1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51 * ixgbe_identify_phy_generic - Get physical layer module
52 * @hw: pointer to hardware structure
53 *
54 * Determines the physical layer module found on the current adapter.
55 **/
ixgbe_identify_phy_generic(struct ixgbe_hw * hw)56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59 u32 phy_addr;
60 u16 ext_ability = 0;
61
62 if (hw->phy.type == ixgbe_phy_unknown) {
63 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
64 hw->phy.mdio.prtad = phy_addr;
65 if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
66 ixgbe_get_phy_id(hw);
67 hw->phy.type =
68 ixgbe_get_phy_type_from_id(hw->phy.id);
69
70 if (hw->phy.type == ixgbe_phy_unknown) {
71 hw->phy.ops.read_reg(hw,
72 MDIO_PMA_EXTABLE,
73 MDIO_MMD_PMAPMD,
74 &ext_ability);
75 if (ext_ability &
76 (MDIO_PMA_EXTABLE_10GBT |
77 MDIO_PMA_EXTABLE_1000BT))
78 hw->phy.type =
79 ixgbe_phy_cu_unknown;
80 else
81 hw->phy.type =
82 ixgbe_phy_generic;
83 }
84
85 status = 0;
86 break;
87 }
88 }
89 /* clear value if nothing found */
90 if (status != 0)
91 hw->phy.mdio.prtad = 0;
92 } else {
93 status = 0;
94 }
95
96 return status;
97 }
98
99 /**
100 * ixgbe_get_phy_id - Get the phy type
101 * @hw: pointer to hardware structure
102 *
103 **/
ixgbe_get_phy_id(struct ixgbe_hw * hw)104 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
105 {
106 u32 status;
107 u16 phy_id_high = 0;
108 u16 phy_id_low = 0;
109
110 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
111 &phy_id_high);
112
113 if (status == 0) {
114 hw->phy.id = (u32)(phy_id_high << 16);
115 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
116 &phy_id_low);
117 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
118 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
119 }
120 return status;
121 }
122
123 /**
124 * ixgbe_get_phy_type_from_id - Get the phy type
125 * @hw: pointer to hardware structure
126 *
127 **/
ixgbe_get_phy_type_from_id(u32 phy_id)128 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
129 {
130 enum ixgbe_phy_type phy_type;
131
132 switch (phy_id) {
133 case TN1010_PHY_ID:
134 phy_type = ixgbe_phy_tn;
135 break;
136 case X540_PHY_ID:
137 phy_type = ixgbe_phy_aq;
138 break;
139 case QT2022_PHY_ID:
140 phy_type = ixgbe_phy_qt;
141 break;
142 case ATH_PHY_ID:
143 phy_type = ixgbe_phy_nl;
144 break;
145 default:
146 phy_type = ixgbe_phy_unknown;
147 break;
148 }
149
150 return phy_type;
151 }
152
153 /**
154 * ixgbe_reset_phy_generic - Performs a PHY reset
155 * @hw: pointer to hardware structure
156 **/
ixgbe_reset_phy_generic(struct ixgbe_hw * hw)157 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
158 {
159 u32 i;
160 u16 ctrl = 0;
161 s32 status = 0;
162
163 if (hw->phy.type == ixgbe_phy_unknown)
164 status = ixgbe_identify_phy_generic(hw);
165
166 if (status != 0 || hw->phy.type == ixgbe_phy_none)
167 goto out;
168
169 /* Don't reset PHY if it's shut down due to overtemp. */
170 if (!hw->phy.reset_if_overtemp &&
171 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
172 goto out;
173
174 /*
175 * Perform soft PHY reset to the PHY_XS.
176 * This will cause a soft reset to the PHY
177 */
178 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
179 MDIO_MMD_PHYXS,
180 MDIO_CTRL1_RESET);
181
182 /*
183 * Poll for reset bit to self-clear indicating reset is complete.
184 * Some PHYs could take up to 3 seconds to complete and need about
185 * 1.7 usec delay after the reset is complete.
186 */
187 for (i = 0; i < 30; i++) {
188 msleep(100);
189 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
190 MDIO_MMD_PHYXS, &ctrl);
191 if (!(ctrl & MDIO_CTRL1_RESET)) {
192 udelay(2);
193 break;
194 }
195 }
196
197 if (ctrl & MDIO_CTRL1_RESET) {
198 status = IXGBE_ERR_RESET_FAILED;
199 hw_dbg(hw, "PHY reset polling failed to complete.\n");
200 }
201
202 out:
203 return status;
204 }
205
206 /**
207 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
208 * @hw: pointer to hardware structure
209 * @reg_addr: 32 bit address of PHY register to read
210 * @phy_data: Pointer to read data from PHY register
211 **/
ixgbe_read_phy_reg_generic(struct ixgbe_hw * hw,u32 reg_addr,u32 device_type,u16 * phy_data)212 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
213 u32 device_type, u16 *phy_data)
214 {
215 u32 command;
216 u32 i;
217 u32 data;
218 s32 status = 0;
219 u16 gssr;
220
221 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
222 gssr = IXGBE_GSSR_PHY1_SM;
223 else
224 gssr = IXGBE_GSSR_PHY0_SM;
225
226 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
227 status = IXGBE_ERR_SWFW_SYNC;
228
229 if (status == 0) {
230 /* Setup and write the address cycle command */
231 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
232 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
233 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
234 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
235
236 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
237
238 /*
239 * Check every 10 usec to see if the address cycle completed.
