1 /* drivers/net/ks8851.c
2 *
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #define DEBUG
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/cache.h>
22 #include <linux/crc32.h>
23 #include <linux/mii.h>
24
25 #include <linux/spi/spi.h>
26
27 #include "ks8851.h"
28
29 /**
30 * struct ks8851_rxctrl - KS8851 driver rx control
31 * @mchash: Multicast hash-table data.
32 * @rxcr1: KS_RXCR1 register setting
33 * @rxcr2: KS_RXCR2 register setting
34 *
35 * Representation of the settings needs to control the receive filtering
36 * such as the multicast hash-filter and the receive register settings. This
37 * is used to make the job of working out if the receive settings change and
38 * then issuing the new settings to the worker that will send the necessary
39 * commands.
40 */
41 struct ks8851_rxctrl {
42 u16 mchash[4];
43 u16 rxcr1;
44 u16 rxcr2;
45 };
46
47 /**
48 * union ks8851_tx_hdr - tx header data
49 * @txb: The header as bytes
50 * @txw: The header as 16bit, little-endian words
51 *
52 * A dual representation of the tx header data to allow
53 * access to individual bytes, and to allow 16bit accesses
54 * with 16bit alignment.
55 */
56 union ks8851_tx_hdr {
57 u8 txb[6];
58 __le16 txw[3];
59 };
60
61 /**
62 * struct ks8851_net - KS8851 driver private data
63 * @netdev: The network device we're bound to
64 * @spidev: The spi device we're bound to.
65 * @lock: Lock to ensure that the device is not accessed when busy.
66 * @statelock: Lock on this structure for tx list.
67 * @mii: The MII state information for the mii calls.
68 * @rxctrl: RX settings for @rxctrl_work.
69 * @tx_work: Work queue for tx packets
70 * @irq_work: Work queue for servicing interrupts
71 * @rxctrl_work: Work queue for updating RX mode and multicast lists
72 * @txq: Queue of packets for transmission.
73 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
74 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
75 * @txh: Space for generating packet TX header in DMA-able data
76 * @rxd: Space for receiving SPI data, in DMA-able space.
77 * @txd: Space for transmitting SPI data, in DMA-able space.
78 * @msg_enable: The message flags controlling driver output (see ethtool).
79 * @fid: Incrementing frame id tag.
80 * @rc_ier: Cached copy of KS_IER.
81 * @rc_ccr: Cached copy of KS_CCR.
82 * @rc_rxqcr: Cached copy of KS_RXQCR.
83 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
84 *
85 * The @lock ensures that the chip is protected when certain operations are
86 * in progress. When the read or write packet transfer is in progress, most
87 * of the chip registers are not ccessible until the transfer is finished and
88 * the DMA has been de-asserted.
89 *
90 * The @statelock is used to protect information in the structure which may
91 * need to be accessed via several sources, such as the network driver layer
92 * or one of the work queues.
93 *
94 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
95 * wants to DMA map them, it will not have any problems with data the driver
96 * modifies.
97 */
98 struct ks8851_net {
99 struct net_device *netdev;
100 struct spi_device *spidev;
101 struct mutex lock;
102 spinlock_t statelock;
103
104 union ks8851_tx_hdr txh ____cacheline_aligned;
105 u8 rxd[8];
106 u8 txd[8];
107
108 u32 msg_enable ____cacheline_aligned;
109 u16 tx_space;
110 u8 fid;
111
112 u16 rc_ier;
113 u16 rc_rxqcr;
114 u16 rc_ccr;
115 u16 eeprom_size;
116
117 struct mii_if_info mii;
118 struct ks8851_rxctrl rxctrl;
119
120 struct work_struct tx_work;
121 struct work_struct irq_work;
122 struct work_struct rxctrl_work;
123
124 struct sk_buff_head txq;
125
126 struct spi_message spi_msg1;
127 struct spi_message spi_msg2;
128 struct spi_transfer spi_xfer1;
129 struct spi_transfer spi_xfer2[2];
130 };
131
132 static int msg_enable;
133
134 /* shift for byte-enable data */
135 #define BYTE_EN(_x) ((_x) << 2)
136
137 /* turn register number and byte-enable mask into data for start of packet */
138 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
139
140 /* SPI register read/write calls.
141 *
142 * All these calls issue SPI transactions to access the chip's registers. They
143 * all require that the necessary lock is held to prevent accesses when the
144 * chip is busy transferring packet data (RX/TX FIFO accesses).
145 */
146
147 /**
148 * ks8851_wrreg16 - write 16bit register value to chip
149 * @ks: The chip state
150 * @reg: The register address
151 * @val: The value to write
152 *
153 * Issue a write to put the value @val into the register specified in @reg.
154 */
ks8851_wrreg16(struct ks8851_net * ks,unsigned reg,unsigned val)155 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
156 {
157 struct spi_transfer *xfer = &ks->spi_xfer1;
158 struct spi_message *msg = &ks->spi_msg1;
159 __le16 txb[2];
160 int ret;
161
162 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
163 txb[1] = cpu_to_le16(val);
164
165 xfer->tx_buf = txb;
166 xfer->rx_buf = NULL;
167 xfer->len = 4;
168
169 ret = spi_sync(ks->spidev, msg);
170 if (ret < 0)
171 netdev_err(ks->netdev, "spi_sync() failed\n");
172 }
173
174 /**
175 * ks8851_wrreg8 - write 8bit register value to chip
176 * @ks: The chip state
177 * @reg: The register address
178 * @val: The value to write
179 *
180 * Issue a write to put the value @val into the register specified in @reg.
181 */
ks8851_wrreg8(struct ks8851_net * ks,unsigned reg,unsigned val)182 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
183 {
184 struct spi_transfer *xfer = &ks->spi_xfer1;
185 struct spi_message *msg = &ks->spi_msg1;
186 __le16 txb[2];
187 int ret;
188 int bit;
189
190 bit = 1 << (reg & 3);
191
192 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
193 txb[1] = val;
194
195 xfer->tx_buf = txb;
196 xfer->rx_buf = NULL;
197 xfer->len = 3;
198
199 ret = spi_sync(ks->spidev, msg);
200 if (ret < 0)
201 netdev_err(ks->netdev, "spi_sync() failed\n");
202 }
203
204 /**
205 * ks8851_rx_1msg - select whether to use one or two messages for spi read
206 * @ks: The device structure
207 *
208 * Return whether to generate a single message with a tx and rx buffer
209 * supplied to spi_sync(), or alternatively send the tx and rx buffers
210 * as separate messages.
211 *
212 * Depending on the hardware in use, a single message may be more efficient
213 * on interrupts or work done by the driver.
214 *
215 * This currently always returns true until we add some per-device data passed
216 * from the platform code to specify which mode is better.
217 */
ks8851_rx_1msg(struct ks8851_net * ks)218 static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
219 {
220 return true;
221 }
222
223 /**
224 * ks8851_rdreg - issue read register command and return the data
225 * @ks: The device state
226 * @op: The register address and byte enables in message format.
