =
6425 		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6426 		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6427 	tmp_stats[i++] =
6428 		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6429 		le32_to_cpu(stats->rmac_discarded_frms);
6430 	tmp_stats[i++] =
6431 		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6432 		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6433 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6434 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6435 	tmp_stats[i++] =
6436 		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6437 		le32_to_cpu(stats->rmac_usized_frms);
6438 	tmp_stats[i++] =
6439 		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6440 		le32_to_cpu(stats->rmac_osized_frms);
6441 	tmp_stats[i++] =
6442 		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6443 		le32_to_cpu(stats->rmac_frag_frms);
6444 	tmp_stats[i++] =
6445 		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6446 		le32_to_cpu(stats->rmac_jabber_frms);
6447 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6448 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6449 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6450 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6451 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6452 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6453 	tmp_stats[i++] =
6454 		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6455 		le32_to_cpu(stats->rmac_ip);
6456 	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6457 	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6458 	tmp_stats[i++] =
6459 		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6460 		le32_to_cpu(stats->rmac_drop_ip);
6461 	tmp_stats[i++] =
6462 		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6463 		le32_to_cpu(stats->rmac_icmp);
6464 	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6465 	tmp_stats[i++] =
6466 		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6467 		le32_to_cpu(stats->rmac_udp);
6468 	tmp_stats[i++] =
6469 		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6470 		le32_to_cpu(stats->rmac_err_drp_udp);
6471 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6472 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6473 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6474 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6475 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6476 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6477 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6478 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6479 	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6480 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6481 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6482 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6483 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6484 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6485 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6486 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6487 	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6488 	tmp_stats[i++] =
6489 		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6490 		le32_to_cpu(stats->rmac_pause_cnt);
6491 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6492 	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6493 	tmp_stats[i++] =
6494 		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6495 		le32_to_cpu(stats->rmac_accepted_ip);
6496 	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6497 	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6498 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6499 	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6500 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6501 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6502 	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6503 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6504 	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6505 	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6506 	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6507 	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6508 	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6509 	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6510 	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6511 	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6512 	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6513 	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6514 	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6515 
6516 	/* Enhanced statistics exist only for Hercules */
6517 	if (sp->device_type == XFRAME_II_DEVICE) {
6518 		tmp_stats[i++] =
6519 			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6520 		tmp_stats[i++] =
6521 			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6522 		tmp_stats[i++] =
6523 			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6524 		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6525 		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6526 		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6527 		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6528 		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6529 		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6530 		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6531 		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6532 		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6533 		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6534 		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6535 		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6536 		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6537 	}
6538 
6539 	tmp_stats[i++] = 0;
6540 	tmp_stats[i++] = swstats->single_ecc_errs;
6541 	tmp_stats[i++] = swstats->double_ecc_errs;
6542 	tmp_stats[i++] = swstats->parity_err_cnt;
6543 	tmp_stats[i++] = swstats->serious_err_cnt;
6544 	tmp_stats[i++] = swstats->soft_reset_cnt;
6545 	tmp_stats[i++] = swstats->fifo_full_cnt;
6546 	for (k = 0; k < MAX_RX_RINGS; k++)
6547 		tmp_stats[i++] = swstats->ring_full_cnt[k];
6548 	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6549 	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6550 	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6551 	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6552 	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6553 	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6554 	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6555 	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6556 	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6557 	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6558 	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6559 	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6560 	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6561 	tmp_stats[i++] = swstats->sending_both;
6562 	tmp_stats[i++] = swstats->outof_sequence_pkts;
6563 	tmp_stats[i++] = swstats->flush_max_pkts;
6564 	if (swstats->num_aggregations) {
6565 		u64 tmp = swstats->sum_avg_pkts_aggregated;
6566 		int count = 0;
6567 		/*
6568 		 * Since 64-bit divide does not work on all platforms,
6569 		 * do repeated subtraction.
6570 		 */
6571 		while (tmp >= swstats->num_aggregations) {
6572 			tmp -= swstats->num_aggregations;
6573 			count++;
6574 		}
6575 		tmp_stats[i++] = count;
6576 	} else
6577 		tmp_stats[i++] = 0;
6578 	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6579 	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6580 	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6581 	tmp_stats[i++] = swstats->mem_allocated;
6582 	tmp_stats[i++] = swstats->mem_freed;
6583 	tmp_stats[i++] = swstats->link_up_cnt;
6584 	tmp_stats[i++] = swstats->link_down_cnt;
6585 	tmp_stats[i++] = swstats->link_up_time;
6586 	tmp_stats[i++] = swstats->link_down_time;
6587 
6588 	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6589 	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6590 	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6591 	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6592 	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6593 
6594 	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6595 	tmp_stats[i++] = swstats->rx_abort_cnt;
6596 	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6597 	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6598 	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6599 	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6600 	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6601 	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6602 	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6603 	tmp_stats[i++] = swstats->tda_err_cnt;
6604 	tmp_stats[i++] = swstats->pfc_err_cnt;
6605 	tmp_stats[i++] = swstats->pcc_err_cnt;
6606 	tmp_stats[i++] = swstats->tti_err_cnt;
6607 	tmp_stats[i++] = swstats->tpa_err_cnt;
6608 	tmp_stats[i++] = swstats->sm_err_cnt;
6609 	tmp_stats[i++] = swstats->lso_err_cnt;
6610 	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6611 	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6612 	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6613 	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6614 	tmp_stats[i++] = swstats->rc_err_cnt;
6615 	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6616 	tmp_stats[i++] = swstats->rpa_err_cnt;
6617 	tmp_stats[i++] = swstats->rda_err_cnt;
6618 	tmp_stats[i++] = swstats->rti_err_cnt;
6619 	tmp_stats[i++] = swstats->mc_err_cnt;
6620 }
6621 
s2io_ethtool_get_regs_len(struct net_device * dev)6622 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6623 {
6624 	return XENA_REG_SPACE;
6625 }
6626 
6627 
s2io_ethtool_get_rx_csum(struct net_device * dev)6628 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6629 {
6630 	struct s2io_nic *sp = netdev_priv(dev);
6631 
6632 	return sp->rx_csum;
6633 }
6634 
s2io_ethtool_set_rx_csum(struct net_device * dev,u32 data)6635 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6636 {
6637 	struct s2io_nic *sp = netdev_priv(dev);
6638 
6639 	if (data)
6640 		sp->rx_csum = 1;
6641 	else
6642 		sp->rx_csum = 0;
6643 
6644 	return 0;
6645 }
6646 
s2io_get_eeprom_len(struct net_device * dev)6647 static int s2io_get_eeprom_len(struct net_device *dev)
6648 {
6649 	return XENA_EEPROM_SPACE;
6650 }
6651 
s2io_get_sset_count(struct net_device * dev,int sset)6652 static int s2io_get_sset_count(struct net_device *dev, int sset)
6653 {
6654 	struct s2io_nic *sp = netdev_priv(dev);
6655 
6656 	switch (sset) {
6657 	case ETH_SS_TEST:
6658 		return S2IO_TEST_LEN;
6659 	case ETH_SS_STATS:
6660 		switch (sp->device_type) {
6661 		case XFRAME_I_DEVICE:
6662 			return XFRAME_I_STAT_LEN;
6663 		case XFRAME_II_DEVICE:
6664 			return XFRAME_II_STAT_LEN;
6665 		default:
6666 			return 0;
6667 		}
6668 	default:
6669 		return -EOPNOTSUPP;
6670 	}
6671 }
6672 
s2io_ethtool_get_strings(struct net_device * dev,u32 stringset,u8 * data)6673 static void s2io_ethtool_get_strings(struct net_device *dev,
6674 				     u32 stringset, u8 *data)
6675 {
6676 	int stat_size = 0;
6677 	struct s2io_nic *sp = netdev_priv(dev);
6678 
6679 	switch (stringset) {
6680 	case ETH_SS_TEST:
6681 		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6682 		break;
6683 	case ETH_SS_STATS:
6684 		stat_size = sizeof(ethtool_xena_stats_keys);
6685 		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6686 		if (sp->device_type == XFRAME_II_DEVICE) {
6687 			memcpy(data + stat_size,
6688 			       &ethtool_enhanced_stats_keys,
6689 			       sizeof(ethtool_enhanced_stats_keys));
6690 			stat_size += sizeof(ethtool_enhanced_stats_keys);
6691 		}
6692 
6693 		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6694 		       sizeof(ethtool_driver_stats_keys));
6695 	}
6696 }
6697 
s2io_ethtool_op_set_tx_csum(struct net_device * dev,u32 data)6698 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6699 {
6700 	if (data)
6701 		dev->features |= NETIF_F_IP_CSUM;
6702 	else
6703 		dev->features &= ~NETIF_F_IP_CSUM;
6704 
6705 	return 0;
6706 }
6707 
s2io_ethtool_op_get_tso(struct net_device * dev)6708 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6709 {
6710 	return (dev->features & NETIF_F_TSO) != 0;
6711 }
6712 
s2io_ethtool_op_set_tso(struct net_device * dev,u32 data)6713 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6714 {
6715 	if (data)
6716 		dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6717 	else
6718 		dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6719 
6720 	return 0;
6721 }
6722 
s2io_ethtool_set_flags(struct net_device * dev,u32 data)6723 static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
6724 {
6725 	struct s2io_nic *sp = netdev_priv(dev);
6726 	int rc = 0;
6727 	int changed = 0;
6728 
6729 	if (ethtool_invalid_flags(dev, data, ETH_FLAG_LRO))
6730 		return -EINVAL;
6731 
6732 	if (data & ETH_FLAG_LRO) {
6733 		if (!(dev->features & NETIF_F_LRO)) {
6734 			dev->features |= NETIF_F_LRO;
6735 			changed = 1;
6736 		}
6737 	} else if (dev->features & NETIF_F_LRO) {
6738 		dev->features &= ~NETIF_F_LRO;
6739 		changed = 1;
6740 	}
6741 
6742 	if (changed && netif_running(dev)) {
6743 		s2io_stop_all_tx_queue(sp);
6744 		s2io_card_down(sp);
6745 		rc = s2io_card_up(sp);
6746 		if (rc)
6747 			s2io_reset(sp);
6748 		else
6749 			s2io_start_all_tx_queue(sp);
6750 	}
6751 
6752 	return rc;
6753 }
6754 
6755 static const struct ethtool_ops netdev_ethtool_ops = {
6756 	.get_settings = s2io_ethtool_gset,
6757 	.set_settings = s2io_ethtool_sset,
6758 	.get_drvinfo = s2io_ethtool_gdrvinfo,
6759 	.get_regs_len = s2io_ethtool_get_regs_len,
6760 	.get_regs = s2io_ethtool_gregs,
6761 	.get_link = ethtool_op_get_link,
6762 	.get_eeprom_len = s2io_get_eeprom_len,
6763 	.get_eeprom = s2io_ethtool_geeprom,
6764 	.set_eeprom = s2io_ethtool_seeprom,
6765 	.get_ringparam = s2io_ethtool_gringparam,
6766 	.get_pauseparam = s2io_ethtool_getpause_data,
6767 	.set_pauseparam = s2io_ethtool_setpause_data,
6768 	.get_rx_csum = s2io_ethtool_get_rx_csum,
6769 	.set_rx_csum = s2io_ethtool_set_rx_csum,
6770 	.set_tx_csum = s2io_ethtool_op_set_tx_csum,
6771 	.set_flags = s2io_ethtool_set_flags,
6772 	.get_flags = ethtool_op_get_flags,
6773 	.set_sg = ethtool_op_set_sg,
6774 	.get_tso = s2io_ethtool_op_get_tso,
6775 	.set_tso = s2io_ethtool_op_set_tso,
6776 	.set_ufo = ethtool_op_set_ufo,
6777 	.self_test = s2io_ethtool_test,
6778 	.get_strings = s2io_ethtool_get_strings,
6779 	.phys_id = s2io_ethtool_idnic,
6780 	.get_ethtool_stats = s2io_get_ethtool_stats,
6781 	.get_sset_count = s2io_get_sset_count,
6782 };
6783 
6784 /**
6785  *  s2io_ioctl - Entry point for the Ioctl
6786  *  @dev :  Device pointer.