240 * The MDI Command bit will clear when the operation is
241 * complete
242 */
243 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
244 udelay(10);
245
246 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
247
248 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
249 break;
250 }
251
252 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
253 hw_dbg(hw, "PHY address command did not complete.\n");
254 status = IXGBE_ERR_PHY;
255 }
256
257 if (status == 0) {
258 /*
259 * Address cycle complete, setup and write the read
260 * command
261 */
262 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
263 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
264 (hw->phy.mdio.prtad <<
265 IXGBE_MSCA_PHY_ADDR_SHIFT) |
266 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
267
268 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
269
270 /*
271 * Check every 10 usec to see if the address cycle
272 * completed. The MDI Command bit will clear when the
273 * operation is complete
274 */
275 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
276 udelay(10);
277
278 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
279
280 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
281 break;
282 }
283
284 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
285 hw_dbg(hw, "PHY read command didn't complete\n");
286 status = IXGBE_ERR_PHY;
287 } else {
288 /*
289 * Read operation is complete. Get the data
290 * from MSRWD
291 */
292 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
293 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
294 *phy_data = (u16)(data);
295 }
296 }
297
298 hw->mac.ops.release_swfw_sync(hw, gssr);
299 }
300
301 return status;
302 }
303
304 /**
305 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
306 * @hw: pointer to hardware structure
307 * @reg_addr: 32 bit PHY register to write
308 * @device_type: 5 bit device type
309 * @phy_data: Data to write to the PHY register
310 **/
ixgbe_write_phy_reg_generic(struct ixgbe_hw * hw,u32 reg_addr,u32 device_type,u16 phy_data)311 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
312 u32 device_type, u16 phy_data)
313 {
314 u32 command;
315 u32 i;
316 s32 status = 0;
317 u16 gssr;
318
319 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
320 gssr = IXGBE_GSSR_PHY1_SM;
321 else
322 gssr = IXGBE_GSSR_PHY0_SM;
323
324 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) != 0)
325 status = IXGBE_ERR_SWFW_SYNC;
326
327 if (status == 0) {
328 /* Put the data in the MDI single read and write data register*/
329 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
330
331 /* Setup and write the address cycle command */
332 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
333 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
334 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
335 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
336
337 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
338
339 /*
340 * Check every 10 usec to see if the address cycle completed.
341 * The MDI Command bit will clear when the operation is
342 * complete
343 */
344 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
345 udelay(10);
346
347 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
348
349 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
350 break;
351 }
352
353 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
354 hw_dbg(hw, "PHY address cmd didn't complete\n");
355 status = IXGBE_ERR_PHY;
356 }
357
358 if (status == 0) {
359 /*
360 * Address cycle complete, setup and write the write
361 * command
362 */
363 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) |
364 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
365 (hw->phy.mdio.prtad <<
366 IXGBE_MSCA_PHY_ADDR_SHIFT) |
367 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
368
369 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
370
371 /*
372 * Check every 10 usec to see if the address cycle
373 * completed. The MDI Command bit will clear when the
374 * operation is complete
375 */
376 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
377 udelay(10);
378
379 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
380
381 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
382 break;
383 }
384
385 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
386 hw_dbg(hw, "PHY address cmd didn't complete\n");
387 status = IXGBE_ERR_PHY;
388 }
389 }
390
391 hw->mac.ops.release_swfw_sync(hw, gssr);
392 }
393
394 return status;
395 }
396
397 /**
398 * ixgbe_setup_phy_link_generic - Set and restart autoneg
399 * @hw: pointer to hardware structure
400 *
401 * Restart autonegotiation and PHY and waits for completion.
402 **/
ixgbe_setup_phy_link_generic(struct ixgbe_hw * hw)403 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
404 {
405 s32 status = 0;
406 u32 time_out;
407 u32 max_time_out = 10;
408 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
409 bool autoneg = false;
410 ixgbe_link_speed speed;
411
412 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
413
414 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
415 /* Set or unset auto-negotiation 10G advertisement */
416 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
417 MDIO_MMD_AN,
418 &autoneg_reg);
419
420 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
421 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
422 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
423
424 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
425 MDIO_MMD_AN,
426 autoneg_reg);
427 }
428
429 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
430 /* Set or unset auto-negotiation 1G advertisement */
431 hw->phy.ops.read_reg(hw,
432 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
433 MDIO_MMD_AN,
434 &autoneg_reg);
435
436 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
437 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
438 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
439
440 hw->phy.ops.write_reg(hw,
441 IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
442 MDIO_MMD_AN,
443 autoneg_reg);
444 }
445
446 if (speed & IXGBE_LINK_SPEED_100_FULL) {
447 /* Set or unset auto-negotiation 100M advertisement */
448 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
449 MDIO_MMD_AN,
450 &autoneg_reg);
451
452 autoneg_reg &= ~ADVERTISE_100FULL;
453 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
454 autoneg_reg |= ADVERTISE_100FULL;
455
456 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
457 MDIO_MMD_AN,
458 autoneg_reg);
459 }
460
461 /* Restart PHY autonegotiation and wait for completion */
462 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
463 MDIO_MMD_AN, &autoneg_reg);
464
465 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
466
467 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
468 MDIO_MMD_AN, autoneg_reg);
469
470 /* Wait for autonegotiation to finish */
471 for (time_out = 0; time_out < max_time_out; time_out++) {
472 udelay(10);
473 /* Restart PHY autonegotiation and wait for completion */
474 status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
475 MDIO_MMD_AN,
476 &autoneg_reg);
477
478 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
479 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
480 break;
481 }
482 }
483
484 if (time_out == max_time_out) {
485 status = IXGBE_ERR_LINK_SETUP;
486 hw_dbg(hw, "ixgbe_setup_phy_link_generic: time out");
487 }
488
489 return status;
490 }
491
492 /**
493 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
494 * @hw: pointer to hardware structure
495 * @speed: new link speed
496 * @autoneg: true if autonegotiation enabled
497 **/
ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw * hw,ixgbe_link_speed speed,bool autoneg,bool autoneg_wait_to_complete)498 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
499 ixgbe_link_speed speed,
500 bool autoneg,
501 bool autoneg_wait_to_complete)
502 {
503
504 /*
505 * Clear autoneg_advertised and set new values based on input link
506 * speed.
507 */
508 hw->phy.autoneg_advertised = 0;
509
510 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
511 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
512
513 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
514 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
515
516 if (speed & IXGBE_LINK_SPEED_100_FULL)
517 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
518
519 /* Setup link based on the new speed settings */
520 hw->phy.ops.setup_link(hw);
521
522 return 0;
523 }
524
525 /**
526 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
527 * @hw: pointer to hardware structure
528 * @speed: pointer to link speed
529 * @autoneg: boolean auto-negotiation value
530 *
531 * Determines the link capabilities by reading the AUTOC register.
