1 /* drivers/net/ks8851.c
2  *
3  * Copyright 2009 Simtec Electronics
4  *	http://www.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #define DEBUG
15 
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/cache.h>
22 #include <linux/crc32.h>
23 #include <linux/mii.h>
24 
25 #include <linux/spi/spi.h>
26 
27 #include "ks8851.h"
28 
29 /**
30  * struct ks8851_rxctrl - KS8851 driver rx control
31  * @mchash: Multicast hash-table data.
32  * @rxcr1: KS_RXCR1 register setting
33  * @rxcr2: KS_RXCR2 register setting
34  *
35  * Representation of the settings needs to control the receive filtering
36  * such as the multicast hash-filter and the receive register settings. This
37  * is used to make the job of working out if the receive settings change and
38  * then issuing the new settings to the worker that will send the necessary
39  * commands.
40  */
41 struct ks8851_rxctrl {
42 	u16	mchash[4];
43 	u16	rxcr1;
44 	u16	rxcr2;
45 };
46 
47 /**
48  * union ks8851_tx_hdr - tx header data
49  * @txb: The header as bytes
50  * @txw: The header as 16bit, little-endian words
51  *
52  * A dual representation of the tx header data to allow
53  * access to individual bytes, and to allow 16bit accesses
54  * with 16bit alignment.
55  */
56 union ks8851_tx_hdr {
57 	u8	txb[6];
58 	__le16	txw[3];
59 };
60 
61 /**
62  * struct ks8851_net - KS8851 driver private data
63  * @netdev: The network device we're bound to
64  * @spidev: The spi device we're bound to.
65  * @lock: Lock to ensure that the device is not accessed when busy.
66  * @statelock: Lock on this structure for tx list.
67  * @mii: The MII state information for the mii calls.
68  * @rxctrl: RX settings for @rxctrl_work.
69  * @tx_work: Work queue for tx packets
70  * @irq_work: Work queue for servicing interrupts
71  * @rxctrl_work: Work queue for updating RX mode and multicast lists
72  * @txq: Queue of packets for transmission.
73  * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
74  * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
75  * @txh: Space for generating packet TX header in DMA-able data
76  * @rxd: Space for receiving SPI data, in DMA-able space.
77  * @txd: Space for transmitting SPI data, in DMA-able space.
78  * @msg_enable: The message flags controlling driver output (see ethtool).
79  * @fid: Incrementing frame id tag.
80  * @rc_ier: Cached copy of KS_IER.
81  * @rc_ccr: Cached copy of KS_CCR.
82  * @rc_rxqcr: Cached copy of KS_RXQCR.
83  * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
84  *
85  * The @lock ensures that the chip is protected when certain operations are
86  * in progress. When the read or write packet transfer is in progress, most
87  * of the chip registers are not ccessible until the transfer is finished and
88  * the DMA has been de-asserted.
89  *
90  * The @statelock is used to protect information in the structure which may
91  * need to be accessed via several sources, such as the network driver layer
92  * or one of the work queues.
93  *
94  * We align the buffers we may use for rx/tx to ensure that if the SPI driver
95  * wants to DMA map them, it will not have any problems with data the driver
96  * modifies.
97  */
98 struct ks8851_net {
99 	struct net_device	*netdev;
100 	struct spi_device	*spidev;
101 	struct mutex		lock;
102 	spinlock_t		statelock;
103 
104 	union ks8851_tx_hdr	txh ____cacheline_aligned;
105 	u8			rxd[8];
106 	u8			txd[8];
107 
108 	u32			msg_enable ____cacheline_aligned;
109 	u16			tx_space;
110 	u8			fid;
111 
112 	u16			rc_ier;
113 	u16			rc_rxqcr;
114 	u16			rc_ccr;
115 	u16			eeprom_size;
116 
117 	struct mii_if_info	mii;
118 	struct ks8851_rxctrl	rxctrl;
119 
120 	struct work_struct	tx_work;
121 	struct work_struct	irq_work;
122 	struct work_struct	rxctrl_work;
123 
124 	struct sk_buff_head	txq;
125 
126 	struct spi_message	spi_msg1;
127 	struct spi_message	spi_msg2;
128 	struct spi_transfer	spi_xfer1;
129 	struct spi_transfer	spi_xfer2[2];
130 };
131 
132 static int msg_enable;
133 
134 /* shift for byte-enable data */
135 #define BYTE_EN(_x)	((_x) << 2)
136 
137 /* turn register number and byte-enable mask into data for start of packet */
138 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
139 
140 /* SPI register read/write calls.
141  *
142  * All these calls issue SPI transactions to access the chip's registers. They
143  * all require that the necessary lock is held to prevent accesses when the
144  * chip is busy transferring packet data (RX/TX FIFO accesses).
145  */
146 
147 /**
148  * ks8851_wrreg16 - write 16bit register value to chip
149  * @ks: The chip state
150  * @reg: The register address
151  * @val: The value to write
152  *
153  * Issue a write to put the value @val into the register specified in @reg.
154  */
ks8851_wrreg16(struct ks8851_net * ks,unsigned reg,unsigned val)155 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
156 {
157 	struct spi_transfer *xfer = &ks->spi_xfer1;
158 	struct spi_message *msg = &ks->spi_msg1;
159 	__le16 txb[2];
160 	int ret;
161 
162 	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
163 	txb[1] = cpu_to_le16(val);
164 
165 	xfer->tx_buf = txb;
166 	xfer->rx_buf = NULL;
167 	xfer->len = 4;
168 
169 	ret = spi_sync(ks->spidev, msg);
170 	if (ret < 0)
171 		netdev_err(ks->netdev, "spi_sync() failed\n");
172 }
173 
174 /**
175  * ks8851_wrreg8 - write 8bit register value to chip
176  * @ks: The chip state
177  * @reg: The register address
178  * @val: The value to write
179  *
180  * Issue a write to put the value @val into the register specified in @reg.
181  */
ks8851_wrreg8(struct ks8851_net * ks,unsigned reg,unsigned val)182 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
183 {
184 	struct spi_transfer *xfer = &ks->spi_xfer1;
185 	struct spi_message *msg = &ks->spi_msg1;
186 	__le16 txb[2];
187 	int ret;
188 	int bit;
189 
190 	bit = 1 << (reg & 3);
191 
192 	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
193 	txb[1] = val;
194 
195 	xfer->tx_buf = txb;
196 	xfer->rx_buf = NULL;
197 	xfer->len = 3;
198 
199 	ret = spi_sync(ks->spidev, msg);
200 	if (ret < 0)
201 		netdev_err(ks->netdev, "spi_sync() failed\n");
202 }
203 
204 /**
205  * ks8851_rx_1msg - select whether to use one or two messages for spi read
206  * @ks: The device structure
207  *
208  * Return whether to generate a single message with a tx and rx buffer
209  * supplied to spi_sync(), or alternatively send the tx and rx buffers
210  * as separate messages.
211  *
212  * Depending on the hardware in use, a single message may be more efficient
213  * on interrupts or work done by the driver.
214  *
215  * This currently always returns true until we add some per-device data passed
216  * from the platform code to specify which mode is better.
217  */
ks8851_rx_1msg(struct ks8851_net * ks)218 static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
219 {
220 	return true;
221 }
222 
223 /**
224  * ks8851_rdreg - issue read register command and return the data
225  * @ks: The device state
226  * @op: The register address and byte enables in message format.