227 * @rxb: The RX buffer to return the result into
228 * @rxl: The length of data expected.
229 *
230 * This is the low level read call that issues the necessary spi message(s)
231 * to read data from the register specified in @op.
232 */
ks8851_rdreg(struct ks8851_net * ks,unsigned op,u8 * rxb,unsigned rxl)233 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
234 u8 *rxb, unsigned rxl)
235 {
236 struct spi_transfer *xfer;
237 struct spi_message *msg;
238 __le16 *txb = (__le16 *)ks->txd;
239 u8 *trx = ks->rxd;
240 int ret;
241
242 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
243
244 if (ks8851_rx_1msg(ks)) {
245 msg = &ks->spi_msg1;
246 xfer = &ks->spi_xfer1;
247
248 xfer->tx_buf = txb;
249 xfer->rx_buf = trx;
250 xfer->len = rxl + 2;
251 } else {
252 msg = &ks->spi_msg2;
253 xfer = ks->spi_xfer2;
254
255 xfer->tx_buf = txb;
256 xfer->rx_buf = NULL;
257 xfer->len = 2;
258
259 xfer++;
260 xfer->tx_buf = NULL;
261 xfer->rx_buf = trx;
262 xfer->len = rxl;
263 }
264
265 ret = spi_sync(ks->spidev, msg);
266 if (ret < 0)
267 netdev_err(ks->netdev, "read: spi_sync() failed\n");
268 else if (ks8851_rx_1msg(ks))
269 memcpy(rxb, trx + 2, rxl);
270 else
271 memcpy(rxb, trx, rxl);
272 }
273
274 /**
275 * ks8851_rdreg8 - read 8 bit register from device
276 * @ks: The chip information
277 * @reg: The register address
278 *
279 * Read a 8bit register from the chip, returning the result
280 */
ks8851_rdreg8(struct ks8851_net * ks,unsigned reg)281 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
282 {
283 u8 rxb[1];
284
285 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
286 return rxb[0];
287 }
288
289 /**
290 * ks8851_rdreg16 - read 16 bit register from device
291 * @ks: The chip information
292 * @reg: The register address
293 *
294 * Read a 16bit register from the chip, returning the result
295 */
ks8851_rdreg16(struct ks8851_net * ks,unsigned reg)296 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
297 {
298 __le16 rx = 0;
299
300 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
301 return le16_to_cpu(rx);
302 }
303
304 /**
305 * ks8851_rdreg32 - read 32 bit register from device
306 * @ks: The chip information
307 * @reg: The register address
308 *
309 * Read a 32bit register from the chip.
310 *
311 * Note, this read requires the address be aligned to 4 bytes.
312 */
ks8851_rdreg32(struct ks8851_net * ks,unsigned reg)313 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
314 {
315 __le32 rx = 0;
316
317 WARN_ON(reg & 3);
318
319 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
320 return le32_to_cpu(rx);
321 }
322
323 /**
324 * ks8851_soft_reset - issue one of the soft reset to the device
325 * @ks: The device state.
326 * @op: The bit(s) to set in the GRR
327 *
328 * Issue the relevant soft-reset command to the device's GRR register
329 * specified by @op.
330 *
331 * Note, the delays are in there as a caution to ensure that the reset
332 * has time to take effect and then complete. Since the datasheet does
333 * not currently specify the exact sequence, we have chosen something
334 * that seems to work with our device.
335 */
ks8851_soft_reset(struct ks8851_net * ks,unsigned op)336 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
337 {
338 ks8851_wrreg16(ks, KS_GRR, op);
339 mdelay(1); /* wait a short time to effect reset */
340 ks8851_wrreg16(ks, KS_GRR, 0);
341 mdelay(1); /* wait for condition to clear */
342 }
343
344 /**
345 * ks8851_write_mac_addr - write mac address to device registers
346 * @dev: The network device
347 *
348 * Update the KS8851 MAC address registers from the address in @dev.
349 *
350 * This call assumes that the chip is not running, so there is no need to
351 * shutdown the RXQ process whilst setting this.
352 */
ks8851_write_mac_addr(struct net_device * dev)353 static int ks8851_write_mac_addr(struct net_device *dev)
354 {
355 struct ks8851_net *ks = netdev_priv(dev);
356 int i;
357
358 mutex_lock(&ks->lock);
359
360 for (i = 0; i < ETH_ALEN; i++)
361 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
362
363 mutex_unlock(&ks->lock);
364
365 return 0;
366 }
367
368 /**
369 * ks8851_init_mac - initialise the mac address
370 * @ks: The device structure
371 *
372 * Get or create the initial mac address for the device and then set that
373 * into the station address register. Currently we assume that the device
374 * does not have a valid mac address in it, and so we use random_ether_addr()
375 * to create a new one.
376 *
377 * In future, the driver should check to see if the device has an EEPROM
378 * attached and whether that has a valid ethernet address in it.
379 */
ks8851_init_mac(struct ks8851_net * ks)380 static void ks8851_init_mac(struct ks8851_net *ks)
381 {
382 struct net_device *dev = ks->netdev;
383
384 random_ether_addr(dev->dev_addr);
385 ks8851_write_mac_addr(dev);
386 }
387
388 /**
389 * ks8851_irq - device interrupt handler
390 * @irq: Interrupt number passed from the IRQ hnalder.
391 * @pw: The private word passed to register_irq(), our struct ks8851_net.
392 *
393 * Disable the interrupt from happening again until we've processed the
394 * current status by scheduling ks8851_irq_work().
395 */
ks8851_irq(int irq,void * pw)396 static irqreturn_t ks8851_irq(int irq, void *pw)
397 {
398 struct ks8851_net *ks = pw;
399
400 disable_irq_nosync(irq);
401 schedule_work(&ks->irq_work);
402 return IRQ_HANDLED;
403 }
404
405 /**
406 * ks8851_rdfifo - read data from the receive fifo
407 * @ks: The device state.
408 * @buff: The buffer address
409 * @len: The length of the data to read
410 *
411 * Issue an RXQ FIFO read command and read the @len amount of data from
412 * the FIFO into the buffer specified by @buff.
413 */
ks8851_rdfifo(struct ks8851_net * ks,u8 * buff,unsigned len)414 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
415 {
416 struct spi_transfer *xfer = ks->spi_xfer2;
417 struct spi_message *msg = &ks->spi_msg2;
418 u8 txb[1];
419 int ret;
420
421 netif_dbg(ks, rx_status, ks->netdev,
422 "%s: %d@%p\n", __func__, len, buff);
423
424 /* set the operation we're issuing */
425 txb[0] = KS_SPIOP_RXFIFO;
426
427 xfer->tx_buf = txb;
428 xfer->rx_buf = NULL;
429 xfer->len = 1;
430
431 xfer++;
432 xfer->rx_buf = buff;
433 xfer->tx_buf = NULL;
434 xfer->len = len;
435
436 ret = spi_sync(ks->spidev, msg);
437 if (ret < 0)
438 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
439 }
440
441 /**
442 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
443 * @ks: The device state
444 * @rxpkt: The data for the received packet
445 *
446 * Dump the initial data from the packet to dev_dbg().