532 */
ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * autoneg)533 s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
534 ixgbe_link_speed *speed,
535 bool *autoneg)
536 {
537 s32 status = IXGBE_ERR_LINK_SETUP;
538 u16 speed_ability;
539
540 *speed = 0;
541 *autoneg = true;
542
543 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
544 &speed_ability);
545
546 if (status == 0) {
547 if (speed_ability & MDIO_SPEED_10G)
548 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
549 if (speed_ability & MDIO_PMA_SPEED_1000)
550 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
551 if (speed_ability & MDIO_PMA_SPEED_100)
552 *speed |= IXGBE_LINK_SPEED_100_FULL;
553 }
554
555 return status;
556 }
557
558 /**
559 * ixgbe_check_phy_link_tnx - Determine link and speed status
560 * @hw: pointer to hardware structure
561 *
562 * Reads the VS1 register to determine if link is up and the current speed for
563 * the PHY.
564 **/
ixgbe_check_phy_link_tnx(struct ixgbe_hw * hw,ixgbe_link_speed * speed,bool * link_up)565 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
566 bool *link_up)
567 {
568 s32 status = 0;
569 u32 time_out;
570 u32 max_time_out = 10;
571 u16 phy_link = 0;
572 u16 phy_speed = 0;
573 u16 phy_data = 0;
574
575 /* Initialize speed and link to default case */
576 *link_up = false;
577 *speed = IXGBE_LINK_SPEED_10GB_FULL;
578
579 /*
580 * Check current speed and link status of the PHY register.
581 * This is a vendor specific register and may have to
582 * be changed for other copper PHYs.
583 */
584 for (time_out = 0; time_out < max_time_out; time_out++) {
585 udelay(10);
586 status = hw->phy.ops.read_reg(hw,
587 MDIO_STAT1,
588 MDIO_MMD_VEND1,
589 &phy_data);
590 phy_link = phy_data &
591 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
592 phy_speed = phy_data &
593 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
594 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
595 *link_up = true;
596 if (phy_speed ==
597 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
598 *speed = IXGBE_LINK_SPEED_1GB_FULL;
599 break;
600 }
601 }
602
603 return status;
604 }
605
606 /**
607 * ixgbe_setup_phy_link_tnx - Set and restart autoneg
608 * @hw: pointer to hardware structure
609 *
610 * Restart autonegotiation and PHY and waits for completion.
611 **/
ixgbe_setup_phy_link_tnx(struct ixgbe_hw * hw)612 s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
613 {
614 s32 status = 0;
615 u32 time_out;
616 u32 max_time_out = 10;
617 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
618 bool autoneg = false;
619 ixgbe_link_speed speed;
620
621 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
622
623 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
624 /* Set or unset auto-negotiation 10G advertisement */
625 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
626 MDIO_MMD_AN,
627 &autoneg_reg);
628
629 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
630 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
631 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
632
633 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
634 MDIO_MMD_AN,
635 autoneg_reg);
636 }
637
638 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
639 /* Set or unset auto-negotiation 1G advertisement */
640 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
641 MDIO_MMD_AN,
642 &autoneg_reg);
643
644 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
645 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
646 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
647
648 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
649 MDIO_MMD_AN,
650 autoneg_reg);
651 }
652
653 if (speed & IXGBE_LINK_SPEED_100_FULL) {
654 /* Set or unset auto-negotiation 100M advertisement */
655 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
656 MDIO_MMD_AN,
657 &autoneg_reg);
658
659 autoneg_reg &= ~ADVERTISE_100FULL;
660 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
661 autoneg_reg |= ADVERTISE_100FULL;
662
663 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
664 MDIO_MMD_AN,
665 autoneg_reg);
666 }
667
668 /* Restart PHY autonegotiation and wait for completion */
669 hw->phy.ops.read_reg(hw, MDIO_CTRL1,
670 MDIO_MMD_AN, &autoneg_reg);
671
672 autoneg_reg |= MDIO_AN_CTRL1_RESTART;
673
674 hw->phy.ops.write_reg(hw, MDIO_CTRL1,
675 MDIO_MMD_AN, autoneg_reg);
676
677 /* Wait for autonegotiation to finish */
678 for (time_out = 0; time_out < max_time_out; time_out++) {
679 udelay(10);
680 /* Restart PHY autonegotiation and wait for completion */
681 status = hw->phy.ops.read_reg(hw, MDIO_STAT1,
682 MDIO_MMD_AN,
683 &autoneg_reg);
684
685 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
686 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE)
687 break;
688 }
689
690 if (time_out == max_time_out) {
691 status = IXGBE_ERR_LINK_SETUP;
692 hw_dbg(hw, "ixgbe_setup_phy_link_tnx: time out");
693 }
694
695 return status;
696 }
697
698 /**
699 * ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
700 * @hw: pointer to hardware structure
701 * @firmware_version: pointer to the PHY Firmware Version
702 **/
ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw * hw,u16 * firmware_version)703 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
704 u16 *firmware_version)
705 {
706 s32 status = 0;
707
708 status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
709 MDIO_MMD_VEND1,
710 firmware_version);
711
712 return status;
713 }
714
715 /**
716 * ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
717 * @hw: pointer to hardware structure
718 * @firmware_version: pointer to the PHY Firmware Version