227  * @rxb: The RX buffer to return the result into
228  * @rxl: The length of data expected.
229  *
230  * This is the low level read call that issues the necessary spi message(s)
231  * to read data from the register specified in @op.
232  */
ks8851_rdreg(struct ks8851_net * ks,unsigned op,u8 * rxb,unsigned rxl)233 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
234 			 u8 *rxb, unsigned rxl)
235 {
236 	struct spi_transfer *xfer;
237 	struct spi_message *msg;
238 	__le16 *txb = (__le16 *)ks->txd;
239 	u8 *trx = ks->rxd;
240 	int ret;
241 
242 	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
243 
244 	if (ks8851_rx_1msg(ks)) {
245 		msg = &ks->spi_msg1;
246 		xfer = &ks->spi_xfer1;
247 
248 		xfer->tx_buf = txb;
249 		xfer->rx_buf = trx;
250 		xfer->len = rxl + 2;
251 	} else {
252 		msg = &ks->spi_msg2;
253 		xfer = ks->spi_xfer2;
254 
255 		xfer->tx_buf = txb;
256 		xfer->rx_buf = NULL;
257 		xfer->len = 2;
258 
259 		xfer++;
260 		xfer->tx_buf = NULL;
261 		xfer->rx_buf = trx;
262 		xfer->len = rxl;
263 	}
264 
265 	ret = spi_sync(ks->spidev, msg);
266 	if (ret < 0)
267 		netdev_err(ks->netdev, "read: spi_sync() failed\n");
268 	else if (ks8851_rx_1msg(ks))
269 		memcpy(rxb, trx + 2, rxl);
270 	else
271 		memcpy(rxb, trx, rxl);
272 }
273 
274 /**
275  * ks8851_rdreg8 - read 8 bit register from device
276  * @ks: The chip information
277  * @reg: The register address
278  *
279  * Read a 8bit register from the chip, returning the result
280 */
ks8851_rdreg8(struct ks8851_net * ks,unsigned reg)281 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
282 {
283 	u8 rxb[1];
284 
285 	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
286 	return rxb[0];
287 }
288 
289 /**
290  * ks8851_rdreg16 - read 16 bit register from device
291  * @ks: The chip information
292  * @reg: The register address
293  *
294  * Read a 16bit register from the chip, returning the result
295 */
ks8851_rdreg16(struct ks8851_net * ks,unsigned reg)296 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
297 {
298 	__le16 rx = 0;
299 
300 	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
301 	return le16_to_cpu(rx);
302 }
303 
304 /**
305  * ks8851_rdreg32 - read 32 bit register from device
306  * @ks: The chip information
307  * @reg: The register address
308  *
309  * Read a 32bit register from the chip.
310  *
311  * Note, this read requires the address be aligned to 4 bytes.
312 */
ks8851_rdreg32(struct ks8851_net * ks,unsigned reg)313 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
314 {
315 	__le32 rx = 0;
316 
317 	WARN_ON(reg & 3);
318 
319 	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
320 	return le32_to_cpu(rx);
321 }
322 
323 /**
324  * ks8851_soft_reset - issue one of the soft reset to the device
325  * @ks: The device state.
326  * @op: The bit(s) to set in the GRR
327  *
328  * Issue the relevant soft-reset command to the device's GRR register
329  * specified by @op.
330  *
331  * Note, the delays are in there as a caution to ensure that the reset
332  * has time to take effect and then complete. Since the datasheet does
333  * not currently specify the exact sequence, we have chosen something
334  * that seems to work with our device.
335  */
ks8851_soft_reset(struct ks8851_net * ks,unsigned op)336 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
337 {
338 	ks8851_wrreg16(ks, KS_GRR, op);
339 	mdelay(1);	/* wait a short time to effect reset */
340 	ks8851_wrreg16(ks, KS_GRR, 0);
341 	mdelay(1);	/* wait for condition to clear */
342 }
343 
344 /**
345  * ks8851_write_mac_addr - write mac address to device registers
346  * @dev: The network device
347  *
348  * Update the KS8851 MAC address registers from the address in @dev.
349  *
350  * This call assumes that the chip is not running, so there is no need to
351  * shutdown the RXQ process whilst setting this.
352 */
ks8851_write_mac_addr(struct net_device * dev)353 static int ks8851_write_mac_addr(struct net_device *dev)
354 {
355 	struct ks8851_net *ks = netdev_priv(dev);
356 	int i;
357 
358 	mutex_lock(&ks->lock);
359 
360 	for (i = 0; i < ETH_ALEN; i++)
361 		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
362 
363 	mutex_unlock(&ks->lock);
364 
365 	return 0;
366 }
367 
368 /**
369  * ks8851_init_mac - initialise the mac address
370  * @ks: The device structure
371  *
372  * Get or create the initial mac address for the device and then set that
373  * into the station address register. Currently we assume that the device
374  * does not have a valid mac address in it, and so we use random_ether_addr()
375  * to create a new one.
376  *
377  * In future, the driver should check to see if the device has an EEPROM
378  * attached and whether that has a valid ethernet address in it.
379  */
ks8851_init_mac(struct ks8851_net * ks)380 static void ks8851_init_mac(struct ks8851_net *ks)
381 {
382 	struct net_device *dev = ks->netdev;
383 
384 	random_ether_addr(dev->dev_addr);
385 	ks8851_write_mac_addr(dev);
386 }
387 
388 /**
389  * ks8851_irq - device interrupt handler
390  * @irq: Interrupt number passed from the IRQ hnalder.
391  * @pw: The private word passed to register_irq(), our struct ks8851_net.
392  *
393  * Disable the interrupt from happening again until we've processed the
394  * current status by scheduling ks8851_irq_work().
395  */
ks8851_irq(int irq,void * pw)396 static irqreturn_t ks8851_irq(int irq, void *pw)
397 {
398 	struct ks8851_net *ks = pw;
399 
400 	disable_irq_nosync(irq);
401 	schedule_work(&ks->irq_work);
402 	return IRQ_HANDLED;
403 }
404 
405 /**
406  * ks8851_rdfifo - read data from the receive fifo
407  * @ks: The device state.
408  * @buff: The buffer address
409  * @len: The length of the data to read
410  *
411  * Issue an RXQ FIFO read command and read the @len amount of data from
412  * the FIFO into the buffer specified by @buff.
413  */
ks8851_rdfifo(struct ks8851_net * ks,u8 * buff,unsigned len)414 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
415 {
416 	struct spi_transfer *xfer = ks->spi_xfer2;
417 	struct spi_message *msg = &ks->spi_msg2;
418 	u8 txb[1];
419 	int ret;
420 
421 	netif_dbg(ks, rx_status, ks->netdev,
422 		  "%s: %d@%p\n", __func__, len, buff);
423 
424 	/* set the operation we're issuing */
425 	txb[0] = KS_SPIOP_RXFIFO;
426 
427 	xfer->tx_buf = txb;
428 	xfer->rx_buf = NULL;
429 	xfer->len = 1;
430 
431 	xfer++;
432 	xfer->rx_buf = buff;
433 	xfer->tx_buf = NULL;
434 	xfer->len = len;
435 
436 	ret = spi_sync(ks->spidev, msg);
437 	if (ret < 0)
438 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
439 }
440 
441 /**
442  * ks8851_dbg_dumpkkt - dump initial packet contents to debug
443  * @ks: The device state
444  * @rxpkt: The data for the received packet
445  *
446  * Dump the initial data from the packet to dev_dbg().