447 */
ks8851_dbg_dumpkkt(struct ks8851_net * ks,u8 * rxpkt)448 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
449 {
450 netdev_dbg(ks->netdev,
451 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
452 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
453 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
454 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
455 }
456
457 /**
458 * ks8851_rx_pkts - receive packets from the host
459 * @ks: The device information.
460 *
461 * This is called from the IRQ work queue when the system detects that there
462 * are packets in the receive queue. Find out how many packets there are and
463 * read them from the FIFO.
464 */
ks8851_rx_pkts(struct ks8851_net * ks)465 static void ks8851_rx_pkts(struct ks8851_net *ks)
466 {
467 struct sk_buff *skb;
468 unsigned rxfc;
469 unsigned rxlen;
470 unsigned rxstat;
471 u32 rxh;
472 u8 *rxpkt;
473
474 rxfc = ks8851_rdreg8(ks, KS_RXFC);
475
476 netif_dbg(ks, rx_status, ks->netdev,
477 "%s: %d packets\n", __func__, rxfc);
478
479 /* Currently we're issuing a read per packet, but we could possibly
480 * improve the code by issuing a single read, getting the receive
481 * header, allocating the packet and then reading the packet data
482 * out in one go.
483 *
484 * This form of operation would require us to hold the SPI bus'
485 * chipselect low during the entie transaction to avoid any
486 * reset to the data stream coming from the chip.
487 */
488
489 for (; rxfc != 0; rxfc--) {
490 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
491 rxstat = rxh & 0xffff;
492 rxlen = rxh >> 16;
493
494 netif_dbg(ks, rx_status, ks->netdev,
495 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
496
497 /* the length of the packet includes the 32bit CRC */
498
499 /* set dma read address */
500 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
501
502 /* start the packet dma process, and set auto-dequeue rx */
503 ks8851_wrreg16(ks, KS_RXQCR,
504 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
505
506 if (rxlen > 4) {
507 unsigned int rxalign;
508
509 rxlen -= 4;
510 rxalign = ALIGN(rxlen, 4);
511 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
512 if (skb) {
513
514 /* 4 bytes of status header + 4 bytes of
515 * garbage: we put them before ethernet
516 * header, so that they are copied,
517 * but ignored.
518 */
519
520 rxpkt = skb_put(skb, rxlen) - 8;
521
522 ks8851_rdfifo(ks, rxpkt, rxalign + 8);
523
524 if (netif_msg_pktdata(ks))
525 ks8851_dbg_dumpkkt(ks, rxpkt);
526
527 skb->protocol = eth_type_trans(skb, ks->netdev);
528 netif_rx(skb);
529
530 ks->netdev->stats.rx_packets++;
531 ks->netdev->stats.rx_bytes += rxlen;
532 }
533 }
534
535 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
536 }
537 }
538
539 /**
540 * ks8851_irq_work - work queue handler for dealing with interrupt requests
541 * @work: The work structure that was scheduled by schedule_work()
542 *
543 * This is the handler invoked when the ks8851_irq() is called to find out
544 * what happened, as we cannot allow ourselves to sleep whilst waiting for
545 * anything other process has the chip's lock.
546 *
547 * Read the interrupt status, work out what needs to be done and then clear
548 * any of the interrupts that are not needed.
549 */
ks8851_irq_work(struct work_struct * work)550 static void ks8851_irq_work(struct work_struct *work)
551 {
552 struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
553 unsigned status;
554 unsigned handled = 0;
555
556 mutex_lock(&ks->lock);
557
558 status = ks8851_rdreg16(ks, KS_ISR);
559
560 netif_dbg(ks, intr, ks->netdev,
561 "%s: status 0x%04x\n", __func__, status);
562
563 if (status & IRQ_LCI) {
564 /* should do something about checking link status */
565 handled |= IRQ_LCI;
566 }
567
568 if (status & IRQ_LDI) {
569 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
570 pmecr &= ~PMECR_WKEVT_MASK;
571 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
572
573 handled |= IRQ_LDI;
574 }
575
576 if (status & IRQ_RXPSI)
577 handled |= IRQ_RXPSI;
578
579 if (status & IRQ_TXI) {
580 handled |= IRQ_TXI;
581
582 /* no lock here, tx queue should have been stopped */
583
584 /* update our idea of how much tx space is available to the
585 * system */
586 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
587
588 netif_dbg(ks, intr, ks->netdev,
589 "%s: txspace %d\n", __func__, ks->tx_space);
590 }
591
592 if (status & IRQ_RXI)
593 handled |= IRQ_RXI;
594
595 if (status & IRQ_SPIBEI) {
596 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
597 handled |= IRQ_SPIBEI;
598 }
599
600 ks8851_wrreg16(ks, KS_ISR, handled);
601
602 if (status & IRQ_RXI) {
603 /* the datasheet says to disable the rx interrupt during
604 * packet read-out, however we're masking the interrupt
605 * from the device so do not bother masking just the RX
606 * from the device. */
607
608 ks8851_rx_pkts(ks);
609 }
610
611 /* if something stopped the rx process, probably due to wanting
612 * to change the rx settings, then do something about restarting
613 * it. */
614 if (status & IRQ_RXPSI) {
615 struct ks8851_rxctrl *rxc = &ks->rxctrl;
616
617 /* update the multicast hash table */
618 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
619 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
620 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
621 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
622
623 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
624 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
625 }
626
627 mutex_unlock(&ks->lock);
628
629 if (status & IRQ_TXI)
630 netif_wake_queue(ks->netdev);
631
632 enable_irq(ks->netdev->irq);
633 }
634
635 /**
636 * calc_txlen - calculate size of message to send packet
637 * @len: Length of data
638 *
639 * Returns the size of the TXFIFO message needed to send
640 * this packet.
641 */
calc_txlen(unsigned len)642 static inline unsigned calc_txlen(unsigned len)
643 {
644 return ALIGN(len + 4, 4);
645 }
646
647 /**
648 * ks8851_wrpkt - write packet to TX FIFO
649 * @ks: The device state.
650 * @txp: The sk_buff to transmit.
651 * @irq: IRQ on completion of the packet.
652 *
653 * Send the @txp to the chip. This means creating the relevant packet header
654 * specifying the length of the packet and the other information the chip
655 * needs, such as IRQ on completion. Send the header and the packet data to
656 * the device.