719 **/
ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw * hw,u16 * firmware_version)720 s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
721 u16 *firmware_version)
722 {
723 s32 status = 0;
724
725 status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
726 MDIO_MMD_VEND1,
727 firmware_version);
728
729 return status;
730 }
731
732 /**
733 * ixgbe_reset_phy_nl - Performs a PHY reset
734 * @hw: pointer to hardware structure
735 **/
ixgbe_reset_phy_nl(struct ixgbe_hw * hw)736 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
737 {
738 u16 phy_offset, control, eword, edata, block_crc;
739 bool end_data = false;
740 u16 list_offset, data_offset;
741 u16 phy_data = 0;
742 s32 ret_val = 0;
743 u32 i;
744
745 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
746
747 /* reset the PHY and poll for completion */
748 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
749 (phy_data | MDIO_CTRL1_RESET));
750
751 for (i = 0; i < 100; i++) {
752 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
753 &phy_data);
754 if ((phy_data & MDIO_CTRL1_RESET) == 0)
755 break;
756 msleep(10);
757 }
758
759 if ((phy_data & MDIO_CTRL1_RESET) != 0) {
760 hw_dbg(hw, "PHY reset did not complete.\n");
761 ret_val = IXGBE_ERR_PHY;
762 goto out;
763 }
764
765 /* Get init offsets */
766 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
767 &data_offset);
768 if (ret_val != 0)
769 goto out;
770
771 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
772 data_offset++;
773 while (!end_data) {
774 /*
775 * Read control word from PHY init contents offset
776 */
777 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
778 control = (eword & IXGBE_CONTROL_MASK_NL) >>
779 IXGBE_CONTROL_SHIFT_NL;
780 edata = eword & IXGBE_DATA_MASK_NL;
781 switch (control) {
782 case IXGBE_DELAY_NL:
783 data_offset++;
784 hw_dbg(hw, "DELAY: %d MS\n", edata);
785 msleep(edata);
786 break;
787 case IXGBE_DATA_NL:
788 hw_dbg(hw, "DATA:\n");
789 data_offset++;
790 hw->eeprom.ops.read(hw, data_offset++,
791 &phy_offset);
792 for (i = 0; i < edata; i++) {
793 hw->eeprom.ops.read(hw, data_offset, &eword);
794 hw->phy.ops.write_reg(hw, phy_offset,
795 MDIO_MMD_PMAPMD, eword);
796 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
797 phy_offset);
798 data_offset++;
799 phy_offset++;
800 }
801 break;
802 case IXGBE_CONTROL_NL:
803 data_offset++;
804 hw_dbg(hw, "CONTROL:\n");
805 if (edata == IXGBE_CONTROL_EOL_NL) {
806 hw_dbg(hw, "EOL\n");
807 end_data = true;
808 } else if (edata == IXGBE_CONTROL_SOL_NL) {
809 hw_dbg(hw, "SOL\n");
810 } else {
811 hw_dbg(hw, "Bad control value\n");
812 ret_val = IXGBE_ERR_PHY;
813 goto out;
814 }
815 break;
816 default:
817 hw_dbg(hw, "Bad control type\n");
818 ret_val = IXGBE_ERR_PHY;
819 goto out;
820 }
821 }
822
823 out:
824 return ret_val;
825 }
826
827 /**
828 * ixgbe_identify_sfp_module_generic - Identifies SFP modules
829 * @hw: pointer to hardware structure
830 *
831 * Searches for and identifies the SFP module and assigns appropriate PHY type.
832 **/
ixgbe_identify_sfp_module_generic(struct ixgbe_hw * hw)833 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
834 {
835 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
836 u32 vendor_oui = 0;
837 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
838 u8 identifier = 0;
839 u8 comp_codes_1g = 0;
840 u8 comp_codes_10g = 0;
841 u8 oui_bytes[3] = {0, 0, 0};
842 u8 cable_tech = 0;
843 u8 cable_spec = 0;
844 u16 enforce_sfp = 0;
845
846 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
847 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
848 status = IXGBE_ERR_SFP_NOT_PRESENT;
849 goto out;
850 }
851
852 status = hw->phy.ops.read_i2c_eeprom(hw,
853 IXGBE_SFF_IDENTIFIER,
854 &identifier);
855
856 if (status == IXGBE_ERR_SWFW_SYNC ||
857 status == IXGBE_ERR_I2C ||
858 status == IXGBE_ERR_SFP_NOT_PRESENT)
859 goto err_read_i2c_eeprom;
860
861 /* LAN ID is needed for sfp_type determination */
862 hw->mac.ops.set_lan_id(hw);
863
864 if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
865 hw->phy.type = ixgbe_phy_sfp_unsupported;
866 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
867 } else {
868 status = hw->phy.ops.read_i2c_eeprom(hw,
869 IXGBE_SFF_1GBE_COMP_CODES,
870 &comp_codes_1g);
871
872 if (status == IXGBE_ERR_SWFW_SYNC ||
873 status == IXGBE_ERR_I2C ||
874 status == IXGBE_ERR_SFP_NOT_PRESENT)
875 goto err_read_i2c_eeprom;
876
877 status = hw->phy.ops.read_i2c_eeprom(hw,
878 IXGBE_SFF_10GBE_COMP_CODES,
879 &comp_codes_10g);
880
881 if (status == IXGBE_ERR_SWFW_SYNC ||
882 status == IXGBE_ERR_I2C ||
883 status == IXGBE_ERR_SFP_NOT_PRESENT)
884 goto err_read_i2c_eeprom;
885 status = hw->phy.ops.read_i2c_eeprom(hw,
886 IXGBE_SFF_CABLE_TECHNOLOGY,
887 &cable_tech);
888
889 if (status == IXGBE_ERR_SWFW_SYNC ||
890 status == IXGBE_ERR_I2C ||
891 status == IXGBE_ERR_SFP_NOT_PRESENT)
892 goto err_read_i2c_eeprom;
893
894 /* ID Module
895 * =========
896 * 0 SFP_DA_CU
897 * 1 SFP_SR
898 * 2 SFP_LR
899 * 3 SFP_DA_CORE0 - 82599-specific
900 * 4 SFP_DA_CORE1 - 82599-specific
901 * 5 SFP_SR/LR_CORE0 - 82599-specific
902 * 6 SFP_SR/LR_CORE1 - 82599-specific
903 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific
904 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific
905 * 9 SFP_1g_cu_CORE0 - 82599-specific
906 * 10 SFP_1g_cu_CORE1 - 82599-specific
907 */
908 if (hw->mac.type == ixgbe_mac_82598EB) {
909 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
910 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
911 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
912 hw->phy.sfp_type = ixgbe_sfp_type_sr;