447 */
ks8851_dbg_dumpkkt(struct ks8851_net * ks,u8 * rxpkt)448 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
449 {
450 	netdev_dbg(ks->netdev,
451 		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
452 		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
453 		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
454 		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
455 }
456 
457 /**
458  * ks8851_rx_pkts - receive packets from the host
459  * @ks: The device information.
460  *
461  * This is called from the IRQ work queue when the system detects that there
462  * are packets in the receive queue. Find out how many packets there are and
463  * read them from the FIFO.
464  */
ks8851_rx_pkts(struct ks8851_net * ks)465 static void ks8851_rx_pkts(struct ks8851_net *ks)
466 {
467 	struct sk_buff *skb;
468 	unsigned rxfc;
469 	unsigned rxlen;
470 	unsigned rxstat;
471 	u32 rxh;
472 	u8 *rxpkt;
473 
474 	rxfc = ks8851_rdreg8(ks, KS_RXFC);
475 
476 	netif_dbg(ks, rx_status, ks->netdev,
477 		  "%s: %d packets\n", __func__, rxfc);
478 
479 	/* Currently we're issuing a read per packet, but we could possibly
480 	 * improve the code by issuing a single read, getting the receive
481 	 * header, allocating the packet and then reading the packet data
482 	 * out in one go.
483 	 *
484 	 * This form of operation would require us to hold the SPI bus'
485 	 * chipselect low during the entie transaction to avoid any
486 	 * reset to the data stream coming from the chip.
487 	 */
488 
489 	for (; rxfc != 0; rxfc--) {
490 		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
491 		rxstat = rxh & 0xffff;
492 		rxlen = rxh >> 16;
493 
494 		netif_dbg(ks, rx_status, ks->netdev,
495 			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
496 
497 		/* the length of the packet includes the 32bit CRC */
498 
499 		/* set dma read address */
500 		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
501 
502 		/* start the packet dma process, and set auto-dequeue rx */
503 		ks8851_wrreg16(ks, KS_RXQCR,
504 			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
505 
506 		if (rxlen > 4) {
507 			unsigned int rxalign;
508 
509 			rxlen -= 4;
510 			rxalign = ALIGN(rxlen, 4);
511 			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
512 			if (skb) {
513 
514 				/* 4 bytes of status header + 4 bytes of
515 				 * garbage: we put them before ethernet
516 				 * header, so that they are copied,
517 				 * but ignored.
518 				 */
519 
520 				rxpkt = skb_put(skb, rxlen) - 8;
521 
522 				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
523 
524 				if (netif_msg_pktdata(ks))
525 					ks8851_dbg_dumpkkt(ks, rxpkt);
526 
527 				skb->protocol = eth_type_trans(skb, ks->netdev);
528 				netif_rx(skb);
529 
530 				ks->netdev->stats.rx_packets++;
531 				ks->netdev->stats.rx_bytes += rxlen;
532 			}
533 		}
534 
535 		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
536 	}
537 }
538 
539 /**
540  * ks8851_irq_work - work queue handler for dealing with interrupt requests
541  * @work: The work structure that was scheduled by schedule_work()
542  *
543  * This is the handler invoked when the ks8851_irq() is called to find out
544  * what happened, as we cannot allow ourselves to sleep whilst waiting for
545  * anything other process has the chip's lock.
546  *
547  * Read the interrupt status, work out what needs to be done and then clear
548  * any of the interrupts that are not needed.
549  */
ks8851_irq_work(struct work_struct * work)550 static void ks8851_irq_work(struct work_struct *work)
551 {
552 	struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
553 	unsigned status;
554 	unsigned handled = 0;
555 
556 	mutex_lock(&ks->lock);
557 
558 	status = ks8851_rdreg16(ks, KS_ISR);
559 
560 	netif_dbg(ks, intr, ks->netdev,
561 		  "%s: status 0x%04x\n", __func__, status);
562 
563 	if (status & IRQ_LCI) {
564 		/* should do something about checking link status */
565 		handled |= IRQ_LCI;
566 	}
567 
568 	if (status & IRQ_LDI) {
569 		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
570 		pmecr &= ~PMECR_WKEVT_MASK;
571 		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
572 
573 		handled |= IRQ_LDI;
574 	}
575 
576 	if (status & IRQ_RXPSI)
577 		handled |= IRQ_RXPSI;
578 
579 	if (status & IRQ_TXI) {
580 		handled |= IRQ_TXI;
581 
582 		/* no lock here, tx queue should have been stopped */
583 
584 		/* update our idea of how much tx space is available to the
585 		 * system */
586 		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
587 
588 		netif_dbg(ks, intr, ks->netdev,
589 			  "%s: txspace %d\n", __func__, ks->tx_space);
590 	}
591 
592 	if (status & IRQ_RXI)
593 		handled |= IRQ_RXI;
594 
595 	if (status & IRQ_SPIBEI) {
596 		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
597 		handled |= IRQ_SPIBEI;
598 	}
599 
600 	ks8851_wrreg16(ks, KS_ISR, handled);
601 
602 	if (status & IRQ_RXI) {
603 		/* the datasheet says to disable the rx interrupt during
604 		 * packet read-out, however we're masking the interrupt
605 		 * from the device so do not bother masking just the RX
606 		 * from the device. */
607 
608 		ks8851_rx_pkts(ks);
609 	}
610 
611 	/* if something stopped the rx process, probably due to wanting
612 	 * to change the rx settings, then do something about restarting
613 	 * it. */
614 	if (status & IRQ_RXPSI) {
615 		struct ks8851_rxctrl *rxc = &ks->rxctrl;
616 
617 		/* update the multicast hash table */
618 		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
619 		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
620 		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
621 		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
622 
623 		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
624 		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
625 	}
626 
627 	mutex_unlock(&ks->lock);
628 
629 	if (status & IRQ_TXI)
630 		netif_wake_queue(ks->netdev);
631 
632 	enable_irq(ks->netdev->irq);
633 }
634 
635 /**
636  * calc_txlen - calculate size of message to send packet
637  * @len: Length of data
638  *
639  * Returns the size of the TXFIFO message needed to send
640  * this packet.
641  */
calc_txlen(unsigned len)642 static inline unsigned calc_txlen(unsigned len)
643 {
644 	return ALIGN(len + 4, 4);
645 }
646 
647 /**
648  * ks8851_wrpkt - write packet to TX FIFO
649  * @ks: The device state.
650  * @txp: The sk_buff to transmit.
651  * @irq: IRQ on completion of the packet.
652  *
653  * Send the @txp to the chip. This means creating the relevant packet header
654  * specifying the length of the packet and the other information the chip
655  * needs, such as IRQ on completion. Send the header and the packet data to
656  * the device.