657 */
ks8851_wrpkt(struct ks8851_net * ks,struct sk_buff * txp,bool irq)658 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
659 {
660 struct spi_transfer *xfer = ks->spi_xfer2;
661 struct spi_message *msg = &ks->spi_msg2;
662 unsigned fid = 0;
663 int ret;
664
665 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
666 __func__, txp, txp->len, txp->data, irq);
667
668 fid = ks->fid++;
669 fid &= TXFR_TXFID_MASK;
670
671 if (irq)
672 fid |= TXFR_TXIC; /* irq on completion */
673
674 /* start header at txb[1] to align txw entries */
675 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
676 ks->txh.txw[1] = cpu_to_le16(fid);
677 ks->txh.txw[2] = cpu_to_le16(txp->len);
678
679 xfer->tx_buf = &ks->txh.txb[1];
680 xfer->rx_buf = NULL;
681 xfer->len = 5;
682
683 xfer++;
684 xfer->tx_buf = txp->data;
685 xfer->rx_buf = NULL;
686 xfer->len = ALIGN(txp->len, 4);
687
688 ret = spi_sync(ks->spidev, msg);
689 if (ret < 0)
690 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
691 }
692
693 /**
694 * ks8851_done_tx - update and then free skbuff after transmitting
695 * @ks: The device state
696 * @txb: The buffer transmitted
697 */
ks8851_done_tx(struct ks8851_net * ks,struct sk_buff * txb)698 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
699 {
700 struct net_device *dev = ks->netdev;
701
702 dev->stats.tx_bytes += txb->len;
703 dev->stats.tx_packets++;
704
705 dev_kfree_skb(txb);
706 }
707
708 /**
709 * ks8851_tx_work - process tx packet(s)
710 * @work: The work strucutre what was scheduled.
711 *
712 * This is called when a number of packets have been scheduled for
713 * transmission and need to be sent to the device.
714 */
ks8851_tx_work(struct work_struct * work)715 static void ks8851_tx_work(struct work_struct *work)
716 {
717 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
718 struct sk_buff *txb;
719 bool last = skb_queue_empty(&ks->txq);
720
721 mutex_lock(&ks->lock);
722
723 while (!last) {
724 txb = skb_dequeue(&ks->txq);
725 last = skb_queue_empty(&ks->txq);
726
727 if (txb != NULL) {
728 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
729 ks8851_wrpkt(ks, txb, last);
730 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
731 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
732
733 ks8851_done_tx(ks, txb);
734 }
735 }
736
737 mutex_unlock(&ks->lock);
738 }
739
740 /**
741 * ks8851_set_powermode - set power mode of the device
742 * @ks: The device state
743 * @pwrmode: The power mode value to write to KS_PMECR.
744 *
745 * Change the power mode of the chip.
746 */
ks8851_set_powermode(struct ks8851_net * ks,unsigned pwrmode)747 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
748 {
749 unsigned pmecr;
750
751 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
752
753 pmecr = ks8851_rdreg16(ks, KS_PMECR);
754 pmecr &= ~PMECR_PM_MASK;
755 pmecr |= pwrmode;
756
757 ks8851_wrreg16(ks, KS_PMECR, pmecr);
758 }
759
760 /**
761 * ks8851_net_open - open network device
762 * @dev: The network device being opened.
763 *
764 * Called when the network device is marked active, such as a user executing
765 * 'ifconfig up' on the device.
766 */
ks8851_net_open(struct net_device * dev)767 static int ks8851_net_open(struct net_device *dev)
768 {
769 struct ks8851_net *ks = netdev_priv(dev);
770
771 /* lock the card, even if we may not actually be doing anything
772 * else at the moment */
773 mutex_lock(&ks->lock);
774
775 netif_dbg(ks, ifup, ks->netdev, "opening\n");
776
777 /* bring chip out of any power saving mode it was in */
778 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
779
780 /* issue a soft reset to the RX/TX QMU to put it into a known
781 * state. */
782 ks8851_soft_reset(ks, GRR_QMU);
783
784 /* setup transmission parameters */
785
786 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
787 TXCR_TXPE | /* pad to min length */
788 TXCR_TXCRC | /* add CRC */
789 TXCR_TXFCE)); /* enable flow control */
790
791 /* auto-increment tx data, reset tx pointer */
792 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
793
794 /* setup receiver control */
795
796 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
797 RXCR1_RXFCE | /* enable flow control */
798 RXCR1_RXBE | /* broadcast enable */
799 RXCR1_RXUE | /* unicast enable */
800 RXCR1_RXE)); /* enable rx block */
801
802 /* transfer entire frames out in one go */
803 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
804
805 /* set receive counter timeouts */
806 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
807 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
808 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
809
810 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
811 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
812 RXQCR_RXDTTE); /* IRQ on time exceeded */
813
814 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
815
816 /* clear then enable interrupts */
817
818 #define STD_IRQ (IRQ_LCI | /* Link Change */ \
819 IRQ_TXI | /* TX done */ \
820 IRQ_RXI | /* RX done */ \
821 IRQ_SPIBEI | /* SPI bus error */ \
822 IRQ_TXPSI | /* TX process stop */ \
823 IRQ_RXPSI) /* RX process stop */
824
825 ks->rc_ier = STD_IRQ;
826 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
827 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
828
829 netif_start_queue(ks->netdev);
830
831 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
832
833 mutex_unlock(&ks->lock);
834 return 0;
835 }
836
837 /**
838 * ks8851_net_stop - close network device
839 * @dev: The device being closed.
840 *
841 * Called to close down a network device which has been active. Cancell any
842 * work, shutdown the RX and TX process and then place the chip into a low
843 * power state whilst it is not being used.
844 */
ks8851_net_stop(struct net_device * dev)845 static int ks8851_net_stop(struct net_device *dev)
846 {
847 struct ks8851_net *ks = netdev_priv(dev);
848
849 netif_info(ks, ifdown, dev, "shutting down\n");
850
851 netif_stop_queue(dev);
852
853 mutex_lock(&ks->lock);
854
855 /* stop any outstanding work */
856 flush_work(&ks->irq_work);
857 flush_work(&ks->tx_work);
858 flush_work(&ks->rxctrl_work);
859
860 /* turn off the IRQs and ack any outstanding */
861 ks8851_wrreg16(ks, KS_IER, 0x0000);
862 ks8851_wrreg16(ks, KS_ISR, 0xffff);
863
864 /* shutdown RX process */
865 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
866
867 /* shutdown TX process */
868 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
869
870 /* set powermode to soft power down to save power */
871 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
872
873 /* ensure any queued tx buffers are dumped */
874 while (!skb_queue_empty(&ks->txq)) {
875 struct sk_buff *txb = skb_dequeue(&ks->txq);
876
877 netif_dbg(ks, ifdown, ks->netdev,
878 "%s: freeing txb %p\n", __func__, txb);
879
880 dev_kfree_skb(txb);
881 }
882
883 mutex_unlock(&ks->lock);
884 return 0;
885 }
886
887 /**
888 * ks8851_start_xmit - transmit packet
889 * @skb: The buffer to transmit
890 * @dev: The device used to transmit the packet.
891 *
892 * Called by the network layer to transmit the @skb. Queue the packet for
893 * the device and schedule the necessary work to transmit the packet when
894 * it is free.
895 *
896 * We do this to firstly avoid sleeping with the network device locked,
897 * and secondly so we can round up more than one packet to transmit which
898 * means we can try and avoid generating too many transmit done interrupts.