913 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
914 hw->phy.sfp_type = ixgbe_sfp_type_lr;
915 else
916 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
917 } else if (hw->mac.type == ixgbe_mac_82599EB) {
918 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
919 if (hw->bus.lan_id == 0)
920 hw->phy.sfp_type =
921 ixgbe_sfp_type_da_cu_core0;
922 else
923 hw->phy.sfp_type =
924 ixgbe_sfp_type_da_cu_core1;
925 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
926 hw->phy.ops.read_i2c_eeprom(
927 hw, IXGBE_SFF_CABLE_SPEC_COMP,
928 &cable_spec);
929 if (cable_spec &
930 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
931 if (hw->bus.lan_id == 0)
932 hw->phy.sfp_type =
933 ixgbe_sfp_type_da_act_lmt_core0;
934 else
935 hw->phy.sfp_type =
936 ixgbe_sfp_type_da_act_lmt_core1;
937 } else {
938 hw->phy.sfp_type =
939 ixgbe_sfp_type_unknown;
940 }
941 } else if (comp_codes_10g &
942 (IXGBE_SFF_10GBASESR_CAPABLE |
943 IXGBE_SFF_10GBASELR_CAPABLE)) {
944 if (hw->bus.lan_id == 0)
945 hw->phy.sfp_type =
946 ixgbe_sfp_type_srlr_core0;
947 else
948 hw->phy.sfp_type =
949 ixgbe_sfp_type_srlr_core1;
950 } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
951 if (hw->bus.lan_id == 0)
952 hw->phy.sfp_type =
953 ixgbe_sfp_type_1g_cu_core0;
954 else
955 hw->phy.sfp_type =
956 ixgbe_sfp_type_1g_cu_core1;
957 } else {
958 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
959 }
960 }
961
962 if (hw->phy.sfp_type != stored_sfp_type)
963 hw->phy.sfp_setup_needed = true;
964
965 /* Determine if the SFP+ PHY is dual speed or not. */
966 hw->phy.multispeed_fiber = false;
967 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
968 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
969 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
970 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
971 hw->phy.multispeed_fiber = true;
972
973 /* Determine PHY vendor */
974 if (hw->phy.type != ixgbe_phy_nl) {
975 hw->phy.id = identifier;
976 status = hw->phy.ops.read_i2c_eeprom(hw,
977 IXGBE_SFF_VENDOR_OUI_BYTE0,
978 &oui_bytes[0]);
979
980 if (status == IXGBE_ERR_SWFW_SYNC ||
981 status == IXGBE_ERR_I2C ||
982 status == IXGBE_ERR_SFP_NOT_PRESENT)
983 goto err_read_i2c_eeprom;
984
985 status = hw->phy.ops.read_i2c_eeprom(hw,
986 IXGBE_SFF_VENDOR_OUI_BYTE1,
987 &oui_bytes[1]);
988
989 if (status == IXGBE_ERR_SWFW_SYNC ||
990 status == IXGBE_ERR_I2C ||
991 status == IXGBE_ERR_SFP_NOT_PRESENT)
992 goto err_read_i2c_eeprom;
993
994 status = hw->phy.ops.read_i2c_eeprom(hw,
995 IXGBE_SFF_VENDOR_OUI_BYTE2,
996 &oui_bytes[2]);
997
998 if (status == IXGBE_ERR_SWFW_SYNC ||
999 status == IXGBE_ERR_I2C ||
1000 status == IXGBE_ERR_SFP_NOT_PRESENT)
1001 goto err_read_i2c_eeprom;
1002
1003 vendor_oui =
1004 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1005 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1006 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1007
1008 switch (vendor_oui) {
1009 case IXGBE_SFF_VENDOR_OUI_TYCO:
1010 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1011 hw->phy.type =
1012 ixgbe_phy_sfp_passive_tyco;
1013 break;
1014 case IXGBE_SFF_VENDOR_OUI_FTL:
1015 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1016 hw->phy.type = ixgbe_phy_sfp_ftl_active;
1017 else
1018 hw->phy.type = ixgbe_phy_sfp_ftl;
1019 break;
1020 case IXGBE_SFF_VENDOR_OUI_AVAGO:
1021 hw->phy.type = ixgbe_phy_sfp_avago;
1022 break;
1023 case IXGBE_SFF_VENDOR_OUI_INTEL:
1024 hw->phy.type = ixgbe_phy_sfp_intel;
1025 break;
1026 default:
1027 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1028 hw->phy.type =
1029 ixgbe_phy_sfp_passive_unknown;
1030 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1031 hw->phy.type =
1032 ixgbe_phy_sfp_active_unknown;
1033 else
1034 hw->phy.type = ixgbe_phy_sfp_unknown;
1035 break;
1036 }
1037 }
1038
1039 /* Allow any DA cable vendor */
1040 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1041 IXGBE_SFF_DA_ACTIVE_CABLE)) {
1042 status = 0;
1043 goto out;
1044 }
1045
1046 /* Verify supported 1G SFP modules */
1047 if (comp_codes_10g == 0 &&
1048 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1049 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0)) {
1050 hw->phy.type = ixgbe_phy_sfp_unsupported;
1051 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1052 goto out;
1053 }
1054
1055 /* Anything else 82598-based is supported */
1056 if (hw->mac.type == ixgbe_mac_82598EB) {
1057 status = 0;
1058 goto out;
1059 }
1060
1061 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1062 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1063 !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
1064 (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1))) {
1065 /* Make sure we're a supported PHY type */
1066 if (hw->phy.type == ixgbe_phy_sfp_intel) {
1067 status = 0;
1068 } else {
1069 hw_dbg(hw, "SFP+ module not supported\n");
1070 hw->phy.type = ixgbe_phy_sfp_unsupported;
1071 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
1072 }
1073 } else {
1074 status = 0;
1075 }
1076 }
1077
1078 out:
1079 return status;
1080
1081 err_read_i2c_eeprom:
1082 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1083 if (hw->phy.type != ixgbe_phy_nl) {
1084 hw->phy.id = 0;
1085 hw->phy.type = ixgbe_phy_unknown;
1086 }
1087 return IXGBE_ERR_SFP_NOT_PRESENT;
1088 }
1089
1090 /**
1091 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1092 * @hw: pointer to hardware structure
1093 * @list_offset: offset to the SFP ID list
1094 * @data_offset: offset to the SFP data block
1095 *
1096 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1097 * so it returns the offsets to the phy init sequence block.