657  */
ks8851_wrpkt(struct ks8851_net * ks,struct sk_buff * txp,bool irq)658 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
659 {
660 	struct spi_transfer *xfer = ks->spi_xfer2;
661 	struct spi_message *msg = &ks->spi_msg2;
662 	unsigned fid = 0;
663 	int ret;
664 
665 	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
666 		  __func__, txp, txp->len, txp->data, irq);
667 
668 	fid = ks->fid++;
669 	fid &= TXFR_TXFID_MASK;
670 
671 	if (irq)
672 		fid |= TXFR_TXIC;	/* irq on completion */
673 
674 	/* start header at txb[1] to align txw entries */
675 	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
676 	ks->txh.txw[1] = cpu_to_le16(fid);
677 	ks->txh.txw[2] = cpu_to_le16(txp->len);
678 
679 	xfer->tx_buf = &ks->txh.txb[1];
680 	xfer->rx_buf = NULL;
681 	xfer->len = 5;
682 
683 	xfer++;
684 	xfer->tx_buf = txp->data;
685 	xfer->rx_buf = NULL;
686 	xfer->len = ALIGN(txp->len, 4);
687 
688 	ret = spi_sync(ks->spidev, msg);
689 	if (ret < 0)
690 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
691 }
692 
693 /**
694  * ks8851_done_tx - update and then free skbuff after transmitting
695  * @ks: The device state
696  * @txb: The buffer transmitted
697  */
ks8851_done_tx(struct ks8851_net * ks,struct sk_buff * txb)698 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
699 {
700 	struct net_device *dev = ks->netdev;
701 
702 	dev->stats.tx_bytes += txb->len;
703 	dev->stats.tx_packets++;
704 
705 	dev_kfree_skb(txb);
706 }
707 
708 /**
709  * ks8851_tx_work - process tx packet(s)
710  * @work: The work strucutre what was scheduled.
711  *
712  * This is called when a number of packets have been scheduled for
713  * transmission and need to be sent to the device.
714  */
ks8851_tx_work(struct work_struct * work)715 static void ks8851_tx_work(struct work_struct *work)
716 {
717 	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
718 	struct sk_buff *txb;
719 	bool last = skb_queue_empty(&ks->txq);
720 
721 	mutex_lock(&ks->lock);
722 
723 	while (!last) {
724 		txb = skb_dequeue(&ks->txq);
725 		last = skb_queue_empty(&ks->txq);
726 
727 		if (txb != NULL) {
728 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
729 			ks8851_wrpkt(ks, txb, last);
730 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
731 			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
732 
733 			ks8851_done_tx(ks, txb);
734 		}
735 	}
736 
737 	mutex_unlock(&ks->lock);
738 }
739 
740 /**
741  * ks8851_set_powermode - set power mode of the device
742  * @ks: The device state
743  * @pwrmode: The power mode value to write to KS_PMECR.
744  *
745  * Change the power mode of the chip.
746  */
ks8851_set_powermode(struct ks8851_net * ks,unsigned pwrmode)747 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
748 {
749 	unsigned pmecr;
750 
751 	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
752 
753 	pmecr = ks8851_rdreg16(ks, KS_PMECR);
754 	pmecr &= ~PMECR_PM_MASK;
755 	pmecr |= pwrmode;
756 
757 	ks8851_wrreg16(ks, KS_PMECR, pmecr);
758 }
759 
760 /**
761  * ks8851_net_open - open network device
762  * @dev: The network device being opened.
763  *
764  * Called when the network device is marked active, such as a user executing
765  * 'ifconfig up' on the device.
766  */
ks8851_net_open(struct net_device * dev)767 static int ks8851_net_open(struct net_device *dev)
768 {
769 	struct ks8851_net *ks = netdev_priv(dev);
770 
771 	/* lock the card, even if we may not actually be doing anything
772 	 * else at the moment */
773 	mutex_lock(&ks->lock);
774 
775 	netif_dbg(ks, ifup, ks->netdev, "opening\n");
776 
777 	/* bring chip out of any power saving mode it was in */
778 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
779 
780 	/* issue a soft reset to the RX/TX QMU to put it into a known
781 	 * state. */
782 	ks8851_soft_reset(ks, GRR_QMU);
783 
784 	/* setup transmission parameters */
785 
786 	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
787 				     TXCR_TXPE | /* pad to min length */
788 				     TXCR_TXCRC | /* add CRC */
789 				     TXCR_TXFCE)); /* enable flow control */
790 
791 	/* auto-increment tx data, reset tx pointer */
792 	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
793 
794 	/* setup receiver control */
795 
796 	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
797 				      RXCR1_RXFCE | /* enable flow control */
798 				      RXCR1_RXBE | /* broadcast enable */
799 				      RXCR1_RXUE | /* unicast enable */
800 				      RXCR1_RXE)); /* enable rx block */
801 
802 	/* transfer entire frames out in one go */
803 	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
804 
805 	/* set receive counter timeouts */
806 	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
807 	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
808 	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
809 
810 	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
811 			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
812 			RXQCR_RXDTTE);  /* IRQ on time exceeded */
813 
814 	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
815 
816 	/* clear then enable interrupts */
817 
818 #define STD_IRQ (IRQ_LCI |	/* Link Change */	\
819 		 IRQ_TXI |	/* TX done */		\
820 		 IRQ_RXI |	/* RX done */		\
821 		 IRQ_SPIBEI |	/* SPI bus error */	\
822 		 IRQ_TXPSI |	/* TX process stop */	\
823 		 IRQ_RXPSI)	/* RX process stop */
824 
825 	ks->rc_ier = STD_IRQ;
826 	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
827 	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
828 
829 	netif_start_queue(ks->netdev);
830 
831 	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
832 
833 	mutex_unlock(&ks->lock);
834 	return 0;
835 }
836 
837 /**
838  * ks8851_net_stop - close network device
839  * @dev: The device being closed.
840  *
841  * Called to close down a network device which has been active. Cancell any
842  * work, shutdown the RX and TX process and then place the chip into a low
843  * power state whilst it is not being used.
844  */
ks8851_net_stop(struct net_device * dev)845 static int ks8851_net_stop(struct net_device *dev)
846 {
847 	struct ks8851_net *ks = netdev_priv(dev);
848 
849 	netif_info(ks, ifdown, dev, "shutting down\n");
850 
851 	netif_stop_queue(dev);
852 
853 	mutex_lock(&ks->lock);
854 
855 	/* stop any outstanding work */
856 	flush_work(&ks->irq_work);
857 	flush_work(&ks->tx_work);
858 	flush_work(&ks->rxctrl_work);
859 
860 	/* turn off the IRQs and ack any outstanding */
861 	ks8851_wrreg16(ks, KS_IER, 0x0000);
862 	ks8851_wrreg16(ks, KS_ISR, 0xffff);
863 
864 	/* shutdown RX process */
865 	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
866 
867 	/* shutdown TX process */
868 	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
869 
870 	/* set powermode to soft power down to save power */
871 	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
872 
873 	/* ensure any queued tx buffers are dumped */
874 	while (!skb_queue_empty(&ks->txq)) {
875 		struct sk_buff *txb = skb_dequeue(&ks->txq);
876 
877 		netif_dbg(ks, ifdown, ks->netdev,
878 			  "%s: freeing txb %p\n", __func__, txb);
879 
880 		dev_kfree_skb(txb);
881 	}
882 
883 	mutex_unlock(&ks->lock);
884 	return 0;
885 }
886 
887 /**
888  * ks8851_start_xmit - transmit packet
889  * @skb: The buffer to transmit
890  * @dev: The device used to transmit the packet.
891  *
892  * Called by the network layer to transmit the @skb. Queue the packet for
893  * the device and schedule the necessary work to transmit the packet when
894  * it is free.