899 */
ks8851_start_xmit(struct sk_buff * skb,struct net_device * dev)900 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
901 struct net_device *dev)
902 {
903 struct ks8851_net *ks = netdev_priv(dev);
904 unsigned needed = calc_txlen(skb->len);
905 netdev_tx_t ret = NETDEV_TX_OK;
906
907 netif_dbg(ks, tx_queued, ks->netdev,
908 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
909
910 spin_lock(&ks->statelock);
911
912 if (needed > ks->tx_space) {
913 netif_stop_queue(dev);
914 ret = NETDEV_TX_BUSY;
915 } else {
916 ks->tx_space -= needed;
917 skb_queue_tail(&ks->txq, skb);
918 }
919
920 spin_unlock(&ks->statelock);
921 schedule_work(&ks->tx_work);
922
923 return ret;
924 }
925
926 /**
927 * ks8851_rxctrl_work - work handler to change rx mode
928 * @work: The work structure this belongs to.
929 *
930 * Lock the device and issue the necessary changes to the receive mode from
931 * the network device layer. This is done so that we can do this without
932 * having to sleep whilst holding the network device lock.
933 *
934 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
935 * receive parameters are programmed, we issue a write to disable the RXQ and
936 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
937 * complete. The interrupt handler then writes the new values into the chip.
938 */
ks8851_rxctrl_work(struct work_struct * work)939 static void ks8851_rxctrl_work(struct work_struct *work)
940 {
941 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
942
943 mutex_lock(&ks->lock);
944
945 /* need to shutdown RXQ before modifying filter parameters */
946 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
947
948 mutex_unlock(&ks->lock);
949 }
950
ks8851_set_rx_mode(struct net_device * dev)951 static void ks8851_set_rx_mode(struct net_device *dev)
952 {
953 struct ks8851_net *ks = netdev_priv(dev);
954 struct ks8851_rxctrl rxctrl;
955
956 memset(&rxctrl, 0, sizeof(rxctrl));
957
958 if (dev->flags & IFF_PROMISC) {
959 /* interface to receive everything */
960
961 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
962 } else if (dev->flags & IFF_ALLMULTI) {
963 /* accept all multicast packets */
964
965 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
966 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
967 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
968 struct netdev_hw_addr *ha;
969 u32 crc;
970
971 /* accept some multicast */
972
973 netdev_for_each_mc_addr(ha, dev) {
974 crc = ether_crc(ETH_ALEN, ha->addr);
975 crc >>= (32 - 6); /* get top six bits */
976
977 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
978 }
979
980 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
981 } else {
982 /* just accept broadcast / unicast */
983 rxctrl.rxcr1 = RXCR1_RXPAFMA;
984 }
985
986 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
987 RXCR1_RXBE | /* broadcast enable */
988 RXCR1_RXE | /* RX process enable */
989 RXCR1_RXFCE); /* enable flow control */
990
991 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
992
993 /* schedule work to do the actual set of the data if needed */
994
995 spin_lock(&ks->statelock);
996
997 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
998 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
999 schedule_work(&ks->rxctrl_work);
1000 }
1001
1002 spin_unlock(&ks->statelock);
1003 }
1004
ks8851_set_mac_address(struct net_device * dev,void * addr)1005 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1006 {
1007 struct sockaddr *sa = addr;
1008
1009 if (netif_running(dev))
1010 return -EBUSY;
1011
1012 if (!is_valid_ether_addr(sa->sa_data))
1013 return -EADDRNOTAVAIL;
1014
1015 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1016 return ks8851_write_mac_addr(dev);
1017 }
1018
ks8851_net_ioctl(struct net_device * dev,struct ifreq * req,int cmd)1019 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1020 {
1021 struct ks8851_net *ks = netdev_priv(dev);
1022
1023 if (!netif_running(dev))
1024 return -EINVAL;
1025
1026 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1027 }
1028
1029 static const struct net_device_ops ks8851_netdev_ops = {
1030 .ndo_open = ks8851_net_open,
1031 .ndo_stop = ks8851_net_stop,
1032 .ndo_do_ioctl = ks8851_net_ioctl,
1033 .ndo_start_xmit = ks8851_start_xmit,
1034 .ndo_set_mac_address = ks8851_set_mac_address,
1035 .ndo_set_rx_mode = ks8851_set_rx_mode,
1036 .ndo_change_mtu = eth_change_mtu,
1037 .ndo_validate_addr = eth_validate_addr,
1038 };
1039
1040 /* Companion eeprom access */
1041
1042 enum { /* EEPROM programming states */
1043 EEPROM_CONTROL,
1044 EEPROM_ADDRESS,
1045 EEPROM_DATA,
1046 EEPROM_COMPLETE
1047 };
1048
1049 /**
1050 * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
1051 * @dev: The network device the PHY is on.
1052 * @addr: EEPROM address to read
1053 *
1054 * eeprom_size: used to define the data coding length. Can be changed
1055 * through debug-fs.
1056 *
1057 * Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
1058 * Warning: The READ feature is not supported on ks8851 revision 0.
1059 *
1060 * Rough programming model:
1061 * - on period start: set clock high and read value on bus
1062 * - on period / 2: set clock low and program value on bus
1063 * - start on period / 2
1064 */
ks8851_eeprom_read(struct net_device * dev,unsigned int addr)1065 unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr)
1066 {
1067 struct ks8851_net *ks = netdev_priv(dev);
1068 int eepcr;
1069 int ctrl = EEPROM_OP_READ;
1070 int state = EEPROM_CONTROL;
1071 int bit_count = EEPROM_OP_LEN - 1;
1072 unsigned int data = 0;
1073 int dummy;
1074 unsigned int addr_len;
1075
1076 addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1077
1078 /* start transaction: chip select high, authorize write */
1079 mutex_lock(&ks->lock);
1080 eepcr = EEPCR_EESA | EEPCR_EESRWA;
1081 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1082 eepcr |= EEPCR_EECS;
1083 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1084 mutex_unlock(&ks->lock);
1085
1086 while (state != EEPROM_COMPLETE) {
1087 /* falling clock period starts... */
1088 /* set EED_IO pin for control and address */
1089 eepcr &= ~EEPCR_EEDO;
1090 switch (state) {
1091 case EEPROM_CONTROL:
1092 eepcr |= ((ctrl >> bit_count) & 1) << 2;
1093 if (bit_count-- <= 0) {
1094 bit_count = addr_len - 1;
1095 state = EEPROM_ADDRESS;
1096 }
1097 break;
1098 case EEPROM_ADDRESS:
1099 eepcr |= ((addr >> bit_count) & 1) << 2;
1100 bit_count--;
1101 break;
1102 case EEPROM_DATA:
1103 /* Change to receive mode */
1104 eepcr &= ~EEPCR_EESRWA;
1105 break;
1106 }
1107
1108 /* lower clock */
1109 eepcr &= ~EEPCR_EESCK;
1110
1111 mutex_lock(&ks->lock);
1112 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1113 mutex_unlock(&ks->lock);
1114
1115 /* waitread period / 2 */
1116 udelay(EEPROM_SK_PERIOD / 2);
1117
1118 /* rising clock period starts... */
1119
1120 /* raise clock */
1121 mutex_lock(&ks->lock);
1122 eepcr |= EEPCR_EESCK;
1123 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1124 mutex_unlock(&ks->lock);
1125
1126 /* Manage read */
1127 switch (state) {
1128 case EEPROM_ADDRESS:
1129 if (bit_count < 0) {
1130 bit_count = EEPROM_DATA_LEN - 1;
1131 state = EEPROM_DATA;
1132 }
1133 break;
1134 case EEPROM_DATA:
1135 mutex_lock(&ks->lock);
1136 dummy = ks8851_rdreg16(ks, KS_EEPCR);
1137 mutex_unlock(&ks->lock);
1138 data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count;
1139 if (bit_count-- <= 0)
1140 state = EEPROM_COMPLETE;
1141 break;
1142 }
1143
1144 /* wait period / 2 */
1145 udelay(EEPROM_SK_PERIOD / 2);
1146 }
1147
1148 /* close transaction */
1149 mutex_lock(&ks->lock);
1150 eepcr &= ~EEPCR_EECS;
1151 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1152 eepcr = 0;
1153 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1154 mutex_unlock(&ks->lock);
1155
1156 return data;
1157 }
1158
1159 /**
1160 * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
1161 * @dev: The network device the PHY is on.