1098 **/
ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw * hw,u16 * list_offset,u16 * data_offset)1099 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1100 u16 *list_offset,
1101 u16 *data_offset)
1102 {
1103 u16 sfp_id;
1104 u16 sfp_type = hw->phy.sfp_type;
1105
1106 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1107 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1108
1109 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1110 return IXGBE_ERR_SFP_NOT_PRESENT;
1111
1112 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1113 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1114 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1115
1116 /*
1117 * Limiting active cables and 1G Phys must be initialized as
1118 * SR modules
1119 */
1120 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1121 sfp_type == ixgbe_sfp_type_1g_cu_core0)
1122 sfp_type = ixgbe_sfp_type_srlr_core0;
1123 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1124 sfp_type == ixgbe_sfp_type_1g_cu_core1)
1125 sfp_type = ixgbe_sfp_type_srlr_core1;
1126
1127 /* Read offset to PHY init contents */
1128 hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
1129
1130 if ((!*list_offset) || (*list_offset == 0xFFFF))
1131 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1132
1133 /* Shift offset to first ID word */
1134 (*list_offset)++;
1135
1136 /*
1137 * Find the matching SFP ID in the EEPROM
1138 * and program the init sequence
1139 */
1140 hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
1141
1142 while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1143 if (sfp_id == sfp_type) {
1144 (*list_offset)++;
1145 hw->eeprom.ops.read(hw, *list_offset, data_offset);
1146 if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1147 hw_dbg(hw, "SFP+ module not supported\n");
1148 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1149 } else {
1150 break;
1151 }
1152 } else {
1153 (*list_offset) += 2;
1154 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1155 return IXGBE_ERR_PHY;
1156 }
1157 }
1158
1159 if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1160 hw_dbg(hw, "No matching SFP+ module found\n");
1161 return IXGBE_ERR_SFP_NOT_SUPPORTED;
1162 }
1163
1164 return 0;
1165 }
1166
1167 /**
1168 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1169 * @hw: pointer to hardware structure
1170 * @byte_offset: EEPROM byte offset to read
1171 * @eeprom_data: value read
1172 *
1173 * Performs byte read operation to SFP module's EEPROM over I2C interface.
1174 **/
ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw * hw,u8 byte_offset,u8 * eeprom_data)1175 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1176 u8 *eeprom_data)
1177 {
1178 return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1179 IXGBE_I2C_EEPROM_DEV_ADDR,
1180 eeprom_data);
1181 }
1182
1183 /**
1184 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1185 * @hw: pointer to hardware structure
1186 * @byte_offset: EEPROM byte offset to write
1187 * @eeprom_data: value to write
1188 *
1189 * Performs byte write operation to SFP module's EEPROM over I2C interface.
1190 **/
ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw * hw,u8 byte_offset,u8 eeprom_data)1191 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1192 u8 eeprom_data)
1193 {
1194 return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1195 IXGBE_I2C_EEPROM_DEV_ADDR,
1196 eeprom_data);
1197 }
1198
1199 /**
1200 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1201 * @hw: pointer to hardware structure
1202 * @byte_offset: byte offset to read
1203 * @data: value read
1204 *
1205 * Performs byte read operation to SFP module's EEPROM over I2C interface at
1206 * a specified deivce address.
1207 **/
ixgbe_read_i2c_byte_generic(struct ixgbe_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)1208 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1209 u8 dev_addr, u8 *data)
1210 {
1211 s32 status = 0;
1212 u32 max_retry = 10;
1213 u32 retry = 0;
1214 u16 swfw_mask = 0;
1215 bool nack = 1;
1216
1217 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1218 swfw_mask = IXGBE_GSSR_PHY1_SM;
1219 else
1220 swfw_mask = IXGBE_GSSR_PHY0_SM;
1221
1222 do {
1223 if (ixgbe_acquire_swfw_sync(hw, swfw_mask) != 0) {
1224 status = IXGBE_ERR_SWFW_SYNC;
1225 goto read_byte_out;
1226 }
1227
1228 ixgbe_i2c_start(hw);
1229
1230 /* Device Address and write indication */
1231 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1232 if (status != 0)
1233 goto fail;
1234
1235 status = ixgbe_get_i2c_ack(hw);
1236 if (status != 0)
1237 goto fail;
1238
1239 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1240 if (status != 0)
1241 goto fail;
1242
1243 status = ixgbe_get_i2c_ack(hw);
1244 if (status != 0)
1245 goto fail;
1246
1247 ixgbe_i2c_start(hw);
1248
1249 /* Device Address and read indication */
1250 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1251 if (status != 0)
1252 goto fail;
1253
1254 status = ixgbe_get_i2c_ack(hw);
1255 if (status != 0)
1256 goto fail;
1257
1258 status = ixgbe_clock_in_i2c_byte(hw, data);
1259 if (status != 0)
1260 goto fail;
1261
1262 status = ixgbe_clock_out_i2c_bit(hw, nack);
1263 if (status != 0)
1264 goto fail;
1265
1266 ixgbe_i2c_stop(hw);
1267 break;
1268
1269 fail:
1270 ixgbe_release_swfw_sync(hw, swfw_mask);
1271 msleep(100);
1272 ixgbe_i2c_bus_clear(hw);
1273 retry++;
1274 if (retry < max_retry)
1275 hw_dbg(hw, "I2C byte read error - Retrying.\n");
1276 else
1277 hw_dbg(hw, "I2C byte read error.\n");
1278
1279 } while (retry < max_retry);
1280
1281 ixgbe_release_swfw_sync(hw, swfw_mask);
1282
1283 read_byte_out:
1284 return status;
1285 }
1286
1287 /**
1288 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1289 * @hw: pointer to hardware structure
1290 * @byte_offset: byte offset to write
1291 * @data: value to write
1292 *
1293 * Performs byte write operation to SFP module's EEPROM over I2C interface at
1294 * a specified device address.