895  *
896  * We do this to firstly avoid sleeping with the network device locked,
897  * and secondly so we can round up more than one packet to transmit which
898  * means we can try and avoid generating too many transmit done interrupts.
899  */
ks8851_start_xmit(struct sk_buff * skb,struct net_device * dev)900 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
901 				     struct net_device *dev)
902 {
903 	struct ks8851_net *ks = netdev_priv(dev);
904 	unsigned needed = calc_txlen(skb->len);
905 	netdev_tx_t ret = NETDEV_TX_OK;
906 
907 	netif_dbg(ks, tx_queued, ks->netdev,
908 		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
909 
910 	spin_lock(&ks->statelock);
911 
912 	if (needed > ks->tx_space) {
913 		netif_stop_queue(dev);
914 		ret = NETDEV_TX_BUSY;
915 	} else {
916 		ks->tx_space -= needed;
917 		skb_queue_tail(&ks->txq, skb);
918 	}
919 
920 	spin_unlock(&ks->statelock);
921 	schedule_work(&ks->tx_work);
922 
923 	return ret;
924 }
925 
926 /**
927  * ks8851_rxctrl_work - work handler to change rx mode
928  * @work: The work structure this belongs to.
929  *
930  * Lock the device and issue the necessary changes to the receive mode from
931  * the network device layer. This is done so that we can do this without
932  * having to sleep whilst holding the network device lock.
933  *
934  * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
935  * receive parameters are programmed, we issue a write to disable the RXQ and
936  * then wait for the interrupt handler to be triggered once the RXQ shutdown is
937  * complete. The interrupt handler then writes the new values into the chip.
938  */
ks8851_rxctrl_work(struct work_struct * work)939 static void ks8851_rxctrl_work(struct work_struct *work)
940 {
941 	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
942 
943 	mutex_lock(&ks->lock);
944 
945 	/* need to shutdown RXQ before modifying filter parameters */
946 	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
947 
948 	mutex_unlock(&ks->lock);
949 }
950 
ks8851_set_rx_mode(struct net_device * dev)951 static void ks8851_set_rx_mode(struct net_device *dev)
952 {
953 	struct ks8851_net *ks = netdev_priv(dev);
954 	struct ks8851_rxctrl rxctrl;
955 
956 	memset(&rxctrl, 0, sizeof(rxctrl));
957 
958 	if (dev->flags & IFF_PROMISC) {
959 		/* interface to receive everything */
960 
961 		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
962 	} else if (dev->flags & IFF_ALLMULTI) {
963 		/* accept all multicast packets */
964 
965 		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
966 				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
967 	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
968 		struct netdev_hw_addr *ha;
969 		u32 crc;
970 
971 		/* accept some multicast */
972 
973 		netdev_for_each_mc_addr(ha, dev) {
974 			crc = ether_crc(ETH_ALEN, ha->addr);
975 			crc >>= (32 - 6);  /* get top six bits */
976 
977 			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
978 		}
979 
980 		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
981 	} else {
982 		/* just accept broadcast / unicast */
983 		rxctrl.rxcr1 = RXCR1_RXPAFMA;
984 	}
985 
986 	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
987 			 RXCR1_RXBE | /* broadcast enable */
988 			 RXCR1_RXE | /* RX process enable */
989 			 RXCR1_RXFCE); /* enable flow control */
990 
991 	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
992 
993 	/* schedule work to do the actual set of the data if needed */
994 
995 	spin_lock(&ks->statelock);
996 
997 	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
998 		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
999 		schedule_work(&ks->rxctrl_work);
1000 	}
1001 
1002 	spin_unlock(&ks->statelock);
1003 }
1004 
ks8851_set_mac_address(struct net_device * dev,void * addr)1005 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1006 {
1007 	struct sockaddr *sa = addr;
1008 
1009 	if (netif_running(dev))
1010 		return -EBUSY;
1011 
1012 	if (!is_valid_ether_addr(sa->sa_data))
1013 		return -EADDRNOTAVAIL;
1014 
1015 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1016 	return ks8851_write_mac_addr(dev);
1017 }
1018 
ks8851_net_ioctl(struct net_device * dev,struct ifreq * req,int cmd)1019 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1020 {
1021 	struct ks8851_net *ks = netdev_priv(dev);
1022 
1023 	if (!netif_running(dev))
1024 		return -EINVAL;
1025 
1026 	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1027 }
1028 
1029 static const struct net_device_ops ks8851_netdev_ops = {
1030 	.ndo_open		= ks8851_net_open,
1031 	.ndo_stop		= ks8851_net_stop,
1032 	.ndo_do_ioctl		= ks8851_net_ioctl,
1033 	.ndo_start_xmit		= ks8851_start_xmit,
1034 	.ndo_set_mac_address	= ks8851_set_mac_address,
1035 	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1036 	.ndo_change_mtu		= eth_change_mtu,
1037 	.ndo_validate_addr	= eth_validate_addr,
1038 };
1039 
1040 /* Companion eeprom access */
1041 
1042 enum {	/* EEPROM programming states */
1043 	EEPROM_CONTROL,
1044 	EEPROM_ADDRESS,
1045 	EEPROM_DATA,
1046 	EEPROM_COMPLETE
1047 };
1048 
1049 /**
1050  * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
1051  * @dev: The network device the PHY is on.
1052  * @addr: EEPROM address to read
1053  *
1054  * eeprom_size: used to define the data coding length. Can be changed
1055  * through debug-fs.
1056  *
1057  * Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
1058  * Warning: The READ feature is not supported on ks8851 revision 0.
1059  *
1060  * Rough programming model:
1061  *  - on period start: set clock high and read value on bus
1062  *  - on period / 2: set clock low and program value on bus
1063  *  - start on period / 2
1064  */
ks8851_eeprom_read(struct net_device * dev,unsigned int addr)1065 unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr)
1066 {
1067 	struct ks8851_net *ks = netdev_priv(dev);
1068 	int eepcr;
1069 	int ctrl = EEPROM_OP_READ;
1070 	int state = EEPROM_CONTROL;
1071 	int bit_count = EEPROM_OP_LEN - 1;
1072 	unsigned int data = 0;
1073 	int dummy;
1074 	unsigned int addr_len;
1075 
1076 	addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1077 
1078 	/* start transaction: chip select high, authorize write */
1079 	mutex_lock(&ks->lock);
1080 	eepcr = EEPCR_EESA | EEPCR_EESRWA;
1081 	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1082 	eepcr |= EEPCR_EECS;
1083 	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1084 	mutex_unlock(&ks->lock);
1085 
1086 	while (state != EEPROM_COMPLETE) {
1087 		/* falling clock period starts... */
1088 		/* set EED_IO pin for control and address */
1089 		eepcr &= ~EEPCR_EEDO;
1090 		switch (state) {
1091 		case EEPROM_CONTROL:
1092 			eepcr |= ((ctrl >> bit_count) & 1) << 2;
1093 			if (bit_count-- <= 0) {
1094 				bit_count = addr_len - 1;
1095 				state = EEPROM_ADDRESS;
1096 			}
1097 			break;
1098 		case EEPROM_ADDRESS:
1099 			eepcr |= ((addr >> bit_count) & 1) << 2;
1100 			bit_count--;
1101 			break;
1102 		case EEPROM_DATA:
1103 			/* Change to receive mode */
1104 			eepcr &= ~EEPCR_EESRWA;
1105 			break;
1106 		}
1107 
1108 		/* lower clock  */
1109 		eepcr &= ~EEPCR_EESCK;
1110 
1111 		mutex_lock(&ks->lock);
1112 		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1113 		mutex_unlock(&ks->lock);
1114 
1115 		/* waitread period / 2 */
1116 		udelay(EEPROM_SK_PERIOD / 2);
1117 
1118 		/* rising clock period starts... */
1119 
1120 		/* raise clock */
1121 		mutex_lock(&ks->lock);
1122 		eepcr |= EEPCR_EESCK;
1123 		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1124 		mutex_unlock(&ks->lock);
1125 
1126 		/* Manage read */
1127 		switch (state) {
1128 		case EEPROM_ADDRESS:
1129 			if (bit_count < 0) {
1130 				bit_count = EEPROM_DATA_LEN - 1;
1131 				state = EEPROM_DATA;
1132 			}
1133 			break;
1134 		case EEPROM_DATA:
1135 			mutex_lock(&ks->lock);
1136 			dummy = ks8851_rdreg16(ks, KS_EEPCR);
1137 			mutex_unlock(&ks->lock);
1138 			data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count;
1139 			if (bit_count-- <= 0)
1140 				state = EEPROM_COMPLETE;
1141 			break;
1142 		}
1143 
1144 		/* wait period / 2 */
1145 		udelay(EEPROM_SK_PERIOD / 2);
1146 	}
1147 
1148 	/* close transaction */
1149 	mutex_lock(&ks->lock);
1150 	eepcr &= ~EEPCR_EECS;
1151 	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1152 	eepcr = 0;
1153 	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1154 	mutex_unlock(&ks->lock);
1155 
1156 	return data;
1157 }
1158 
1159 /**
1160  * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
1161  * @dev: The network device the PHY is on.