6787  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6788  *  a proprietary structure used to pass information to the driver.
6789  *  @cmd :  This is used to distinguish between the different commands that
6790  *  can be passed to the IOCTL functions.
6791  *  Description:
6792  *  Currently there are no special functionality supported in IOCTL, hence
6793  *  function always return EOPNOTSUPPORTED
6794  */
6795 
s2io_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)6796 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6797 {
6798 	return -EOPNOTSUPP;
6799 }
6800 
6801 /**
6802  *  s2io_change_mtu - entry point to change MTU size for the device.
6803  *   @dev : device pointer.
6804  *   @new_mtu : the new MTU size for the device.
6805  *   Description: A driver entry point to change MTU size for the device.
6806  *   Before changing the MTU the device must be stopped.
6807  *  Return value:
6808  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6809  *   file on failure.
6810  */
6811 
s2io_change_mtu(struct net_device * dev,int new_mtu)6812 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6813 {
6814 	struct s2io_nic *sp = netdev_priv(dev);
6815 	int ret = 0;
6816 
6817 	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6818 		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6819 		return -EPERM;
6820 	}
6821 
6822 	dev->mtu = new_mtu;
6823 	if (netif_running(dev)) {
6824 		s2io_stop_all_tx_queue(sp);
6825 		s2io_card_down(sp);
6826 		ret = s2io_card_up(sp);
6827 		if (ret) {
6828 			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6829 				  __func__);
6830 			return ret;
6831 		}
6832 		s2io_wake_all_tx_queue(sp);
6833 	} else { /* Device is down */
6834 		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6835 		u64 val64 = new_mtu;
6836 
6837 		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6838 	}
6839 
6840 	return ret;
6841 }
6842 
6843 /**
6844  * s2io_set_link - Set the LInk status
6845  * @data: long pointer to device private structue
6846  * Description: Sets the link status for the adapter
6847  */
6848 
s2io_set_link(struct work_struct * work)6849 static void s2io_set_link(struct work_struct *work)
6850 {
6851 	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6852 					    set_link_task);
6853 	struct net_device *dev = nic->dev;
6854 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6855 	register u64 val64;
6856 	u16 subid;
6857 
6858 	rtnl_lock();
6859 
6860 	if (!netif_running(dev))
6861 		goto out_unlock;
6862 
6863 	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6864 		/* The card is being reset, no point doing anything */
6865 		goto out_unlock;
6866 	}
6867 
6868 	subid = nic->pdev->subsystem_device;
6869 	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6870 		/*
6871 		 * Allow a small delay for the NICs self initiated
6872 		 * cleanup to complete.
6873 		 */
6874 		msleep(100);
6875 	}
6876 
6877 	val64 = readq(&bar0->adapter_status);
6878 	if (LINK_IS_UP(val64)) {
6879 		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6880 			if (verify_xena_quiescence(nic)) {
6881 				val64 = readq(&bar0->adapter_control);
6882 				val64 |= ADAPTER_CNTL_EN;
6883 				writeq(val64, &bar0->adapter_control);
6884 				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6885 					    nic->device_type, subid)) {
6886 					val64 = readq(&bar0->gpio_control);
6887 					val64 |= GPIO_CTRL_GPIO_0;
6888 					writeq(val64, &bar0->gpio_control);
6889 					val64 = readq(&bar0->gpio_control);
6890 				} else {
6891 					val64 |= ADAPTER_LED_ON;
6892 					writeq(val64, &bar0->adapter_control);
6893 				}
6894 				nic->device_enabled_once = true;
6895 			} else {
6896 				DBG_PRINT(ERR_DBG,
6897 					  "%s: Error: device is not Quiescent\n",
6898 					  dev->name);
6899 				s2io_stop_all_tx_queue(nic);
6900 			}
6901 		}
6902 		val64 = readq(&bar0->adapter_control);
6903 		val64 |= ADAPTER_LED_ON;
6904 		writeq(val64, &bar0->adapter_control);
6905 		s2io_link(nic, LINK_UP);
6906 	} else {
6907 		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6908 						      subid)) {
6909 			val64 = readq(&bar0->gpio_control);
6910 			val64 &= ~GPIO_CTRL_GPIO_0;
6911 			writeq(val64, &bar0->gpio_control);
6912 			val64 = readq(&bar0->gpio_control);
6913 		}
6914 		/* turn off LED */
6915 		val64 = readq(&bar0->adapter_control);
6916 		val64 = val64 & (~ADAPTER_LED_ON);
6917 		writeq(val64, &bar0->adapter_control);
6918 		s2io_link(nic, LINK_DOWN);
6919 	}
6920 	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6921 
6922 out_unlock:
6923 	rtnl_unlock();
6924 }
6925 
set_rxd_buffer_pointer(struct s2io_nic * sp,struct RxD_t * rxdp,struct buffAdd * ba,struct sk_buff ** skb,u64 * temp0,u64 * temp1,u64 * temp2,int size)6926 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6927 				  struct buffAdd *ba,
6928 				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6929 				  u64 *temp2, int size)
6930 {
6931 	struct net_device *dev = sp->dev;
6932 	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6933 
6934 	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6935 		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6936 		/* allocate skb */
6937 		if (*skb) {
6938 			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6939 			/*
6940 			 * As Rx frame are not going to be processed,
6941 			 * using same mapped address for the Rxd
6942 			 * buffer pointer
6943 			 */
6944 			rxdp1->Buffer0_ptr = *temp0;
6945 		} else {
6946 			*skb = dev_alloc_skb(size);
6947 			if (!(*skb)) {
6948 				DBG_PRINT(INFO_DBG,
6949 					  "%s: Out of memory to allocate %s\n",
6950 					  dev->name, "1 buf mode SKBs");
6951 				stats->mem_alloc_fail_cnt++;
6952 				return -ENOMEM ;
6953 			}
6954 			stats->mem_allocated += (*skb)->truesize;
6955 			/* storing the mapped addr in a temp variable
6956 			 * such it will be used for next rxd whose
6957 			 * Host Control is NULL
6958 			 */
6959 			rxdp1->Buffer0_ptr = *temp0 =
6960 				pci_map_single(sp->pdev, (*skb)->data,
6961 					       size - NET_IP_ALIGN,
6962 					       PCI_DMA_FROMDEVICE);
6963 			if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6964 				goto memalloc_failed;
6965 			rxdp->Host_Control = (unsigned long) (*skb);
6966 		}
6967 	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6968 		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6969 		/* Two buffer Mode */
6970 		if (*skb) {
6971 			rxdp3->Buffer2_ptr = *temp2;
6972 			rxdp3->Buffer0_ptr = *temp0;
6973 			rxdp3->Buffer1_ptr = *temp1;
6974 		} else {
6975 			*skb = dev_alloc_skb(size);
6976 			if (!(*skb)) {
6977 				DBG_PRINT(INFO_DBG,
6978 					  "%s: Out of memory to allocate %s\n",
6979 					  dev->name,
6980 					  "2 buf mode SKBs");
6981 				stats->mem_alloc_fail_cnt++;
6982 				return -ENOMEM;
6983 			}
6984 			stats->mem_allocated += (*skb)->truesize;
6985 			rxdp3->Buffer2_ptr = *temp2 =
6986 				pci_map_single(sp->pdev, (*skb)->data,
6987 					       dev->mtu + 4,
6988 					       PCI_DMA_FROMDEVICE);
6989 			if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6990 				goto memalloc_failed;
6991 			rxdp3->Buffer0_ptr = *temp0 =
6992 				pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6993 					       PCI_DMA_FROMDEVICE);
6994 			if (pci_dma_mapping_error(sp->pdev,
6995 						  rxdp3->Buffer0_ptr)) {
6996 				pci_unmap_single(sp->pdev,
6997 						 (dma_addr_t)rxdp3->Buffer2_ptr,
6998 						 dev->mtu + 4,
6999 						 PCI_DMA_FROMDEVICE);
7000 				goto memalloc_failed;
7001 			}
7002 			rxdp->Host_Control = (unsigned long) (*skb);
7003 
7004 			/* Buffer-1 will be dummy buffer not used */
7005 			rxdp3->Buffer1_ptr = *temp1 =
7006 				pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
7007 					       PCI_DMA_FROMDEVICE);
7008 			if (pci_dma_mapping_error(sp->pdev,
7009 						  rxdp3->Buffer1_ptr)) {
7010 				pci_unmap_single(sp->pdev,
7011 						 (dma_addr_t)rxdp3->Buffer0_ptr,
7012 						 BUF0_LEN, PCI_DMA_FROMDEVICE);
7013 				pci_unmap_single(sp->pdev,
7014 						 (dma_addr_t)rxdp3->Buffer2_ptr,
7015 						 dev->mtu + 4,
7016 						 PCI_DMA_FROMDEVICE);
7017 				goto memalloc_failed;
7018 			}
7019 		}
7020 	}
7021 	return 0;
7022 
7023 memalloc_failed:
7024 	stats->pci_map_fail_cnt++;
7025 	stats->mem_freed += (*skb)->truesize;
7026 	dev_kfree_skb(*skb);
7027 	return -ENOMEM;
7028 }
7029 
set_rxd_buffer_size(struct s2io_nic * sp,struct RxD_t * rxdp,int size)7030 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7031 				int size)
7032 {
7033 	struct net_device *dev = sp->dev;
7034 	if (sp->rxd_mode == RXD_MODE_1) {
7035 		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
7036 	} else if (sp->rxd_mode == RXD_MODE_3B) {
7037 		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7038 		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7039 		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7040 	}
7041 }
7042 
rxd_owner_bit_reset(struct s2io_nic * sp)7043 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
7044 {
7045 	int i, j, k, blk_cnt = 0, size;
7046 	struct config_param *config = &sp->config;
7047 	struct mac_info *mac_control = &sp->mac_control;
7048 	struct net_device *dev = sp->dev;
7049 	struct RxD_t *rxdp = NULL;
7050 	struct sk_buff *skb = NULL;
7051 	struct buffAdd *ba = NULL;
7052 	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7053 
7054 	/* Calculate the size based on ring mode */
7055 	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7056 		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7057 	if (sp->rxd_mode == RXD_MODE_1)
7058 		size += NET_IP_ALIGN;
7059 	else if (sp->rxd_mode == RXD_MODE_3B)
7060 		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7061 