1162 * @op: operand (can be WRITE, EWEN, EWDS)
1163 * @addr: EEPROM address to write
1164 * @data: data to write
1165 *
1166 * eeprom_size: used to define the data coding length. Can be changed
1167 * through debug-fs.
1168 *
1169 * Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
1170 *
1171 * Note that a write enable is required before writing data.
1172 *
1173 * Rough programming model:
1174 * - on period start: set clock high
1175 * - on period / 2: set clock low and program value on bus
1176 * - start on period / 2
1177 */
ks8851_eeprom_write(struct net_device * dev,unsigned int op,unsigned int addr,unsigned int data)1178 void ks8851_eeprom_write(struct net_device *dev, unsigned int op,
1179 unsigned int addr, unsigned int data)
1180 {
1181 struct ks8851_net *ks = netdev_priv(dev);
1182 int eepcr;
1183 int state = EEPROM_CONTROL;
1184 int bit_count = EEPROM_OP_LEN - 1;
1185 unsigned int addr_len;
1186
1187 addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1188
1189 switch (op) {
1190 case EEPROM_OP_EWEN:
1191 addr = 0x30;
1192 break;
1193 case EEPROM_OP_EWDS:
1194 addr = 0;
1195 break;
1196 }
1197
1198 /* start transaction: chip select high, authorize write */
1199 mutex_lock(&ks->lock);
1200 eepcr = EEPCR_EESA | EEPCR_EESRWA;
1201 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1202 eepcr |= EEPCR_EECS;
1203 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1204 mutex_unlock(&ks->lock);
1205
1206 while (state != EEPROM_COMPLETE) {
1207 /* falling clock period starts... */
1208 /* set EED_IO pin for control and address */
1209 eepcr &= ~EEPCR_EEDO;
1210 switch (state) {
1211 case EEPROM_CONTROL:
1212 eepcr |= ((op >> bit_count) & 1) << 2;
1213 if (bit_count-- <= 0) {
1214 bit_count = addr_len - 1;
1215 state = EEPROM_ADDRESS;
1216 }
1217 break;
1218 case EEPROM_ADDRESS:
1219 eepcr |= ((addr >> bit_count) & 1) << 2;
1220 if (bit_count-- <= 0) {
1221 if (op == EEPROM_OP_WRITE) {
1222 bit_count = EEPROM_DATA_LEN - 1;
1223 state = EEPROM_DATA;
1224 } else {
1225 state = EEPROM_COMPLETE;
1226 }
1227 }
1228 break;
1229 case EEPROM_DATA:
1230 eepcr |= ((data >> bit_count) & 1) << 2;
1231 if (bit_count-- <= 0)
1232 state = EEPROM_COMPLETE;
1233 break;
1234 }
1235
1236 /* lower clock */
1237 eepcr &= ~EEPCR_EESCK;
1238
1239 mutex_lock(&ks->lock);
1240 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1241 mutex_unlock(&ks->lock);
1242
1243 /* wait period / 2 */
1244 udelay(EEPROM_SK_PERIOD / 2);
1245
1246 /* rising clock period starts... */
1247
1248 /* raise clock */
1249 eepcr |= EEPCR_EESCK;
1250 mutex_lock(&ks->lock);
1251 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1252 mutex_unlock(&ks->lock);
1253
1254 /* wait period / 2 */
1255 udelay(EEPROM_SK_PERIOD / 2);
1256 }
1257
1258 /* close transaction */
1259 mutex_lock(&ks->lock);
1260 eepcr &= ~EEPCR_EECS;
1261 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1262 eepcr = 0;
1263 ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1264 mutex_unlock(&ks->lock);
1265
1266 }
1267
1268 /* ethtool support */
1269
ks8851_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * di)1270 static void ks8851_get_drvinfo(struct net_device *dev,
1271 struct ethtool_drvinfo *di)
1272 {
1273 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1274 strlcpy(di->version, "1.00", sizeof(di->version));
1275 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1276 }
1277
ks8851_get_msglevel(struct net_device * dev)1278 static u32 ks8851_get_msglevel(struct net_device *dev)
1279 {
1280 struct ks8851_net *ks = netdev_priv(dev);
1281 return ks->msg_enable;
1282 }
1283
ks8851_set_msglevel(struct net_device * dev,u32 to)1284 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1285 {
1286 struct ks8851_net *ks = netdev_priv(dev);
1287 ks->msg_enable = to;
1288 }
1289
ks8851_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1290 static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1291 {
1292 struct ks8851_net *ks = netdev_priv(dev);
1293 return mii_ethtool_gset(&ks->mii, cmd);
1294 }
1295
ks8851_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1296 static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1297 {
1298 struct ks8851_net *ks = netdev_priv(dev);
1299 return mii_ethtool_sset(&ks->mii, cmd);
1300 }
1301
ks8851_get_link(struct net_device * dev)1302 static u32 ks8851_get_link(struct net_device *dev)
1303 {
1304 struct ks8851_net *ks = netdev_priv(dev);
1305 return mii_link_ok(&ks->mii);
1306 }
1307
ks8851_nway_reset(struct net_device * dev)1308 static int ks8851_nway_reset(struct net_device *dev)
1309 {
1310 struct ks8851_net *ks = netdev_priv(dev);
1311 return mii_nway_restart(&ks->mii);
1312 }
1313
ks8851_get_eeprom_len(struct net_device * dev)1314 static int ks8851_get_eeprom_len(struct net_device *dev)
1315 {
1316 struct ks8851_net *ks = netdev_priv(dev);
1317 return ks->eeprom_size;
1318 }
1319
ks8851_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)1320 static int ks8851_get_eeprom(struct net_device *dev,
1321 struct ethtool_eeprom *eeprom, u8 *bytes)
1322 {
1323 struct ks8851_net *ks = netdev_priv(dev);
1324 u16 *eeprom_buff;
1325 int first_word;
1326 int last_word;
1327 int ret_val = 0;
1328 u16 i;
1329
1330 if (eeprom->len == 0)
1331 return -EINVAL;
1332
1333 if (eeprom->len > ks->eeprom_size)
1334 return -EINVAL;
1335
1336 eeprom->magic = ks8851_rdreg16(ks, KS_CIDER);
1337
1338 first_word = eeprom->offset >> 1;
1339 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1340