1162  * @op: operand (can be WRITE, EWEN, EWDS)
1163  * @addr: EEPROM address to write
1164  * @data: data to write
1165  *
1166  * eeprom_size: used to define the data coding length. Can be changed
1167  * through debug-fs.
1168  *
1169  * Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
1170  *
1171  * Note that a write enable is required before writing data.
1172  *
1173  * Rough programming model:
1174  *  - on period start: set clock high
1175  *  - on period / 2: set clock low and program value on bus
1176  *  - start on period / 2
1177  */
ks8851_eeprom_write(struct net_device * dev,unsigned int op,unsigned int addr,unsigned int data)1178 void ks8851_eeprom_write(struct net_device *dev, unsigned int op,
1179 					unsigned int addr, unsigned int data)
1180 {
1181 	struct ks8851_net *ks = netdev_priv(dev);
1182 	int eepcr;
1183 	int state = EEPROM_CONTROL;
1184 	int bit_count = EEPROM_OP_LEN - 1;
1185 	unsigned int addr_len;
1186 
1187 	addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1188 
1189 	switch (op) {
1190 	case EEPROM_OP_EWEN:
1191 		addr = 0x30;
1192 	break;
1193 	case EEPROM_OP_EWDS:
1194 		addr = 0;
1195 		break;
1196 	}
1197 
1198 	/* start transaction: chip select high, authorize write */
1199 	mutex_lock(&ks->lock);
1200 	eepcr = EEPCR_EESA | EEPCR_EESRWA;
1201 	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1202 	eepcr |= EEPCR_EECS;
1203 	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1204 	mutex_unlock(&ks->lock);
1205 
1206 	while (state != EEPROM_COMPLETE) {
1207 		/* falling clock period starts... */
1208 		/* set EED_IO pin for control and address */
1209 		eepcr &= ~EEPCR_EEDO;
1210 		switch (state) {
1211 		case EEPROM_CONTROL:
1212 			eepcr |= ((op >> bit_count) & 1) << 2;
1213 			if (bit_count-- <= 0) {
1214 				bit_count = addr_len - 1;
1215 				state = EEPROM_ADDRESS;
1216 			}
1217 			break;
1218 		case EEPROM_ADDRESS:
1219 			eepcr |= ((addr >> bit_count) & 1) << 2;
1220 			if (bit_count-- <= 0) {
1221 				if (op == EEPROM_OP_WRITE) {
1222 					bit_count = EEPROM_DATA_LEN - 1;
1223 					state = EEPROM_DATA;
1224 				} else {
1225 					state = EEPROM_COMPLETE;
1226 				}
1227 			}
1228 			break;
1229 		case EEPROM_DATA:
1230 			eepcr |= ((data >> bit_count) & 1) << 2;
1231 			if (bit_count-- <= 0)
1232 				state = EEPROM_COMPLETE;
1233 			break;
1234 		}
1235 
1236 		/* lower clock  */
1237 		eepcr &= ~EEPCR_EESCK;
1238 
1239 		mutex_lock(&ks->lock);
1240 		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1241 		mutex_unlock(&ks->lock);
1242 
1243 		/* wait period / 2 */
1244 		udelay(EEPROM_SK_PERIOD / 2);
1245 
1246 		/* rising clock period starts... */
1247 
1248 		/* raise clock */
1249 		eepcr |= EEPCR_EESCK;
1250 		mutex_lock(&ks->lock);
1251 		ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1252 		mutex_unlock(&ks->lock);
1253 
1254 		/* wait period / 2 */
1255 		udelay(EEPROM_SK_PERIOD / 2);
1256 	}
1257 
1258 	/* close transaction */
1259 	mutex_lock(&ks->lock);
1260 	eepcr &= ~EEPCR_EECS;
1261 	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1262 	eepcr = 0;
1263 	ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1264 	mutex_unlock(&ks->lock);
1265 
1266 }
1267 
1268 /* ethtool support */
1269 
ks8851_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * di)1270 static void ks8851_get_drvinfo(struct net_device *dev,
1271 			       struct ethtool_drvinfo *di)
1272 {
1273 	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1274 	strlcpy(di->version, "1.00", sizeof(di->version));
1275 	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1276 }
1277 
ks8851_get_msglevel(struct net_device * dev)1278 static u32 ks8851_get_msglevel(struct net_device *dev)
1279 {
1280 	struct ks8851_net *ks = netdev_priv(dev);
1281 	return ks->msg_enable;
1282 }
1283 
ks8851_set_msglevel(struct net_device * dev,u32 to)1284 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1285 {
1286 	struct ks8851_net *ks = netdev_priv(dev);
1287 	ks->msg_enable = to;
1288 }
1289 
ks8851_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1290 static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1291 {
1292 	struct ks8851_net *ks = netdev_priv(dev);
1293 	return mii_ethtool_gset(&ks->mii, cmd);
1294 }
1295 
ks8851_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1296 static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1297 {
1298 	struct ks8851_net *ks = netdev_priv(dev);
1299 	return mii_ethtool_sset(&ks->mii, cmd);
1300 }
1301 
ks8851_get_link(struct net_device * dev)1302 static u32 ks8851_get_link(struct net_device *dev)
1303 {
1304 	struct ks8851_net *ks = netdev_priv(dev);
1305 	return mii_link_ok(&ks->mii);
1306 }
1307 
ks8851_nway_reset(struct net_device * dev)1308 static int ks8851_nway_reset(struct net_device *dev)
1309 {
1310 	struct ks8851_net *ks = netdev_priv(dev);
1311 	return mii_nway_restart(&ks->mii);
1312 }
1313 
ks8851_get_eeprom_len(struct net_device * dev)1314 static int ks8851_get_eeprom_len(struct net_device *dev)
1315 {
1316 	struct ks8851_net *ks = netdev_priv(dev);
1317 	return ks->eeprom_size;
1318 }
1319 
ks8851_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)1320 static int ks8851_get_eeprom(struct net_device *dev,
1321 			    struct ethtool_eeprom *eeprom, u8 *bytes)
1322 {
1323 	struct ks8851_net *ks = netdev_priv(dev);
1324 	u16 *eeprom_buff;
1325 	int first_word;
1326 	int last_word;
1327 	int ret_val = 0;
1328 	u16 i;
1329 
1330 	if (eeprom->len == 0)
1331 		return -EINVAL;
1332 
1333 	if (eeprom->len > ks->eeprom_size)
1334 		return -EINVAL;
1335 
1336 	eeprom->magic = ks8851_rdreg16(ks, KS_CIDER);
1337 
1338 	first_word = eeprom->offset >> 1;
1339 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1340 