7062 	for (i = 0; i < config->rx_ring_num; i++) {
7063 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7064 		struct ring_info *ring = &mac_control->rings[i];
7065 
7066 		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7067 
7068 		for (j = 0; j < blk_cnt; j++) {
7069 			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7070 				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7071 				if (sp->rxd_mode == RXD_MODE_3B)
7072 					ba = &ring->ba[j][k];
7073 				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7074 							   (u64 *)&temp0_64,
7075 							   (u64 *)&temp1_64,
7076 							   (u64 *)&temp2_64,
7077 							   size) == -ENOMEM) {
7078 					return 0;
7079 				}
7080 
7081 				set_rxd_buffer_size(sp, rxdp, size);
7082 				wmb();
7083 				/* flip the Ownership bit to Hardware */
7084 				rxdp->Control_1 |= RXD_OWN_XENA;
7085 			}
7086 		}
7087 	}
7088 	return 0;
7089 
7090 }
7091 
s2io_add_isr(struct s2io_nic * sp)7092 static int s2io_add_isr(struct s2io_nic *sp)
7093 {
7094 	int ret = 0;
7095 	struct net_device *dev = sp->dev;
7096 	int err = 0;
7097 
7098 	if (sp->config.intr_type == MSI_X)
7099 		ret = s2io_enable_msi_x(sp);
7100 	if (ret) {
7101 		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7102 		sp->config.intr_type = INTA;
7103 	}
7104 
7105 	/*
7106 	 * Store the values of the MSIX table in
7107 	 * the struct s2io_nic structure
7108 	 */
7109 	store_xmsi_data(sp);
7110 
7111 	/* After proper initialization of H/W, register ISR */
7112 	if (sp->config.intr_type == MSI_X) {
7113 		int i, msix_rx_cnt = 0;
7114 
7115 		for (i = 0; i < sp->num_entries; i++) {
7116 			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7117 				if (sp->s2io_entries[i].type ==
7118 				    MSIX_RING_TYPE) {
7119 					sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7120 						dev->name, i);
7121 					err = request_irq(sp->entries[i].vector,
7122 							  s2io_msix_ring_handle,
7123 							  0,
7124 							  sp->desc[i],
7125 							  sp->s2io_entries[i].arg);
7126 				} else if (sp->s2io_entries[i].type ==
7127 					   MSIX_ALARM_TYPE) {
7128 					sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7129 						dev->name, i);
7130 					err = request_irq(sp->entries[i].vector,
7131 							  s2io_msix_fifo_handle,
7132 							  0,
7133 							  sp->desc[i],
7134 							  sp->s2io_entries[i].arg);
7135 
7136 				}
7137 				/* if either data or addr is zero print it. */
7138 				if (!(sp->msix_info[i].addr &&
7139 				      sp->msix_info[i].data)) {
7140 					DBG_PRINT(ERR_DBG,
7141 						  "%s @Addr:0x%llx Data:0x%llx\n",
7142 						  sp->desc[i],
7143 						  (unsigned long long)
7144 						  sp->msix_info[i].addr,
7145 						  (unsigned long long)
7146 						  ntohl(sp->msix_info[i].data));
7147 				} else
7148 					msix_rx_cnt++;
7149 				if (err) {
7150 					remove_msix_isr(sp);
7151 
7152 					DBG_PRINT(ERR_DBG,
7153 						  "%s:MSI-X-%d registration "
7154 						  "failed\n", dev->name, i);
7155 
7156 					DBG_PRINT(ERR_DBG,
7157 						  "%s: Defaulting to INTA\n",
7158 						  dev->name);
7159 					sp->config.intr_type = INTA;
7160 					break;
7161 				}
7162 				sp->s2io_entries[i].in_use =
7163 					MSIX_REGISTERED_SUCCESS;
7164 			}
7165 		}
7166 		if (!err) {
7167 			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7168 			DBG_PRINT(INFO_DBG,
7169 				  "MSI-X-TX entries enabled through alarm vector\n");
7170 		}
7171 	}
7172 	if (sp->config.intr_type == INTA) {
7173 		err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7174 				  sp->name, dev);
7175 		if (err) {
7176 			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7177 				  dev->name);
7178 			return -1;
7179 		}
7180 	}
7181 	return 0;
7182 }
7183 
s2io_rem_isr(struct s2io_nic * sp)7184 static void s2io_rem_isr(struct s2io_nic *sp)
7185 {
7186 	if (sp->config.intr_type == MSI_X)
7187 		remove_msix_isr(sp);
7188 	else
7189 		remove_inta_isr(sp);
7190 }
7191 
do_s2io_card_down(struct s2io_nic * sp,int do_io)7192 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7193 {
7194 	int cnt = 0;
7195 	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7196 	register u64 val64 = 0;
7197 	struct config_param *config;
7198 	config = &sp->config;
7199 
7200 	if (!is_s2io_card_up(sp))
7201 		return;
7202 
7203 	del_timer_sync(&sp->alarm_timer);
7204 	/* If s2io_set_link task is executing, wait till it completes. */
7205 	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7206 		msleep(50);
7207 	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7208 
7209 	/* Disable napi */
7210 	if (sp->config.napi) {
7211 		int off = 0;
7212 		if (config->intr_type ==  MSI_X) {
7213 			for (; off < sp->config.rx_ring_num; off++)
7214 				napi_disable(&sp->mac_control.rings[off].napi);
7215 		}
7216 		else
7217 			napi_disable(&sp->napi);
7218 	}
7219 
7220 	/* disable Tx and Rx traffic on the NIC */
7221 	if (do_io)
7222 		stop_nic(sp);
7223 
7224 	s2io_rem_isr(sp);
7225 
7226 	/* stop the tx queue, indicate link down */
7227 	s2io_link(sp, LINK_DOWN);
7228 
7229 	/* Check if the device is Quiescent and then Reset the NIC */
7230 	while (do_io) {
7231 		/* As per the HW requirement we need to replenish the
7232 		 * receive buffer to avoid the ring bump. Since there is
7233 		 * no intention of processing the Rx frame at this pointwe are
7234 		 * just settting the ownership bit of rxd in Each Rx
7235 		 * ring to HW and set the appropriate buffer size
7236 		 * based on the ring mode
7237 		 */
7238 		rxd_owner_bit_reset(sp);
7239 
7240 		val64 = readq(&bar0->adapter_status);
7241 		if (verify_xena_quiescence(sp)) {
7242 			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7243 				break;
7244 		}
7245 
7246 		msleep(50);
7247 		cnt++;
7248 		if (cnt == 10) {
7249 			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7250 				  "adapter status reads 0x%llx\n",
7251 				  (unsigned long long)val64);
7252 			break;
7253 		}
7254 	}
7255 	if (do_io)
7256 		s2io_reset(sp);
7257 
7258 	/* Free all Tx buffers */
7259 	free_tx_buffers(sp);
7260 
7261 	/* Free all Rx buffers */
7262 	free_rx_buffers(sp);
7263 
7264 	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7265 }
7266 
s2io_card_down(struct s2io_nic * sp)7267 static void s2io_card_down(struct s2io_nic *sp)
7268 {
7269 	do_s2io_card_down(sp, 1);
7270 }
7271 
s2io_card_up(struct s2io_nic * sp)7272 static int s2io_card_up(struct s2io_nic *sp)
7273 {
7274 	int i, ret = 0;
7275 	struct config_param *config;
7276 	struct mac_info *mac_control;
7277 	struct net_device *dev = (struct net_device *)sp->dev;
7278 	u16 interruptible;
7279 
7280 	/* Initialize the H/W I/O registers */
7281 	ret = init_nic(sp);
7282 	if (ret != 0) {
7283 		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7284 			  dev->name);
7285 		if (ret != -EIO)
7286 			s2io_reset(sp);
7287 		return ret;
7288 	}
7289 
7290 	/*
7291 	 * Initializing the Rx buffers. For now we are considering only 1
7292 	 * Rx ring and initializing buffers into 30 Rx blocks
7293 	 */
7294 	config = &sp->config;
7295 	mac_control = &sp->mac_control;
7296 
7297 	for (i = 0; i < config->rx_ring_num; i++) {
7298 		struct ring_info *ring = &mac_control->rings[i];
7299 
7300 		ring->mtu = dev->mtu;
7301 		ring->lro = !!(dev->features & NETIF_F_LRO);
7302 		ret = fill_rx_buffers(sp, ring, 1);
7303 		if (ret) {
7304 			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7305 				  dev->name);
7306 			s2io_reset(sp);
7307 			free_rx_buffers(sp);
7308 			return -ENOMEM;
7309 		}
7310 		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7311 			  ring->rx_bufs_left);
7312 	}
7313 
7314 	/* Initialise napi */
7315 	if (config->napi) {
7316 		if (config->intr_type ==  MSI_X) {
7317 			for (i = 0; i < sp->config.rx_ring_num; i++)
7318 				napi_enable(&sp->mac_control.rings[i].napi);
7319 		} else {
7320 			napi_enable(&sp->napi);
7321 		}
7322 	}
7323 
7324 	/* Maintain the state prior to the open */
7325 	if (sp->promisc_flg)
7326 		sp->promisc_flg = 0;
7327 	if (sp->m_cast_flg) {
7328 		sp->m_cast_flg = 0;
7329 		sp->all_multi_pos = 0;
7330 	}
7331 
7332 	/* Setting its receive mode */
7333 	s2io_set_multicast(dev);
7334 
7335 	if (dev->features & NETIF_F_LRO) {
7336 		/* Initialize max aggregatable pkts per session based on MTU */
7337 		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7338 		/* Check if we can use (if specified) user provided value */
7339 		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7340 			sp->lro_max_aggr_per_sess = lro_max_pkts;
7341 	}
7342 
7343 	/* Enable Rx Traffic and interrupts on the NIC */
7344 	if (start_nic(sp)) {
7345 		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7346 		s2io_reset(sp);
7347 		free_rx_buffers(sp);
7348 		return -ENODEV;
7349 	}
7350 
7351 	/* Add interrupt service routine */
7352 	if (s2io_add_isr(sp) != 0) {
7353 		if (sp->config.intr_type == MSI_X)
7354 			s2io_rem_isr(sp);
7355 		s2io_reset(sp);
7356 		free_rx_buffers(sp);
7357 		return -ENODEV;
7358 	}
7359 
7360 	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7361 
7362 	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7363 
7364 	/*  Enable select interrupts */
7365 	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7366 	if (sp->config.intr_type != INTA) {
7367 		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7368 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7369 	} else {
7370 		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7371 		interruptible |= TX_PIC_INTR;
7372 		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7373 	}
7374 
7375 	return 0;
7376 }
7377 
7378 /**
7379  * s2io_restart_nic - Resets the NIC.