1341 eeprom_buff = kmalloc(sizeof(u16) *
1342 (last_word - first_word + 1), GFP_KERNEL);
1343 if (!eeprom_buff)
1344 return -ENOMEM;
1345
1346 for (i = 0; i < last_word - first_word + 1; i++)
1347 eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1);
1348
1349 /* Device's eeprom is little-endian, word addressable */
1350 for (i = 0; i < last_word - first_word + 1; i++)
1351 le16_to_cpus(&eeprom_buff[i]);
1352
1353 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
1354 kfree(eeprom_buff);
1355
1356 return ret_val;
1357 }
1358
ks8851_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)1359 static int ks8851_set_eeprom(struct net_device *dev,
1360 struct ethtool_eeprom *eeprom, u8 *bytes)
1361 {
1362 struct ks8851_net *ks = netdev_priv(dev);
1363 u16 *eeprom_buff;
1364 void *ptr;
1365 int max_len;
1366 int first_word;
1367 int last_word;
1368 int ret_val = 0;
1369 u16 i;
1370
1371 if (eeprom->len == 0)
1372 return -EOPNOTSUPP;
1373
1374 if (eeprom->len > ks->eeprom_size)
1375 return -EINVAL;
1376
1377 if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER))
1378 return -EFAULT;
1379
1380 first_word = eeprom->offset >> 1;
1381 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1382 max_len = (last_word - first_word + 1) * 2;
1383 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1384 if (!eeprom_buff)
1385 return -ENOMEM;
1386
1387 ptr = (void *)eeprom_buff;
1388
1389 if (eeprom->offset & 1) {
1390 /* need read/modify/write of first changed EEPROM word */
1391 /* only the second byte of the word is being modified */
1392 eeprom_buff[0] = ks8851_eeprom_read(dev, first_word);
1393 ptr++;
1394 }
1395 if ((eeprom->offset + eeprom->len) & 1)
1396 /* need read/modify/write of last changed EEPROM word */
1397 /* only the first byte of the word is being modified */
1398 eeprom_buff[last_word - first_word] =
1399 ks8851_eeprom_read(dev, last_word);
1400
1401
1402 /* Device's eeprom is little-endian, word addressable */
1403 le16_to_cpus(&eeprom_buff[0]);
1404 le16_to_cpus(&eeprom_buff[last_word - first_word]);
1405
1406 memcpy(ptr, bytes, eeprom->len);
1407
1408 for (i = 0; i < last_word - first_word + 1; i++)
1409 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
1410
1411 ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0);
1412
1413 for (i = 0; i < last_word - first_word + 1; i++) {
1414 ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i,
1415 eeprom_buff[i]);
1416 mdelay(EEPROM_WRITE_TIME);
1417 }
1418
1419 ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0);
1420
1421 kfree(eeprom_buff);
1422 return ret_val;
1423 }
1424
1425 static const struct ethtool_ops ks8851_ethtool_ops = {
1426 .get_drvinfo = ks8851_get_drvinfo,
1427 .get_msglevel = ks8851_get_msglevel,
1428 .set_msglevel = ks8851_set_msglevel,
1429 .get_settings = ks8851_get_settings,
1430 .set_settings = ks8851_set_settings,
1431 .get_link = ks8851_get_link,
1432 .nway_reset = ks8851_nway_reset,
1433 .get_eeprom_len = ks8851_get_eeprom_len,
1434 .get_eeprom = ks8851_get_eeprom,
1435 .set_eeprom = ks8851_set_eeprom,
1436 };
1437
1438 /* MII interface controls */
1439
1440 /**
1441 * ks8851_phy_reg - convert MII register into a KS8851 register
1442 * @reg: MII register number.
1443 *
1444 * Return the KS8851 register number for the corresponding MII PHY register
1445 * if possible. Return zero if the MII register has no direct mapping to the
1446 * KS8851 register set.
1447 */
ks8851_phy_reg(int reg)1448 static int ks8851_phy_reg(int reg)
1449 {
1450 switch (reg) {
1451 case MII_BMCR:
1452 return KS_P1MBCR;
1453 case MII_BMSR:
1454 return KS_P1MBSR;
1455 case MII_PHYSID1:
1456 return KS_PHY1ILR;
1457 case MII_PHYSID2:
1458 return KS_PHY1IHR;
1459 case MII_ADVERTISE:
1460 return KS_P1ANAR;
1461 case MII_LPA:
1462 return KS_P1ANLPR;
1463 }
1464
1465 return 0x0;
1466 }
1467
1468 /**
1469 * ks8851_phy_read - MII interface PHY register read.
1470 * @dev: The network device the PHY is on.
1471 * @phy_addr: Address of PHY (ignored as we only have one)
1472 * @reg: The register to read.
1473 *
1474 * This call reads data from the PHY register specified in @reg. Since the
1475 * device does not support all the MII registers, the non-existent values
1476 * are always returned as zero.
1477 *
1478 * We return zero for unsupported registers as the MII code does not check
1479 * the value returned for any error status, and simply returns it to the
1480 * caller. The mii-tool that the driver was tested with takes any -ve error
1481 * as real PHY capabilities, thus displaying incorrect data to the user.
1482 */
ks8851_phy_read(struct net_device * dev,int phy_addr,int reg)1483 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1484 {
1485 struct ks8851_net *ks = netdev_priv(dev);
1486 int ksreg;
1487 int result;
1488
1489 ksreg = ks8851_phy_reg(reg);
1490 if (!ksreg)
1491 return 0x0; /* no error return allowed, so use zero */
1492
1493 mutex_lock(&ks->lock);
1494 result = ks8851_rdreg16(ks, ksreg);
1495 mutex_unlock(&ks->lock);
1496
1497 return result;
1498 }
1499
ks8851_phy_write(struct net_device * dev,int phy,int reg,int value)1500 static void ks8851_phy_write(struct net_device *dev,
1501 int phy, int reg, int value)
1502 {
1503 struct ks8851_net *ks = netdev_priv(dev);
1504 int ksreg;
1505
1506 ksreg = ks8851_phy_reg(reg);
1507 if (ksreg) {
1508 mutex_lock(&ks->lock);
1509 ks8851_wrreg16(ks, ksreg, value);
1510 mutex_unlock(&ks->lock);
1511 }
1512 }
1513
1514 /**
1515 * ks8851_read_selftest - read the selftest memory info.