1341 	eeprom_buff = kmalloc(sizeof(u16) *
1342 			(last_word - first_word + 1), GFP_KERNEL);
1343 	if (!eeprom_buff)
1344 		return -ENOMEM;
1345 
1346 	for (i = 0; i < last_word - first_word + 1; i++)
1347 		eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1);
1348 
1349 	/* Device's eeprom is little-endian, word addressable */
1350 	for (i = 0; i < last_word - first_word + 1; i++)
1351 		le16_to_cpus(&eeprom_buff[i]);
1352 
1353 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
1354 	kfree(eeprom_buff);
1355 
1356 	return ret_val;
1357 }
1358 
ks8851_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)1359 static int ks8851_set_eeprom(struct net_device *dev,
1360 			    struct ethtool_eeprom *eeprom, u8 *bytes)
1361 {
1362 	struct ks8851_net *ks = netdev_priv(dev);
1363 	u16 *eeprom_buff;
1364 	void *ptr;
1365 	int max_len;
1366 	int first_word;
1367 	int last_word;
1368 	int ret_val = 0;
1369 	u16 i;
1370 
1371 	if (eeprom->len == 0)
1372 		return -EOPNOTSUPP;
1373 
1374 	if (eeprom->len > ks->eeprom_size)
1375 		return -EINVAL;
1376 
1377 	if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER))
1378 		return -EFAULT;
1379 
1380 	first_word = eeprom->offset >> 1;
1381 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1382 	max_len = (last_word - first_word + 1) * 2;
1383 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1384 	if (!eeprom_buff)
1385 		return -ENOMEM;
1386 
1387 	ptr = (void *)eeprom_buff;
1388 
1389 	if (eeprom->offset & 1) {
1390 		/* need read/modify/write of first changed EEPROM word */
1391 		/* only the second byte of the word is being modified */
1392 		eeprom_buff[0] = ks8851_eeprom_read(dev, first_word);
1393 		ptr++;
1394 	}
1395 	if ((eeprom->offset + eeprom->len) & 1)
1396 		/* need read/modify/write of last changed EEPROM word */
1397 		/* only the first byte of the word is being modified */
1398 		eeprom_buff[last_word - first_word] =
1399 					ks8851_eeprom_read(dev, last_word);
1400 
1401 
1402 	/* Device's eeprom is little-endian, word addressable */
1403 	le16_to_cpus(&eeprom_buff[0]);
1404 	le16_to_cpus(&eeprom_buff[last_word - first_word]);
1405 
1406 	memcpy(ptr, bytes, eeprom->len);
1407 
1408 	for (i = 0; i < last_word - first_word + 1; i++)
1409 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
1410 
1411 	ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0);
1412 
1413 	for (i = 0; i < last_word - first_word + 1; i++) {
1414 		ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i,
1415 							eeprom_buff[i]);
1416 		mdelay(EEPROM_WRITE_TIME);
1417 	}
1418 
1419 	ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0);
1420 
1421 	kfree(eeprom_buff);
1422 	return ret_val;
1423 }
1424 
1425 static const struct ethtool_ops ks8851_ethtool_ops = {
1426 	.get_drvinfo	= ks8851_get_drvinfo,
1427 	.get_msglevel	= ks8851_get_msglevel,
1428 	.set_msglevel	= ks8851_set_msglevel,
1429 	.get_settings	= ks8851_get_settings,
1430 	.set_settings	= ks8851_set_settings,
1431 	.get_link	= ks8851_get_link,
1432 	.nway_reset	= ks8851_nway_reset,
1433 	.get_eeprom_len	= ks8851_get_eeprom_len,
1434 	.get_eeprom	= ks8851_get_eeprom,
1435 	.set_eeprom	= ks8851_set_eeprom,
1436 };
1437 
1438 /* MII interface controls */
1439 
1440 /**
1441  * ks8851_phy_reg - convert MII register into a KS8851 register
1442  * @reg: MII register number.
1443  *
1444  * Return the KS8851 register number for the corresponding MII PHY register
1445  * if possible. Return zero if the MII register has no direct mapping to the
1446  * KS8851 register set.
1447  */
ks8851_phy_reg(int reg)1448 static int ks8851_phy_reg(int reg)
1449 {
1450 	switch (reg) {
1451 	case MII_BMCR:
1452 		return KS_P1MBCR;
1453 	case MII_BMSR:
1454 		return KS_P1MBSR;
1455 	case MII_PHYSID1:
1456 		return KS_PHY1ILR;
1457 	case MII_PHYSID2:
1458 		return KS_PHY1IHR;
1459 	case MII_ADVERTISE:
1460 		return KS_P1ANAR;
1461 	case MII_LPA:
1462 		return KS_P1ANLPR;
1463 	}
1464 
1465 	return 0x0;
1466 }
1467 
1468 /**
1469  * ks8851_phy_read - MII interface PHY register read.
1470  * @dev: The network device the PHY is on.
1471  * @phy_addr: Address of PHY (ignored as we only have one)
1472  * @reg: The register to read.
1473  *
1474  * This call reads data from the PHY register specified in @reg. Since the
1475  * device does not support all the MII registers, the non-existent values
1476  * are always returned as zero.
1477  *
1478  * We return zero for unsupported registers as the MII code does not check
1479  * the value returned for any error status, and simply returns it to the
1480  * caller. The mii-tool that the driver was tested with takes any -ve error
1481  * as real PHY capabilities, thus displaying incorrect data to the user.
1482  */
ks8851_phy_read(struct net_device * dev,int phy_addr,int reg)1483 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1484 {
1485 	struct ks8851_net *ks = netdev_priv(dev);
1486 	int ksreg;
1487 	int result;
1488 
1489 	ksreg = ks8851_phy_reg(reg);
1490 	if (!ksreg)
1491 		return 0x0;	/* no error return allowed, so use zero */
1492 
1493 	mutex_lock(&ks->lock);
1494 	result = ks8851_rdreg16(ks, ksreg);
1495 	mutex_unlock(&ks->lock);
1496 
1497 	return result;
1498 }
1499 
ks8851_phy_write(struct net_device * dev,int phy,int reg,int value)1500 static void ks8851_phy_write(struct net_device *dev,
1501 			     int phy, int reg, int value)
1502 {
1503 	struct ks8851_net *ks = netdev_priv(dev);
1504 	int ksreg;
1505 
1506 	ksreg = ks8851_phy_reg(reg);
1507 	if (ksreg) {
1508 		mutex_lock(&ks->lock);
1509 		ks8851_wrreg16(ks, ksreg, value);
1510 		mutex_unlock(&ks->lock);
1511 	}
1512 }
1513 
1514 /**
1515  * ks8851_read_selftest - read the selftest memory info.