7380  * @data : long pointer to the device private structure
7381  * Description:
7382  * This function is scheduled to be run by the s2io_tx_watchdog
7383  * function after 0.5 secs to reset the NIC. The idea is to reduce
7384  * the run time of the watch dog routine which is run holding a
7385  * spin lock.
7386  */
7387 
s2io_restart_nic(struct work_struct * work)7388 static void s2io_restart_nic(struct work_struct *work)
7389 {
7390 	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7391 	struct net_device *dev = sp->dev;
7392 
7393 	rtnl_lock();
7394 
7395 	if (!netif_running(dev))
7396 		goto out_unlock;
7397 
7398 	s2io_card_down(sp);
7399 	if (s2io_card_up(sp)) {
7400 		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7401 	}
7402 	s2io_wake_all_tx_queue(sp);
7403 	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7404 out_unlock:
7405 	rtnl_unlock();
7406 }
7407 
7408 /**
7409  *  s2io_tx_watchdog - Watchdog for transmit side.
7410  *  @dev : Pointer to net device structure
7411  *  Description:
7412  *  This function is triggered if the Tx Queue is stopped
7413  *  for a pre-defined amount of time when the Interface is still up.
7414  *  If the Interface is jammed in such a situation, the hardware is
7415  *  reset (by s2io_close) and restarted again (by s2io_open) to
7416  *  overcome any problem that might have been caused in the hardware.
7417  *  Return value:
7418  *  void
7419  */
7420 
s2io_tx_watchdog(struct net_device * dev)7421 static void s2io_tx_watchdog(struct net_device *dev)
7422 {
7423 	struct s2io_nic *sp = netdev_priv(dev);
7424 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7425 
7426 	if (netif_carrier_ok(dev)) {
7427 		swstats->watchdog_timer_cnt++;
7428 		schedule_work(&sp->rst_timer_task);
7429 		swstats->soft_reset_cnt++;
7430 	}
7431 }
7432 
7433 /**
7434  *   rx_osm_handler - To perform some OS related operations on SKB.
7435  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7436  *   @skb : the socket buffer pointer.
7437  *   @len : length of the packet
7438  *   @cksum : FCS checksum of the frame.
7439  *   @ring_no : the ring from which this RxD was extracted.
7440  *   Description:
7441  *   This function is called by the Rx interrupt serivce routine to perform
7442  *   some OS related operations on the SKB before passing it to the upper
7443  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7444  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7445  *   to the upper layer. If the checksum is wrong, it increments the Rx
7446  *   packet error count, frees the SKB and returns error.
7447  *   Return value:
7448  *   SUCCESS on success and -1 on failure.
7449  */
rx_osm_handler(struct ring_info * ring_data,struct RxD_t * rxdp)7450 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7451 {
7452 	struct s2io_nic *sp = ring_data->nic;
7453 	struct net_device *dev = (struct net_device *)ring_data->dev;
7454 	struct sk_buff *skb = (struct sk_buff *)
7455 		((unsigned long)rxdp->Host_Control);
7456 	int ring_no = ring_data->ring_no;
7457 	u16 l3_csum, l4_csum;
7458 	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7459 	struct lro *uninitialized_var(lro);
7460 	u8 err_mask;
7461 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7462 
7463 	skb->dev = dev;
7464 
7465 	if (err) {
7466 		/* Check for parity error */
7467 		if (err & 0x1)
7468 			swstats->parity_err_cnt++;
7469 
7470 		err_mask = err >> 48;
7471 		switch (err_mask) {
7472 		case 1:
7473 			swstats->rx_parity_err_cnt++;
7474 			break;
7475 
7476 		case 2:
7477 			swstats->rx_abort_cnt++;
7478 			break;
7479 
7480 		case 3:
7481 			swstats->rx_parity_abort_cnt++;
7482 			break;
7483 
7484 		case 4:
7485 			swstats->rx_rda_fail_cnt++;
7486 			break;
7487 
7488 		case 5:
7489 			swstats->rx_unkn_prot_cnt++;
7490 			break;
7491 
7492 		case 6:
7493 			swstats->rx_fcs_err_cnt++;
7494 			break;
7495 
7496 		case 7:
7497 			swstats->rx_buf_size_err_cnt++;
7498 			break;
7499 
7500 		case 8:
7501 			swstats->rx_rxd_corrupt_cnt++;
7502 			break;
7503 
7504 		case 15:
7505 			swstats->rx_unkn_err_cnt++;
7506 			break;
7507 		}
7508 		/*
7509 		 * Drop the packet if bad transfer code. Exception being
7510 		 * 0x5, which could be due to unsupported IPv6 extension header.
7511 		 * In this case, we let stack handle the packet.
7512 		 * Note that in this case, since checksum will be incorrect,
7513 		 * stack will validate the same.
7514 		 */
7515 		if (err_mask != 0x5) {
7516 			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7517 				  dev->name, err_mask);
7518 			dev->stats.rx_crc_errors++;
7519 			swstats->mem_freed
7520 				+= skb->truesize;
7521 			dev_kfree_skb(skb);
7522 			ring_data->rx_bufs_left -= 1;
7523 			rxdp->Host_Control = 0;
7524 			return 0;
7525 		}
7526 	}
7527 
7528 	rxdp->Host_Control = 0;
7529 	if (sp->rxd_mode == RXD_MODE_1) {
7530 		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7531 
7532 		skb_put(skb, len);
7533 	} else if (sp->rxd_mode == RXD_MODE_3B) {
7534 		int get_block = ring_data->rx_curr_get_info.block_index;
7535 		int get_off = ring_data->rx_curr_get_info.offset;
7536 		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7537 		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7538 		unsigned char *buff = skb_push(skb, buf0_len);
7539 
7540 		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7541 		memcpy(buff, ba->ba_0, buf0_len);
7542 		skb_put(skb, buf2_len);
7543 	}
7544 
7545 	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7546 	    ((!ring_data->lro) ||
7547 	     (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7548 	    (sp->rx_csum)) {
7549 		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7550 		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7551 		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7552 			/*
7553 			 * NIC verifies if the Checksum of the received
7554 			 * frame is Ok or not and accordingly returns
7555 			 * a flag in the RxD.
7556 			 */
7557 			skb->ip_summed = CHECKSUM_UNNECESSARY;
7558 			if (ring_data->lro) {
7559 				u32 tcp_len = 0;
7560 				u8 *tcp;
7561 				int ret = 0;
7562 
7563 				ret = s2io_club_tcp_session(ring_data,
7564 							    skb->data, &tcp,
7565 							    &tcp_len, &lro,
7566 							    rxdp, sp);
7567 				switch (ret) {
7568 				case 3: /* Begin anew */
7569 					lro->parent = skb;
7570 					goto aggregate;
7571 				case 1: /* Aggregate */
7572 					lro_append_pkt(sp, lro, skb, tcp_len);
7573 					goto aggregate;
7574 				case 4: /* Flush session */
7575 					lro_append_pkt(sp, lro, skb, tcp_len);
7576 					queue_rx_frame(lro->parent,
7577 						       lro->vlan_tag);
7578 					clear_lro_session(lro);
7579 					swstats->flush_max_pkts++;
7580 					goto aggregate;
7581 				case 2: /* Flush both */
7582 					lro->parent->data_len = lro->frags_len;
7583 					swstats->sending_both++;
7584 					queue_rx_frame(lro->parent,
7585 						       lro->vlan_tag);
7586 					clear_lro_session(lro);
7587 					goto send_up;
7588 				case 0: /* sessions exceeded */
7589 				case -1: /* non-TCP or not L2 aggregatable */
7590 				case 5: /*
7591 					 * First pkt in session not
7592 					 * L3/L4 aggregatable
7593 					 */
7594 					break;
7595 				default:
7596 					DBG_PRINT(ERR_DBG,
7597 						  "%s: Samadhana!!\n",
7598 						  __func__);
7599 					BUG();
7600 				}
7601 			}
7602 		} else {
7603 			/*
7604 			 * Packet with erroneous checksum, let the
7605 			 * upper layers deal with it.