1295 **/
ixgbe_write_i2c_byte_generic(struct ixgbe_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)1296 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1297 u8 dev_addr, u8 data)
1298 {
1299 s32 status = 0;
1300 u32 max_retry = 1;
1301 u32 retry = 0;
1302 u16 swfw_mask = 0;
1303
1304 if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
1305 swfw_mask = IXGBE_GSSR_PHY1_SM;
1306 else
1307 swfw_mask = IXGBE_GSSR_PHY0_SM;
1308
1309 if (ixgbe_acquire_swfw_sync(hw, swfw_mask) != 0) {
1310 status = IXGBE_ERR_SWFW_SYNC;
1311 goto write_byte_out;
1312 }
1313
1314 do {
1315 ixgbe_i2c_start(hw);
1316
1317 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1318 if (status != 0)
1319 goto fail;
1320
1321 status = ixgbe_get_i2c_ack(hw);
1322 if (status != 0)
1323 goto fail;
1324
1325 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1326 if (status != 0)
1327 goto fail;
1328
1329 status = ixgbe_get_i2c_ack(hw);
1330 if (status != 0)
1331 goto fail;
1332
1333 status = ixgbe_clock_out_i2c_byte(hw, data);
1334 if (status != 0)
1335 goto fail;
1336
1337 status = ixgbe_get_i2c_ack(hw);
1338 if (status != 0)
1339 goto fail;
1340
1341 ixgbe_i2c_stop(hw);
1342 break;
1343
1344 fail:
1345 ixgbe_i2c_bus_clear(hw);
1346 retry++;
1347 if (retry < max_retry)
1348 hw_dbg(hw, "I2C byte write error - Retrying.\n");
1349 else
1350 hw_dbg(hw, "I2C byte write error.\n");
1351 } while (retry < max_retry);
1352
1353 ixgbe_release_swfw_sync(hw, swfw_mask);
1354
1355 write_byte_out:
1356 return status;
1357 }
1358
1359 /**
1360 * ixgbe_i2c_start - Sets I2C start condition
1361 * @hw: pointer to hardware structure
1362 *
1363 * Sets I2C start condition (High -> Low on SDA while SCL is High)
1364 **/
ixgbe_i2c_start(struct ixgbe_hw * hw)1365 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1366 {
1367 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1368
1369 /* Start condition must begin with data and clock high */
1370 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1371 ixgbe_raise_i2c_clk(hw, &i2cctl);
1372
1373 /* Setup time for start condition (4.7us) */
1374 udelay(IXGBE_I2C_T_SU_STA);
1375
1376 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1377
1378 /* Hold time for start condition (4us) */
1379 udelay(IXGBE_I2C_T_HD_STA);
1380
1381 ixgbe_lower_i2c_clk(hw, &i2cctl);
1382
1383 /* Minimum low period of clock is 4.7 us */
1384 udelay(IXGBE_I2C_T_LOW);
1385
1386 }
1387
1388 /**
1389 * ixgbe_i2c_stop - Sets I2C stop condition
1390 * @hw: pointer to hardware structure
1391 *
1392 * Sets I2C stop condition (Low -> High on SDA while SCL is High)
1393 **/
ixgbe_i2c_stop(struct ixgbe_hw * hw)1394 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1395 {
1396 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1397
1398 /* Stop condition must begin with data low and clock high */
1399 ixgbe_set_i2c_data(hw, &i2cctl, 0);
1400 ixgbe_raise_i2c_clk(hw, &i2cctl);
1401
1402 /* Setup time for stop condition (4us) */
1403 udelay(IXGBE_I2C_T_SU_STO);
1404
1405 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1406
1407 /* bus free time between stop and start (4.7us)*/
1408 udelay(IXGBE_I2C_T_BUF);
1409 }
1410
1411 /**
1412 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1413 * @hw: pointer to hardware structure
1414 * @data: data byte to clock in
1415 *
1416 * Clocks in one byte data via I2C data/clock
1417 **/
ixgbe_clock_in_i2c_byte(struct ixgbe_hw * hw,u8 * data)1418 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1419 {
1420 s32 status = 0;
1421 s32 i;
1422 bool bit = 0;
1423
1424 for (i = 7; i >= 0; i--) {
1425 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1426 *data |= bit << i;
1427
1428 if (status != 0)
1429 break;
1430 }
1431
1432 return status;
1433 }
1434
1435 /**
1436 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1437 * @hw: pointer to hardware structure
1438 * @data: data byte clocked out
1439 *
1440 * Clocks out one byte data via I2C data/clock
1441 **/
ixgbe_clock_out_i2c_byte(struct ixgbe_hw * hw,u8 data)1442 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1443 {
1444 s32 status = 0;
1445 s32 i;
1446 u32 i2cctl;
1447 bool bit = 0;
1448
1449 for (i = 7; i >= 0; i--) {
1450 bit = (data >> i) & 0x1;
1451 status = ixgbe_clock_out_i2c_bit(hw, bit);
1452
1453 if (status != 0)
1454 break;
1455 }
1456
1457 /* Release SDA line (set high) */
1458 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1459 i2cctl |= IXGBE_I2C_DATA_OUT;
1460 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1461
1462 return status;
1463 }
1464
1465 /**
1466 * ixgbe_get_i2c_ack - Polls for I2C ACK
1467 * @hw: pointer to hardware structure
1468 *
1469 * Clocks in/out one bit via I2C data/clock
1470 **/
ixgbe_get_i2c_ack(struct ixgbe_hw * hw)1471 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1472 {
1473 s32 status;
1474 u32 i = 0;
1475 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1476 u32 timeout = 10;
1477 bool ack = 1;
1478
1479 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1480
1481 if (status != 0)
1482 goto out;
1483
1484 /* Minimum high period of clock is 4us */
1485 udelay(IXGBE_I2C_T_HIGH);
1486
1487 /* Poll for ACK. Note that ACK in I2C spec is
1488 * transition from 1 to 0 */
1489 for (i = 0; i < timeout; i++) {
1490 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1491 ack = ixgbe_get_i2c_data(&i2cctl);