1516  * @ks: The device state
1517  *
1518  * Read and check the TX/RX memory selftest information.
1519  */
ks8851_read_selftest(struct ks8851_net * ks)1520 static int ks8851_read_selftest(struct ks8851_net *ks)
1521 {
1522 	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1523 	int ret = 0;
1524 	unsigned rd;
1525 
1526 	rd = ks8851_rdreg16(ks, KS_MBIR);
1527 
1528 	if ((rd & both_done) != both_done) {
1529 		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1530 		return 0;
1531 	}
1532 
1533 	if (rd & MBIR_TXMBFA) {
1534 		netdev_err(ks->netdev, "TX memory selftest fail\n");
1535 		ret |= 1;
1536 	}
1537 
1538 	if (rd & MBIR_RXMBFA) {
1539 		netdev_err(ks->netdev, "RX memory selftest fail\n");
1540 		ret |= 2;
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /* driver bus management functions */
1547 
1548 #ifdef CONFIG_PM
ks8851_suspend(struct spi_device * spi,pm_message_t state)1549 static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
1550 {
1551 	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1552 	struct net_device *dev = ks->netdev;
1553 
1554 	if (netif_running(dev)) {
1555 		netif_device_detach(dev);
1556 		ks8851_net_stop(dev);
1557 	}
1558 
1559 	return 0;
1560 }
1561 
ks8851_resume(struct spi_device * spi)1562 static int ks8851_resume(struct spi_device *spi)
1563 {
1564 	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1565 	struct net_device *dev = ks->netdev;
1566 
1567 	if (netif_running(dev)) {
1568 		ks8851_net_open(dev);
1569 		netif_device_attach(dev);
1570 	}
1571 
1572 	return 0;
1573 }
1574 #else
1575 #define ks8851_suspend NULL
1576 #define ks8851_resume NULL
1577 #endif
1578 
ks8851_probe(struct spi_device * spi)1579 static int __devinit ks8851_probe(struct spi_device *spi)
1580 {
1581 	struct net_device *ndev;
1582 	struct ks8851_net *ks;
1583 	int ret;
1584 
1585 	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1586 	if (!ndev) {
1587 		dev_err(&spi->dev, "failed to alloc ethernet device\n");
1588 		return -ENOMEM;
1589 	}
1590 
1591 	spi->bits_per_word = 8;
1592 
1593 	ks = netdev_priv(ndev);
1594 
1595 	ks->netdev = ndev;
1596 	ks->spidev = spi;
1597 	ks->tx_space = 6144;
1598 
1599 	mutex_init(&ks->lock);
1600 	spin_lock_init(&ks->statelock);
1601 
1602 	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1603 	INIT_WORK(&ks->irq_work, ks8851_irq_work);
1604 	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1605 
1606 	/* initialise pre-made spi transfer messages */
1607 
1608 	spi_message_init(&ks->spi_msg1);
1609 	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1610 
1611 	spi_message_init(&ks->spi_msg2);
1612 	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1613 	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1614 
1615 	/* setup mii state */
1616 	ks->mii.dev		= ndev;
1617 	ks->mii.phy_id		= 1,
1618 	ks->mii.phy_id_mask	= 1;
1619 	ks->mii.reg_num_mask	= 0xf;
1620 	ks->mii.mdio_read	= ks8851_phy_read;
1621 	ks->mii.mdio_write	= ks8851_phy_write;
1622 
1623 	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1624 
1625 	/* set the default message enable */
1626 	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1627 						     NETIF_MSG_PROBE |
1628 						     NETIF_MSG_LINK));
1629 
1630 	skb_queue_head_init(&ks->txq);
1631 
1632 	SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1633 	SET_NETDEV_DEV(ndev, &spi->dev);
1634 
1635 	dev_set_drvdata(&spi->dev, ks);
1636 
1637 	ndev->if_port = IF_PORT_100BASET;
1638 	ndev->netdev_ops = &ks8851_netdev_ops;
1639 	ndev->irq = spi->irq;
1640 
1641 	/* issue a global soft reset to reset the device. */
1642 	ks8851_soft_reset(ks, GRR_GSR);
1643 
1644 	/* simple check for a valid chip being connected to the bus */
1645 
1646 	if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1647 		dev_err(&spi->dev, "failed to read device ID\n");
1648 		ret = -ENODEV;
1649 		goto err_id;
1650 	}
1651 
1652 	/* cache the contents of the CCR register for EEPROM, etc. */
1653 	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1654 
1655 	if (ks->rc_ccr & CCR_EEPROM)
1656 		ks->eeprom_size = 128;
1657 	else
1658 		ks->eeprom_size = 0;
1659 
1660 	ks8851_read_selftest(ks);
1661 	ks8851_init_mac(ks);
1662 
1663 	ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1664 			  ndev->name, ks);
1665 	if (ret < 0) {
1666 		dev_err(&spi->dev, "failed to get irq\n");
1667 		goto err_irq;
1668 	}
1669 
1670 	ret = register_netdev(ndev);
1671 	if (ret) {
1672 		dev_err(&spi->dev, "failed to register network device\n");
1673 		goto err_netdev;
1674 	}
1675 
1676 	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
1677 		    CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1678 		    ndev->dev_addr, ndev->irq);
1679 
1680 	return 0;
1681 
1682 
1683 err_netdev:
1684 	free_irq(ndev->irq, ndev);
1685 
1686 err_id:
1687 err_irq:
1688 	free_netdev(ndev);
1689 	return ret;
1690 }
1691 
ks8851_remove(struct spi_device * spi)1692 static int __devexit ks8851_remove(struct spi_device *spi)
1693 {
1694 	struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1695 
1696 	if (netif_msg_drv(priv))
1697 		dev_info(&spi->dev, "remove\n");
1698 
1699 	unregister_netdev(priv->netdev);
1700 	free_irq(spi->irq, priv);
1701 	free_netdev(priv->netdev);
1702 
1703 	return 0;
1704 }
1705 
1706 static struct spi_driver ks8851_driver = {
1707 	.driver = {
1708 		.name = "ks8851",
1709 		.owner = THIS_MODULE,
1710 	},
1711 	.probe = ks8851_probe,
1712 	.remove = __devexit_p(ks8851_remove),
1713 	.suspend = ks8851_suspend,
1714 	.resume = ks8851_resume,
1715 };
1716 
ks8851_init(void)1717 static int __init ks8851_init(void)
1718 {
1719 	return spi_register_driver(&ks8851_driver);
1720 }
1721 
ks8851_exit(void)1722 static void __exit ks8851_exit(void)
1723 {
1724 	spi_unregister_driver(&ks8851_driver);
1725 }
1726 
1727 module_init(ks8851_init);
1728 module_exit(ks8851_exit);
1729 
1730 MODULE_DESCRIPTION("KS8851 Network driver");
1731 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1732 MODULE_LICENSE("GPL");
1733 
1734 module_param_named(message, msg_enable, int, 0);
1735 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1736 MODULE_ALIAS("spi:ks8851");
1737