7606 			 */
7607 			skb_checksum_none_assert(skb);
7608 		}
7609 	} else
7610 		skb_checksum_none_assert(skb);
7611 
7612 	swstats->mem_freed += skb->truesize;
7613 send_up:
7614 	skb_record_rx_queue(skb, ring_no);
7615 	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7616 aggregate:
7617 	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7618 	return SUCCESS;
7619 }
7620 
7621 /**
7622  *  s2io_link - stops/starts the Tx queue.
7623  *  @sp : private member of the device structure, which is a pointer to the
7624  *  s2io_nic structure.
7625  *  @link : inidicates whether link is UP/DOWN.
7626  *  Description:
7627  *  This function stops/starts the Tx queue depending on whether the link
7628  *  status of the NIC is is down or up. This is called by the Alarm
7629  *  interrupt handler whenever a link change interrupt comes up.
7630  *  Return value:
7631  *  void.
7632  */
7633 
s2io_link(struct s2io_nic * sp,int link)7634 static void s2io_link(struct s2io_nic *sp, int link)
7635 {
7636 	struct net_device *dev = (struct net_device *)sp->dev;
7637 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7638 
7639 	if (link != sp->last_link_state) {
7640 		init_tti(sp, link);
7641 		if (link == LINK_DOWN) {
7642 			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7643 			s2io_stop_all_tx_queue(sp);
7644 			netif_carrier_off(dev);
7645 			if (swstats->link_up_cnt)
7646 				swstats->link_up_time =
7647 					jiffies - sp->start_time;
7648 			swstats->link_down_cnt++;
7649 		} else {
7650 			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7651 			if (swstats->link_down_cnt)
7652 				swstats->link_down_time =
7653 					jiffies - sp->start_time;
7654 			swstats->link_up_cnt++;
7655 			netif_carrier_on(dev);
7656 			s2io_wake_all_tx_queue(sp);
7657 		}
7658 	}
7659 	sp->last_link_state = link;
7660 	sp->start_time = jiffies;
7661 }
7662 
7663 /**
7664  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7665  *  @sp : private member of the device structure, which is a pointer to the
7666  *  s2io_nic structure.
7667  *  Description:
7668  *  This function initializes a few of the PCI and PCI-X configuration registers
7669  *  with recommended values.
7670  *  Return value:
7671  *  void
7672  */
7673 
s2io_init_pci(struct s2io_nic * sp)7674 static void s2io_init_pci(struct s2io_nic *sp)
7675 {
7676 	u16 pci_cmd = 0, pcix_cmd = 0;
7677 
7678 	/* Enable Data Parity Error Recovery in PCI-X command register. */
7679 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7680 			     &(pcix_cmd));
7681 	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7682 			      (pcix_cmd | 1));
7683 	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7684 			     &(pcix_cmd));
7685 
7686 	/* Set the PErr Response bit in PCI command register. */
7687 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7688 	pci_write_config_word(sp->pdev, PCI_COMMAND,
7689 			      (pci_cmd | PCI_COMMAND_PARITY));
7690 	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7691 }
7692 
s2io_verify_parm(struct pci_dev * pdev,u8 * dev_intr_type,u8 * dev_multiq)7693 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7694 			    u8 *dev_multiq)
7695 {
7696 	int i;
7697 
7698 	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7699 		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7700 			  "(%d) not supported\n", tx_fifo_num);
7701 
7702 		if (tx_fifo_num < 1)
7703 			tx_fifo_num = 1;
7704 		else
7705 			tx_fifo_num = MAX_TX_FIFOS;
7706 
7707 		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7708 	}
7709 
7710 	if (multiq)
7711 		*dev_multiq = multiq;
7712 
7713 	if (tx_steering_type && (1 == tx_fifo_num)) {
7714 		if (tx_steering_type != TX_DEFAULT_STEERING)
7715 			DBG_PRINT(ERR_DBG,
7716 				  "Tx steering is not supported with "
7717 				  "one fifo. Disabling Tx steering.\n");
7718 		tx_steering_type = NO_STEERING;
7719 	}
7720 
7721 	if ((tx_steering_type < NO_STEERING) ||
7722 	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7723 		DBG_PRINT(ERR_DBG,
7724 			  "Requested transmit steering not supported\n");
7725 		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7726 		tx_steering_type = NO_STEERING;
7727 	}
7728 
7729 	if (rx_ring_num > MAX_RX_RINGS) {
7730 		DBG_PRINT(ERR_DBG,
7731 			  "Requested number of rx rings not supported\n");
7732 		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7733 			  MAX_RX_RINGS);
7734 		rx_ring_num = MAX_RX_RINGS;
7735 	}
7736 
7737 	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7738 		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7739 			  "Defaulting to INTA\n");
7740 		*dev_intr_type = INTA;
7741 	}
7742 
7743 	if ((*dev_intr_type == MSI_X) &&
7744 	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7745 	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7746 		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7747 			  "Defaulting to INTA\n");
7748 		*dev_intr_type = INTA;
7749 	}
7750 
7751 	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7752 		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7753 		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7754 		rx_ring_mode = 1;
7755 	}
7756 
7757 	for (i = 0; i < MAX_RX_RINGS; i++)
7758 		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7759 			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7760 				  "supported\nDefaulting to %d\n",
7761 				  MAX_RX_BLOCKS_PER_RING);
7762 			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7763 		}
7764 
7765 	return SUCCESS;
7766 }
7767 
7768 /**
7769  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7770  * or Traffic class respectively.
7771  * @nic: device private variable
7772  * Description: The function configures the receive steering to
7773  * desired receive ring.
7774  * Return Value:  SUCCESS on success and
7775  * '-1' on failure (endian settings incorrect).
7776  */
rts_ds_steer(struct s2io_nic * nic,u8 ds_codepoint,u8 ring)7777 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7778 {
7779 	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7780 	register u64 val64 = 0;
7781 
7782 	if (ds_codepoint > 63)
7783 		return FAILURE;
7784 
7785 	val64 = RTS_DS_MEM_DATA(ring);
7786 	writeq(val64, &bar0->rts_ds_mem_data);
7787 
7788 	val64 = RTS_DS_MEM_CTRL_WE |
7789 		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7790 		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7791 
7792 	writeq(val64, &bar0->rts_ds_mem_ctrl);
7793 
7794 	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7795 				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7796 				     S2IO_BIT_RESET);
7797 }
7798 
7799 static const struct net_device_ops s2io_netdev_ops = {
7800 	.ndo_open	        = s2io_open,
7801 	.ndo_stop	        = s2io_close,
7802 	.ndo_get_stats	        = s2io_get_stats,
7803 	.ndo_start_xmit    	= s2io_xmit,
7804 	.ndo_validate_addr	= eth_validate_addr,
7805 	.ndo_set_multicast_list = s2io_set_multicast,
7806 	.ndo_do_ioctl	   	= s2io_ioctl,
7807 	.ndo_set_mac_address    = s2io_set_mac_addr,
7808 	.ndo_change_mtu	   	= s2io_change_mtu,
7809 	.ndo_vlan_rx_register   = s2io_vlan_rx_register,
7810 	.ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7811 	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7812 #ifdef CONFIG_NET_POLL_CONTROLLER
7813 	.ndo_poll_controller    = s2io_netpoll,
7814 #endif
7815 };
7816 
7817 /**
7818  *  s2io_init_nic - Initialization of the adapter .
7819  *  @pdev : structure containing the PCI related information of the device.
7820  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7821  *  Description:
7822  *  The function initializes an adapter identified by the pci_dec structure.
7823  *  All OS related initialization including memory and device structure and
7824  *  initlaization of the device private variable is done. Also the swapper
7825  *  control register is initialized to enable read and write into the I/O
7826  *  registers of the device.
7827  *  Return value:
7828  *  returns 0 on success and negative on failure.
7829  */
7830 
7831 static int __devinit
s2io_init_nic(struct pci_dev * pdev,const struct pci_device_id * pre)7832 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7833 {
7834 	struct s2io_nic *sp;
7835 	struct net_device *dev;
7836 	int i, j, ret;
7837 	int dma_flag = false;
7838 	u32 mac_up, mac_down;
7839 	u64 val64 = 0, tmp64 = 0;
7840 	struct XENA_dev_config __iomem *bar0 = NULL;
7841 	u16 subid;
7842 	struct config_param *config;
7843 	struct mac_info *mac_control;
7844 	int mode;
7845 	u8 dev_intr_type = intr_type;
7846 	u8 dev_multiq = 0;
7847 
7848 	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7849 	if (ret)
7850 		return ret;
7851 
7852 	ret = pci_enable_device(pdev);
7853 	if (ret) {
7854 		DBG_PRINT(ERR_DBG,
7855 			  "%s: pci_enable_device failed\n", __func__);
7856 		return ret;
7857 	}
7858 
7859 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7860 		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7861 		dma_flag = true;
7862 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7863 			DBG_PRINT(ERR_DBG,
7864 				  "Unable to obtain 64bit DMA "
7865 				  "for consistent allocations\n");
7866 			pci_disable_device(pdev);
7867 			return -ENOMEM;
7868 		}
7869 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7870 		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7871 	} else {
7872 		pci_disable_device(pdev);
7873 		return -ENOMEM;
7874 	}
7875 	ret = pci_request_regions(pdev, s2io_driver_name);
7876 	if (ret) {
7877 		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7878 			  __func__, ret);
7879 		pci_disable_device(pdev);
7880 		return -ENODEV;
7881 	}
7882 	if (dev_multiq)
7883 		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7884 	else
7885 		dev = alloc_etherdev(sizeof(struct s2io_nic));
7886 	if (dev == NULL) {
7887 		DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7888 		pci_disable_device(pdev);
7889 		pci_release_regions(pdev);
7890 		return -ENODEV;
7891 	}
7892 
7893 	pci_set_master(pdev);
7894 	pci_set_drvdata(pdev, dev);
7895 	SET_NETDEV_DEV(dev, &pdev->dev);
7896 
7897 	/*  Private member variable initialized to s2io NIC structure */
7898 	sp = netdev_priv(dev);
7899 	sp->dev = dev;
7900 	sp->pdev = pdev;
7901 	sp->high_dma_flag = dma_flag;
7902 	sp->device_enabled_once = false;
7903 	if (rx_ring_mode == 1)
7904 		sp->rxd_mode = RXD_MODE_1;
7905 	if (rx_ring_mode == 2)
7906 		sp->rxd_mode = RXD_MODE_3B;
7907 
7908 	sp->config.intr_type = dev_intr_type;
7909 
7910 	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7911 	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7912 		sp->device_type = XFRAME_II_DEVICE;
7913 	else
7914 		sp->device_type = XFRAME_I_DEVICE;
7915 
7916 
7917 	/* Initialize some PCI/PCI-X fields of the NIC. */
7918 	s2io_init_pci(sp);
7919 
7920 	/*
7921 	 * Setting the device configuration parameters.