1516 * @ks: The device state
1517 *
1518 * Read and check the TX/RX memory selftest information.
1519 */
ks8851_read_selftest(struct ks8851_net * ks)1520 static int ks8851_read_selftest(struct ks8851_net *ks)
1521 {
1522 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1523 int ret = 0;
1524 unsigned rd;
1525
1526 rd = ks8851_rdreg16(ks, KS_MBIR);
1527
1528 if ((rd & both_done) != both_done) {
1529 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1530 return 0;
1531 }
1532
1533 if (rd & MBIR_TXMBFA) {
1534 netdev_err(ks->netdev, "TX memory selftest fail\n");
1535 ret |= 1;
1536 }
1537
1538 if (rd & MBIR_RXMBFA) {
1539 netdev_err(ks->netdev, "RX memory selftest fail\n");
1540 ret |= 2;
1541 }
1542
1543 return 0;
1544 }
1545
1546 /* driver bus management functions */
1547
1548 #ifdef CONFIG_PM
ks8851_suspend(struct spi_device * spi,pm_message_t state)1549 static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
1550 {
1551 struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1552 struct net_device *dev = ks->netdev;
1553
1554 if (netif_running(dev)) {
1555 netif_device_detach(dev);
1556 ks8851_net_stop(dev);
1557 }
1558
1559 return 0;
1560 }
1561
ks8851_resume(struct spi_device * spi)1562 static int ks8851_resume(struct spi_device *spi)
1563 {
1564 struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1565 struct net_device *dev = ks->netdev;
1566
1567 if (netif_running(dev)) {
1568 ks8851_net_open(dev);
1569 netif_device_attach(dev);
1570 }
1571
1572 return 0;
1573 }
1574 #else
1575 #define ks8851_suspend NULL
1576 #define ks8851_resume NULL
1577 #endif
1578
ks8851_probe(struct spi_device * spi)1579 static int __devinit ks8851_probe(struct spi_device *spi)
1580 {
1581 struct net_device *ndev;
1582 struct ks8851_net *ks;
1583 int ret;
1584
1585 ndev = alloc_etherdev(sizeof(struct ks8851_net));
1586 if (!ndev) {
1587 dev_err(&spi->dev, "failed to alloc ethernet device\n");
1588 return -ENOMEM;
1589 }
1590
1591 spi->bits_per_word = 8;
1592
1593 ks = netdev_priv(ndev);
1594
1595 ks->netdev = ndev;
1596 ks->spidev = spi;
1597 ks->tx_space = 6144;
1598
1599 mutex_init(&ks->lock);
1600 spin_lock_init(&ks->statelock);
1601
1602 INIT_WORK(&ks->tx_work, ks8851_tx_work);
1603 INIT_WORK(&ks->irq_work, ks8851_irq_work);
1604 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1605
1606 /* initialise pre-made spi transfer messages */
1607
1608 spi_message_init(&ks->spi_msg1);
1609 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1610
1611 spi_message_init(&ks->spi_msg2);
1612 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1613 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1614
1615 /* setup mii state */
1616 ks->mii.dev = ndev;
1617 ks->mii.phy_id = 1,
1618 ks->mii.phy_id_mask = 1;
1619 ks->mii.reg_num_mask = 0xf;
1620 ks->mii.mdio_read = ks8851_phy_read;
1621 ks->mii.mdio_write = ks8851_phy_write;
1622
1623 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1624
1625 /* set the default message enable */
1626 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1627 NETIF_MSG_PROBE |
1628 NETIF_MSG_LINK));
1629
1630 skb_queue_head_init(&ks->txq);
1631
1632 SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1633 SET_NETDEV_DEV(ndev, &spi->dev);
1634
1635 dev_set_drvdata(&spi->dev, ks);
1636
1637 ndev->if_port = IF_PORT_100BASET;
1638 ndev->netdev_ops = &ks8851_netdev_ops;
1639 ndev->irq = spi->irq;
1640
1641 /* issue a global soft reset to reset the device. */
1642 ks8851_soft_reset(ks, GRR_GSR);
1643
1644 /* simple check for a valid chip being connected to the bus */
1645
1646 if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1647 dev_err(&spi->dev, "failed to read device ID\n");
1648 ret = -ENODEV;
1649 goto err_id;
1650 }
1651
1652 /* cache the contents of the CCR register for EEPROM, etc. */
1653 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1654
1655 if (ks->rc_ccr & CCR_EEPROM)
1656 ks->eeprom_size = 128;
1657 else
1658 ks->eeprom_size = 0;
1659
1660 ks8851_read_selftest(ks);
1661 ks8851_init_mac(ks);
1662
1663 ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1664 ndev->name, ks);
1665 if (ret < 0) {
1666 dev_err(&spi->dev, "failed to get irq\n");
1667 goto err_irq;
1668 }
1669
1670 ret = register_netdev(ndev);
1671 if (ret) {
1672 dev_err(&spi->dev, "failed to register network device\n");
1673 goto err_netdev;
1674 }
1675
1676 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
1677 CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1678 ndev->dev_addr, ndev->irq);
1679
1680 return 0;
1681
1682
1683 err_netdev:
1684 free_irq(ndev->irq, ndev);
1685
1686 err_id:
1687 err_irq:
1688 free_netdev(ndev);
1689 return ret;
1690 }
1691
ks8851_remove(struct spi_device * spi)1692 static int __devexit ks8851_remove(struct spi_device *spi)
1693 {
1694 struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1695
1696 if (netif_msg_drv(priv))
1697 dev_info(&spi->dev, "remove\n");
1698
1699 unregister_netdev(priv->netdev);
1700 free_irq(spi->irq, priv);
1701 free_netdev(priv->netdev);
1702
1703 return 0;
1704 }
1705
1706 static struct spi_driver ks8851_driver = {
1707 .driver = {
1708 .name = "ks8851",
1709 .owner = THIS_MODULE,
1710 },
1711 .probe = ks8851_probe,
1712 .remove = __devexit_p(ks8851_remove),
1713 .suspend = ks8851_suspend,
1714 .resume = ks8851_resume,
1715 };
1716
ks8851_init(void)1717 static int __init ks8851_init(void)
1718 {
1719 return spi_register_driver(&ks8851_driver);
1720 }
1721
ks8851_exit(void)1722 static void __exit ks8851_exit(void)
1723 {
1724 spi_unregister_driver(&ks8851_driver);
1725 }
1726
1727 module_init(ks8851_init);
1728 module_exit(ks8851_exit);
1729
1730 MODULE_DESCRIPTION("KS8851 Network driver");
1731 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1732 MODULE_LICENSE("GPL");
1733
1734 module_param_named(message, msg_enable, int, 0);
1735 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1736 MODULE_ALIAS("spi:ks8851");
1737