7922 	 * Most of these parameters can be specified by the user during
7923 	 * module insertion as they are module loadable parameters. If
7924 	 * these parameters are not not specified during load time, they
7925 	 * are initialized with default values.
7926 	 */
7927 	config = &sp->config;
7928 	mac_control = &sp->mac_control;
7929 
7930 	config->napi = napi;
7931 	config->tx_steering_type = tx_steering_type;
7932 
7933 	/* Tx side parameters. */
7934 	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7935 		config->tx_fifo_num = MAX_TX_FIFOS;
7936 	else
7937 		config->tx_fifo_num = tx_fifo_num;
7938 
7939 	/* Initialize the fifos used for tx steering */
7940 	if (config->tx_fifo_num < 5) {
7941 		if (config->tx_fifo_num  == 1)
7942 			sp->total_tcp_fifos = 1;
7943 		else
7944 			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7945 		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7946 		sp->total_udp_fifos = 1;
7947 		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7948 	} else {
7949 		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7950 				       FIFO_OTHER_MAX_NUM);
7951 		sp->udp_fifo_idx = sp->total_tcp_fifos;
7952 		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7953 		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7954 	}
7955 
7956 	config->multiq = dev_multiq;
7957 	for (i = 0; i < config->tx_fifo_num; i++) {
7958 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7959 
7960 		tx_cfg->fifo_len = tx_fifo_len[i];
7961 		tx_cfg->fifo_priority = i;
7962 	}
7963 
7964 	/* mapping the QoS priority to the configured fifos */
7965 	for (i = 0; i < MAX_TX_FIFOS; i++)
7966 		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7967 
7968 	/* map the hashing selector table to the configured fifos */
7969 	for (i = 0; i < config->tx_fifo_num; i++)
7970 		sp->fifo_selector[i] = fifo_selector[i];
7971 
7972 
7973 	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7974 	for (i = 0; i < config->tx_fifo_num; i++) {
7975 		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7976 
7977 		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7978 		if (tx_cfg->fifo_len < 65) {
7979 			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7980 			break;
7981 		}
7982 	}
7983 	/* + 2 because one Txd for skb->data and one Txd for UFO */
7984 	config->max_txds = MAX_SKB_FRAGS + 2;
7985 
7986 	/* Rx side parameters. */
7987 	config->rx_ring_num = rx_ring_num;
7988 	for (i = 0; i < config->rx_ring_num; i++) {
7989 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7990 		struct ring_info *ring = &mac_control->rings[i];
7991 
7992 		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7993 		rx_cfg->ring_priority = i;
7994 		ring->rx_bufs_left = 0;
7995 		ring->rxd_mode = sp->rxd_mode;
7996 		ring->rxd_count = rxd_count[sp->rxd_mode];
7997 		ring->pdev = sp->pdev;
7998 		ring->dev = sp->dev;
7999 	}
8000 
8001 	for (i = 0; i < rx_ring_num; i++) {
8002 		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
8003 
8004 		rx_cfg->ring_org = RING_ORG_BUFF1;
8005 		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
8006 	}
8007 
8008 	/*  Setting Mac Control parameters */
8009 	mac_control->rmac_pause_time = rmac_pause_time;
8010 	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
8011 	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
8012 
8013 
8014 	/*  initialize the shared memory used by the NIC and the host */
8015 	if (init_shared_mem(sp)) {
8016 		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
8017 		ret = -ENOMEM;
8018 		goto mem_alloc_failed;
8019 	}
8020 
8021 	sp->bar0 = pci_ioremap_bar(pdev, 0);
8022 	if (!sp->bar0) {
8023 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
8024 			  dev->name);
8025 		ret = -ENOMEM;
8026 		goto bar0_remap_failed;
8027 	}
8028 
8029 	sp->bar1 = pci_ioremap_bar(pdev, 2);
8030 	if (!sp->bar1) {
8031 		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
8032 			  dev->name);
8033 		ret = -ENOMEM;
8034 		goto bar1_remap_failed;
8035 	}
8036 
8037 	dev->irq = pdev->irq;
8038 	dev->base_addr = (unsigned long)sp->bar0;
8039 
8040 	/* Initializing the BAR1 address as the start of the FIFO pointer. */
8041 	for (j = 0; j < MAX_TX_FIFOS; j++) {
8042 		mac_control->tx_FIFO_start[j] =
8043 			(struct TxFIFO_element __iomem *)
8044 			(sp->bar1 + (j * 0x00020000));
8045 	}
8046 
8047 	/*  Driver entry points */
8048 	dev->netdev_ops = &s2io_netdev_ops;
8049 	SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8050 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8051 	dev->features |= NETIF_F_LRO;
8052 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8053 	if (sp->high_dma_flag == true)
8054 		dev->features |= NETIF_F_HIGHDMA;
8055 	dev->features |= NETIF_F_TSO;
8056 	dev->features |= NETIF_F_TSO6;
8057 	if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
8058 		dev->features |= NETIF_F_UFO;
8059 		dev->features |= NETIF_F_HW_CSUM;
8060 	}
8061 	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8062 	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8063 	INIT_WORK(&sp->set_link_task, s2io_set_link);
8064 
8065 	pci_save_state(sp->pdev);
8066 
8067 	/* Setting swapper control on the NIC, for proper reset operation */
8068 	if (s2io_set_swapper(sp)) {
8069 		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8070 			  dev->name);
8071 		ret = -EAGAIN;
8072 		goto set_swap_failed;
8073 	}
8074 
8075 	/* Verify if the Herc works on the slot its placed into */
8076 	if (sp->device_type & XFRAME_II_DEVICE) {
8077 		mode = s2io_verify_pci_mode(sp);
8078 		if (mode < 0) {
8079 			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8080 				  __func__);
8081 			ret = -EBADSLT;
8082 			goto set_swap_failed;
8083 		}
8084 	}
8085 
8086 	if (sp->config.intr_type == MSI_X) {
8087 		sp->num_entries = config->rx_ring_num + 1;
8088 		ret = s2io_enable_msi_x(sp);
8089 
8090 		if (!ret) {
8091 			ret = s2io_test_msi(sp);
8092 			/* rollback MSI-X, will re-enable during add_isr() */
8093 			remove_msix_isr(sp);
8094 		}
8095 		if (ret) {
8096 
8097 			DBG_PRINT(ERR_DBG,
8098 				  "MSI-X requested but failed to enable\n");
8099 			sp->config.intr_type = INTA;
8100 		}
8101 	}
8102 
8103 	if (config->intr_type ==  MSI_X) {
8104 		for (i = 0; i < config->rx_ring_num ; i++) {
8105 			struct ring_info *ring = &mac_control->rings[i];
8106 
8107 			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8108 		}
8109 	} else {
8110 		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8111 	}
8112 
8113 	/* Not needed for Herc */
8114 	if (sp->device_type & XFRAME_I_DEVICE) {
8115 		/*
8116 		 * Fix for all "FFs" MAC address problems observed on
8117 		 * Alpha platforms
8118 		 */
8119 		fix_mac_address(sp);
8120 		s2io_reset(sp);
8121 	}
8122 
8123 	/*
8124 	 * MAC address initialization.
8125 	 * For now only one mac address will be read and used.
8126 	 */
8127 	bar0 = sp->bar0;
8128 	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8129 		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8130 	writeq(val64, &bar0->rmac_addr_cmd_mem);
8131 	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8132 			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8133 			      S2IO_BIT_RESET);
8134 	tmp64 = readq(&bar0->rmac_addr_data0_mem);
8135 	mac_down = (u32)tmp64;
8136 	mac_up = (u32) (tmp64 >> 32);
8137 
8138 	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8139 	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8140 	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8141 	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8142 	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8143 	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8144 
8145 	/*  Set the factory defined MAC address initially   */
8146 	dev->addr_len = ETH_ALEN;
8147 	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8148 	memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8149 
8150 	/* initialize number of multicast & unicast MAC entries variables */
8151 	if (sp->device_type == XFRAME_I_DEVICE) {
8152 		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8153 		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8154 		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8155 	} else if (sp->device_type == XFRAME_II_DEVICE) {
8156 		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8157 		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8158 		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8159 	}
8160 
8161 	/* store mac addresses from CAM to s2io_nic structure */
8162 	do_s2io_store_unicast_mc(sp);
8163 
8164 	/* Configure MSIX vector for number of rings configured plus one */
8165 	if ((sp->device_type == XFRAME_II_DEVICE) &&
8166 	    (config->intr_type == MSI_X))
8167 		sp->num_entries = config->rx_ring_num + 1;
8168 
8169 	/* Store the values of the MSIX table in the s2io_nic structure */
8170 	store_xmsi_data(sp);
8171 	/* reset Nic and bring it to known state */
8172 	s2io_reset(sp);
8173 
8174 	/*
8175 	 * Initialize link state flags
8176 	 * and the card state parameter
8177 	 */
8178 	sp->state = 0;
8179 
8180 	/* Initialize spinlocks */
8181 	for (i = 0; i < sp->config.tx_fifo_num; i++) {
8182 		struct fifo_info *fifo = &mac_control->fifos[i];
8183 
8184 		spin_lock_init(&fifo->tx_lock);
8185 	}
8186 
8187 	/*
8188 	 * SXE-002: Configure link and activity LED to init state
8189 	 * on driver load.
8190 	 */
8191 	subid = sp->pdev->subsystem_device;
8192 	if ((subid & 0xFF) >= 0x07) {
8193 		val64 = readq(&bar0->gpio_control);
8194 		val64 |= 0x0000800000000000ULL;
8195 		writeq(val64, &bar0->gpio_control);
8196 		val64 = 0x0411040400000000ULL;
8197 		writeq(val64, (void __iomem *)bar0 + 0x2700);
8198 		val64 = readq(&bar0->gpio_control);
8199 	}
8200 
8201 	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8202 
8203 	if (register_netdev(dev)) {
8204 		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8205 		ret = -ENODEV;
8206 		goto register_failed;
8207 	}
8208 	s2io_vpd_read(sp);
8209 	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8210 	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8211 		  sp->product_name, pdev->revision);
8212 	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8213 		  s2io_driver_version);
8214 	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8215 	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8216 	if (sp->device_type & XFRAME_II_DEVICE) {
8217 		mode = s2io_print_pci_mode(sp);
8218 		if (mode < 0) {
8219 			ret = -EBADSLT;
8220 			unregister_netdev(dev);
8221 			goto set_swap_failed;
8222 		}
8223 	}
8224 	switch (sp->rxd_mode) {
8225 	case RXD_MODE_1:
8226 		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8227 			  dev->name);
8228 		break;
8229 	case RXD_MODE_3B:
8230 		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8231 			  dev->name);
8232 		break;
8233 	}
8234 
8235 	switch (sp->config.napi) {
8236 	case 0:
8237 		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8238 		break;
8239 	case 1:
8240 		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8241 		break;
8242 	}
8243 
8244 	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8245 		  sp->config.tx_fifo_num);
8246 
8247 	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8248 		  sp->config.rx_ring_num);
8249 
8250 	switch (sp->config.intr_type) {
8251 	case INTA:
8252 		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8253 		break;
8254 	case MSI_X:
8255 		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8256 		break;
8257 	}
8258 	if (sp->config.multiq) {
8259 		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8260 			struct fifo_info *fifo = &mac_control->fifos[i];
8261 
8262 			fifo->multiq = config->multiq;
8263 		}
8264 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8265 			  dev->name);
8266 	} else
8267 		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8268 			  dev->name);
8269 
8270 	switch (sp->config.tx_steering_type) {
8271 	case NO_STEERING:
8272 		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8273 			  dev->name);
8274 		break;
8275 	case TX_PRIORITY_STEERING:
8276 		DBG_PRINT(ERR_DBG,
8277 			  "%s: Priority steering enabled for transmit\n",
8278 			  dev->name);
8279 		break;
8280 	case TX_DEFAULT_STEERING:
8281 		DBG_PRINT(ERR_DBG,
8282 			  "%s: Default steering enabled for transmit\n",
8283 			  dev->name);
8284 	}
8285 
8286 	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8287 		  dev->name);
8288 	if (ufo)
8289 		DBG_PRINT(ERR_DBG,
8290 			  "%s: UDP Fragmentation Offload(UFO) enabled\n",
8291 			  dev->name);
8292 	/* Initialize device name */
8293 	sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8294 
8295 	if (vlan_tag_strip)
8296 		sp->vlan_strip_flag = 1;
8297 	else
8298 		sp->vlan_strip_flag = 0;
8299 
8300 	/*
8301 	 * Make Link state as off at this point, when the Link change
8302 	 * interrupt comes the state will be automatically changed to
8303 	 * the right state.
8304 	 */
8305 	netif_carrier_off(dev);
8306 
8307 	return 0;
8308 
8309 register_failed:
8310 set_swap_failed:
8311 	iounmap(sp->bar1);
8312 bar1_remap_failed:
8313 	iounmap(sp->bar0);
8314 bar0_remap_failed:
8315 mem_alloc_failed:
8316 	free_shared_mem(sp);
8317 	pci_disable_device(pdev);
8318 	pci_release_regions(pdev);
8319 	pci_set_drvdata(pdev, NULL);
8320 	free_netdev(dev);
8321 
8322 	return ret;
8323 }
8324 
8325 /**
8326  * s2io_rem_nic - Free the PCI device
8327  * @pdev: structure containing the PCI related information of the device.
8328  * Description: This function is called by the Pci subsystem to release a
8329  * PCI device and free up all resource held up by the device. This could
8330  * be in response to a Hot plug event or when the driver is to be removed
8331  * from memory.
8332  */
8333 
s2io_rem_nic(struct pci_dev * pdev)8334 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8335 {
8336 	struct net_device *dev = pci_get_drvdata(pdev);
8337 	struct s2io_nic *sp;
8338 
8339 	if (dev == NULL) {
8340 		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8341 		return;
8342 	}
8343 
8344 	sp = netdev_priv(dev);
8345 
8346 	cancel_work_sync(&sp->rst_timer_task);
8347 	cancel_work_sync(&sp->set_link_task);
8348 
8349 	unregister_netdev(dev);
8350 
8351 	free_shared_mem(sp);
8352 	iounmap(sp->bar0);
8353 	iounmap(sp->bar1);
8354 	pci_release_regions(pdev);
8355 	pci_set_drvdata(pdev, NULL);
8356 	free_netdev(dev);
8357 	pci_disable_device(pdev);
8358 }
8359 
8360 /**
8361  * s2io_starter - Entry point for the driver
8362  * Description: This function is the entry point for the driver. It verifies
8363  * the module loadable parameters and initializes PCI configuration space.
8364  */
8365 
s2io_starter(void)8366 static int __init s2io_starter(void)
8367 {
8368 	return pci_register_driver(&s2io_driver);
8369 }
8370 
8371 /**
8372  * s2io_closer - Cleanup routine for the driver
8373  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8374  */
8375 
s2io_closer(void)8376 static __exit void s2io_closer(void)
8377 {
8378 	pci_unregister_driver(&s2io_driver);
8379 	DBG_PRINT(INIT_DBG, "cleanup done\n");
8380 }
8381 
8382 module_init(s2io_starter);
8383 module_exit(s2io_closer);
8384 
check_L2_lro_capable(u8 * buffer,struct iphdr ** ip,struct tcphdr ** tcp,struct RxD_t * rxdp,struct s2io_nic * sp)8385 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8386 				struct tcphdr **tcp, struct RxD_t *rxdp,
8387 				struct s2io_nic *sp)
8388 {
8389 	int ip_off;
8390 	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8391 
8392 	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8393 		DBG_PRINT(INIT_DBG,
8394 			  "%s: Non-TCP frames not supported for LRO\n",
8395 			  __func__);
8396 		return -1;
8397 	}
8398 
8399 	/* Checking for DIX type or DIX type with VLAN */
8400 	if ((l2_type == 0) || (l2_type == 4)) {
8401 		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8402 		/*
8403 		 * If vlan stripping is disabled and the frame is VLAN tagged,
8404 		 * shift the offset by the VLAN header size bytes.
8405 		 */
8406 		if ((!sp->vlan_strip_flag) &&
8407 		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8408 			ip_off += HEADER_VLAN_SIZE;
8409 	} else {
8410 		/* LLC, SNAP etc are considered non-mergeable */
8411 		return -1;
8412 	}
8413 
8414 	*ip = (struct iphdr *)((u8 *)buffer + ip_off);
8415 	ip_len = (u8)((*ip)->ihl);
8416 	ip_len <<= 2;
8417 	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8418 
8419 	return 0;
8420 }
8421 
check_for_socket_match(struct lro * lro,struct iphdr * ip,struct tcphdr * tcp)8422 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8423 				  struct tcphdr *tcp)
8424 {
8425 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8426 	if ((lro->iph->saddr != ip->saddr) ||
8427 	    (lro->iph->daddr != ip->daddr) ||
8428 	    (lro->tcph->source != tcp->source) ||
8429 	    (lro->tcph->dest != tcp->dest))
8430 		return -1;
8431 	return 0;
8432 }
8433 
get_l4_pyld_length(struct iphdr * ip,struct tcphdr * tcp)8434 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8435 {
8436 	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8437 }
8438 
initiate_new_session(struct lro * lro,u8 * l2h,struct iphdr * ip,struct tcphdr * tcp,u32 tcp_pyld_len,u16 vlan_tag)8439 static void initiate_new_session(struct lro *lro, u8 *l2h,
8440 				 struct iphdr *ip, struct tcphdr *tcp,
8441 				 u32 tcp_pyld_len, u16 vlan_tag)
8442 {
8443 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8444 	lro->l2h = l2h;
8445 	lro->iph = ip;
8446 	lro->tcph = tcp;
8447 	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8448 	lro->tcp_ack = tcp->ack_seq;
8449 	lro->sg_num = 1;
8450 	lro->total_len = ntohs(ip->tot_len);
8451 	lro->frags_len = 0;
8452 	lro->vlan_tag = vlan_tag;
8453 	/*
8454 	 * Check if we saw TCP timestamp.
8455 	 * Other consistency checks have already been done.
8456 	 */
8457 	if (tcp->doff == 8) {
8458 		__be32 *ptr;
8459 		ptr = (__be32 *)(tcp+1);
8460 		lro->saw_ts = 1;
8461 		lro->cur_tsval = ntohl(*(ptr+1));
8462 		lro->cur_tsecr = *(ptr+2);
8463 	}
8464 	lro->in_use = 1;
8465 }
8466 
update_L3L4_header(struct s2io_nic * sp,struct lro * lro)8467 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8468 {
8469 	struct iphdr *ip = lro->iph;
8470 	struct tcphdr *tcp = lro->tcph;
8471 	__sum16 nchk;
8472 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8473 
8474 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8475 
8476 	/* Update L3 header */
8477 	ip->tot_len = htons(lro->total_len);
8478 	ip->check = 0;
8479 	nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8480 	ip->check = nchk;
8481 
8482 	/* Update L4 header */
8483 	tcp->ack_seq = lro->tcp_ack;
8484 	tcp->window = lro->window;
8485 
8486 	/* Update tsecr field if this session has timestamps enabled */
8487 	if (lro->saw_ts) {
8488 		__be32 *ptr = (__be32 *)(tcp + 1);
8489 		*(ptr+2) = lro->cur_tsecr;
8490 	}
8491 
8492 	/* Update counters required for calculation of
8493 	 * average no. of packets aggregated.
8494 	 */
8495 	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8496 	swstats->num_aggregations++;
8497 }
8498 
aggregate_new_rx(struct lro * lro,struct iphdr * ip,struct tcphdr * tcp,u32 l4_pyld)8499 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8500 			     struct tcphdr *tcp, u32 l4_pyld)
8501 {
8502 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8503 	lro->total_len += l4_pyld;
8504 	lro->frags_len += l4_pyld;
8505 	lro->tcp_next_seq += l4_pyld;
8506 	lro->sg_num++;
8507 
8508 	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8509 	lro->tcp_ack = tcp->ack_seq;
8510 	lro->window = tcp->window;
8511 
8512 	if (lro->saw_ts) {
8513 		__be32 *ptr;
8514 		/* Update tsecr and tsval from this packet */
8515 		ptr = (__be32 *)(tcp+1);
8516 		lro->cur_tsval = ntohl(*(ptr+1));
8517 		lro->cur_tsecr = *(ptr + 2);
8518 	}
8519 }
8520 
verify_l3_l4_lro_capable(struct lro * l_lro,struct iphdr * ip,struct tcphdr * tcp,u32 tcp_pyld_len)8521 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8522 				    struct tcphdr *tcp, u32 tcp_pyld_len)
8523 {
8524 	u8 *ptr;
8525 
8526 	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8527 
8528 	if (!tcp_pyld_len) {
8529 		/* Runt frame or a pure ack */
8530 		return -1;
8531 	}
8532 
8533 	if (ip->ihl != 5) /* IP has options */
8534 		return -1;
8535 
8536 	/* If we see CE codepoint in IP header, packet is not mergeable */
8537 	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8538 		return -1;
8539 
8540 	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8541 	if (tcp->urg || tcp->psh || tcp->rst ||
8542 	    tcp->syn || tcp->fin ||
8543 	    tcp->ece || tcp->cwr || !tcp->ack) {
8544 		/*
8545 		 * Currently recognize only the ack control word and
8546 		 * any other control field being set would result in
8547 		 * flushing the LRO session
8548 		 */
8549 		return -1;
8550 	}
8551 
8552 	/*
8553 	 * Allow only one TCP timestamp option. Don't aggregate if
8554 	 * any other options are detected.
8555 	 */
8556 	if (tcp->doff != 5 && tcp->doff != 8)
8557 		return -1;
8558 
8559 	if (tcp->doff == 8) {
8560 		ptr = (u8 *)(tcp + 1);
8561 		while (*ptr == TCPOPT_NOP)
8562 			ptr++;
8563 		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8564 			return -1;
8565 
8566 		/* Ensure timestamp value increases monotonically */
8567 		if (l_lro)
8568 			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8569 				return -1;
8570 
8571 		/* timestamp echo reply should be non-zero */
8572 		if (*((__be32 *)(ptr+6)) == 0)
8573 			return -1;
8574 	}
8575 
8576 	return 0;
8577 }
8578 
s2io_club_tcp_session(struct ring_info * ring_data,u8 * buffer,u8 ** tcp,u32 * tcp_len,struct lro ** lro,struct RxD_t * rxdp,struct s2io_nic * sp)8579 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8580 				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8581 				 struct RxD_t *rxdp, struct s2io_nic *sp)
8582 {
8583 	struct iphdr *ip;
8584 	struct tcphdr *tcph;
8585 	int ret = 0, i;
8586 	u16 vlan_tag = 0;
8587 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8588 
8589 	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8590 				   rxdp, sp);
8591 	if (ret)
8592 		return ret;
8593 
8594 	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8595 
8596 	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8597 	tcph = (struct tcphdr *)*tcp;
8598 	*tcp_len = get_l4_pyld_length(ip, tcph);
8599 	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8600 		struct lro *l_lro = &ring_data->lro0_n[i];
8601 		if (l_lro->in_use) {
8602 			if (check_for_socket_match(l_lro, ip, tcph))
8603 				continue;
8604 			/* Sock pair matched */
8605 			*lro = l_lro;
8606 
8607 			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8608 				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8609 					  "expected 0x%x, actual 0x%x\n",
8610 					  __func__,
8611 					  (*lro)->tcp_next_seq,
8612 					  ntohl(tcph->seq));
8613 
8614 				swstats->outof_sequence_pkts++;
8615 				ret = 2;
8616 				break;
8617 			}
8618 
8619 			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8620 						      *tcp_len))
8621 				ret = 1; /* Aggregate */
8622 			else
8623 				ret = 2; /* Flush both */
8624 			break;
8625 		}
8626 	}
8627 
8628 	if (ret == 0) {
8629 		/* Before searching for available LRO objects,
8630 		 * check if the pkt is L3/L4 aggregatable. If not
8631 		 * don't create new LRO session. Just send this
8632 		 * packet up.
8633 		 */
8634 		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8635 			return 5;
8636 
8637 		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8638 			struct lro *l_lro = &ring_data->lro0_n[i];
8639 			if (!(l_lro->in_use)) {
8640 				*lro = l_lro;
8641 				ret = 3; /* Begin anew */
8642 				break;
8643 			}
8644 		}
8645 	}
8646 
8647 	if (ret == 0) { /* sessions exceeded */
8648 		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8649 			  __func__);
8650 		*lro = NULL;
8651 		return ret;
8652 	}
8653 
8654 	switch (ret) {
8655 	case 3:
8656 		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8657 				     vlan_tag);
8658 		break;
8659 	case 2:
8660 		update_L3L4_header(sp, *lro);
8661 		break;
8662 	case 1:
8663 		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8664 		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8665 			update_L3L4_header(sp, *lro);
8666 			ret = 4; /* Flush the LRO */
8667 		}
8668 		break;
8669 	default:
8670 		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8671 		break;
8672 	}
8673 
8674 	return ret;
8675 }
8676 
clear_lro_session(struct lro * lro)8677 static void clear_lro_session(struct lro *lro)
8678 {
8679 	static u16 lro_struct_size = sizeof(struct lro);
8680 
8681 	memset(lro, 0, lro_struct_size);
8682 }
8683 
queue_rx_frame(struct sk_buff * skb,u16 vlan_tag)8684 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8685 {
8686 	struct net_device *dev = skb->dev;
8687 	struct s2io_nic *sp = netdev_priv(dev);
8688 
8689 	skb->protocol = eth_type_trans(skb, dev);
8690 	if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8691 		/* Queueing the vlan frame to the upper layer */
8692 		if (sp->config.napi)
8693 			vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8694 		else
8695 			vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8696 	} else {
8697 		if (sp->config.napi)
8698 			netif_receive_skb(skb);
8699 		else
8700 			netif_rx(skb);
8701 	}
8702 }
8703 
lro_append_pkt(struct s2io_nic * sp,struct lro * lro,struct sk_buff * skb,u32 tcp_len)8704 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8705 			   struct sk_buff *skb, u32 tcp_len)
8706 {
8707 	struct sk_buff *first = lro->parent;
8708 	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8709 
8710 	first->len += tcp_len;
8711 	first->data_len = lro->frags_len;
8712 	skb_pull(skb, (skb->len - tcp_len));
8713 	if (skb_shinfo(first)->frag_list)
8714 		lro->last_frag->next = skb;
8715 	else
8716 		skb_shinfo(first)->frag_list = skb;
8717 	first->truesize += skb->truesize;
8718 	lro->last_frag = skb;
8719 	swstats->clubbed_frms_cnt++;
8720 }
8721 
8722 /**
8723  * s2io_io_error_detected - called when PCI error is detected
8724  * @pdev: Pointer to PCI device
8725  * @state: The current pci connection state
8726  *
8727  * This function is called after a PCI bus error affecting
8728  * this device has been detected.
8729  */
s2io_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)8730 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8731 					       pci_channel_state_t state)
8732 {
8733 	struct net_device *netdev = pci_get_drvdata(pdev);
8734 	struct s2io_nic *sp = netdev_priv(netdev);
8735 
8736 	netif_device_detach(netdev);
8737 
8738 	if (state == pci_channel_io_perm_failure)
8739 		return PCI_ERS_RESULT_DISCONNECT;
8740 
8741 	if (netif_running(netdev)) {
8742 		/* Bring down the card, while avoiding PCI I/O */
8743 		do_s2io_card_down(sp, 0);
8744 	}
8745 	pci_disable_device(pdev);
8746 
8747 	return PCI_ERS_RESULT_NEED_RESET;
8748 }
8749 
8750 /**
8751  * s2io_io_slot_reset - called after the pci bus has been reset.
8752  * @pdev: Pointer to PCI device
8753  *
8754  * Restart the card from scratch, as if from a cold-boot.
8755  * At this point, the card has exprienced a hard reset,
8756  * followed by fixups by BIOS, and has its config space
8757  * set up identically to what it was at cold boot.
8758  */
s2io_io_slot_reset(struct pci_dev * pdev)8759 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8760 {
8761 	struct net_device *netdev = pci_get_drvdata(pdev);
8762 	struct s2io_nic *sp = netdev_priv(netdev);
8763 
8764 	if (pci_enable_device(pdev)) {
8765 		pr_err("Cannot re-enable PCI device after reset.\n");
8766 		return PCI_ERS_RESULT_DISCONNECT;
8767 	}
8768 
8769 	pci_set_master(pdev);
8770 	s2io_reset(sp);
8771 
8772 	return PCI_ERS_RESULT_RECOVERED;
8773 }
8774 
8775 /**
8776  * s2io_io_resume - called when traffic can start flowing again.
8777  * @pdev: Pointer to PCI device
8778  *
8779  * This callback is called when the error recovery driver tells
8780  * us that its OK to resume normal operation.
8781  */
s2io_io_resume(struct pci_dev * pdev)8782 static void s2io_io_resume(struct pci_dev *pdev)
8783 {
8784 	struct net_device *netdev = pci_get_drvdata(pdev);
8785 	struct s2io_nic *sp = netdev_priv(netdev);
8786 
8787 	if (netif_running(netdev)) {
8788 		if (s2io_card_up(sp)) {
8789 			pr_err("Can't bring device back up after reset.\n");
8790 			return;
8791 		}
8792 
8793 		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8794 			s2io_card_down(sp);
8795 			pr_err("Can't restore mac addr after reset.\n");
8796 			return;
8797 		}
8798 	}
8799 
8800 	netif_device_attach(netdev);
8801 	netif_tx_wake_all_queues(netdev);
8802 }
8803