1492
1493 udelay(1);
1494 if (ack == 0)
1495 break;
1496 }
1497
1498 if (ack == 1) {
1499 hw_dbg(hw, "I2C ack was not received.\n");
1500 status = IXGBE_ERR_I2C;
1501 }
1502
1503 ixgbe_lower_i2c_clk(hw, &i2cctl);
1504
1505 /* Minimum low period of clock is 4.7 us */
1506 udelay(IXGBE_I2C_T_LOW);
1507
1508 out:
1509 return status;
1510 }
1511
1512 /**
1513 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1514 * @hw: pointer to hardware structure
1515 * @data: read data value
1516 *
1517 * Clocks in one bit via I2C data/clock
1518 **/
ixgbe_clock_in_i2c_bit(struct ixgbe_hw * hw,bool * data)1519 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1520 {
1521 s32 status;
1522 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1523
1524 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1525
1526 /* Minimum high period of clock is 4us */
1527 udelay(IXGBE_I2C_T_HIGH);
1528
1529 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1530 *data = ixgbe_get_i2c_data(&i2cctl);
1531
1532 ixgbe_lower_i2c_clk(hw, &i2cctl);
1533
1534 /* Minimum low period of clock is 4.7 us */
1535 udelay(IXGBE_I2C_T_LOW);
1536
1537 return status;
1538 }
1539
1540 /**
1541 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1542 * @hw: pointer to hardware structure
1543 * @data: data value to write
1544 *
1545 * Clocks out one bit via I2C data/clock
1546 **/
ixgbe_clock_out_i2c_bit(struct ixgbe_hw * hw,bool data)1547 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1548 {
1549 s32 status;
1550 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1551
1552 status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1553 if (status == 0) {
1554 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1555
1556 /* Minimum high period of clock is 4us */
1557 udelay(IXGBE_I2C_T_HIGH);
1558
1559 ixgbe_lower_i2c_clk(hw, &i2cctl);
1560
1561 /* Minimum low period of clock is 4.7 us.
1562 * This also takes care of the data hold time.
1563 */
1564 udelay(IXGBE_I2C_T_LOW);
1565 } else {
1566 status = IXGBE_ERR_I2C;
1567 hw_dbg(hw, "I2C data was not set to %X\n", data);
1568 }
1569
1570 return status;
1571 }
1572 /**
1573 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1574 * @hw: pointer to hardware structure
1575 * @i2cctl: Current value of I2CCTL register
1576 *
1577 * Raises the I2C clock line '0'->'1'
1578 **/
ixgbe_raise_i2c_clk(struct ixgbe_hw * hw,u32 * i2cctl)1579 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1580 {
1581 s32 status = 0;
1582
1583 *i2cctl |= IXGBE_I2C_CLK_OUT;
1584
1585 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1586
1587 /* SCL rise time (1000ns) */
1588 udelay(IXGBE_I2C_T_RISE);
1589
1590 return status;
1591 }
1592
1593 /**
1594 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1595 * @hw: pointer to hardware structure
1596 * @i2cctl: Current value of I2CCTL register
1597 *
1598 * Lowers the I2C clock line '1'->'0'
1599 **/
ixgbe_lower_i2c_clk(struct ixgbe_hw * hw,u32 * i2cctl)1600 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1601 {
1602
1603 *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1604
1605 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1606
1607 /* SCL fall time (300ns) */
1608 udelay(IXGBE_I2C_T_FALL);
1609 }
1610
1611 /**
1612 * ixgbe_set_i2c_data - Sets the I2C data bit
1613 * @hw: pointer to hardware structure
1614 * @i2cctl: Current value of I2CCTL register
1615 * @data: I2C data value (0 or 1) to set
1616 *
1617 * Sets the I2C data bit
1618 **/
ixgbe_set_i2c_data(struct ixgbe_hw * hw,u32 * i2cctl,bool data)1619 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1620 {
1621 s32 status = 0;
1622
1623 if (data)
1624 *i2cctl |= IXGBE_I2C_DATA_OUT;
1625 else
1626 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1627
1628 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1629
1630 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1631 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1632
1633 /* Verify data was set correctly */
1634 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1635 if (data != ixgbe_get_i2c_data(i2cctl)) {
1636 status = IXGBE_ERR_I2C;
1637 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1638 }
1639
1640 return status;
1641 }
1642
1643 /**
1644 * ixgbe_get_i2c_data - Reads the I2C SDA data bit
1645 * @hw: pointer to hardware structure
1646 * @i2cctl: Current value of I2CCTL register
1647 *
1648 * Returns the I2C data bit value
1649 **/
ixgbe_get_i2c_data(u32 * i2cctl)1650 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1651 {
1652 bool data;
1653
1654 if (*i2cctl & IXGBE_I2C_DATA_IN)
1655 data = 1;
1656 else
1657 data = 0;
1658
1659 return data;
1660 }
1661
1662 /**
1663 * ixgbe_i2c_bus_clear - Clears the I2C bus
1664 * @hw: pointer to hardware structure
1665 *
1666 * Clears the I2C bus by sending nine clock pulses.
1667 * Used when data line is stuck low.
1668 **/
ixgbe_i2c_bus_clear(struct ixgbe_hw * hw)1669 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1670 {
1671 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1672 u32 i;
1673
1674 ixgbe_i2c_start(hw);
1675
1676 ixgbe_set_i2c_data(hw, &i2cctl, 1);
1677
1678 for (i = 0; i < 9; i++) {
1679 ixgbe_raise_i2c_clk(hw, &i2cctl);
1680
1681 /* Min high period of clock is 4us */
1682 udelay(IXGBE_I2C_T_HIGH);
1683
1684 ixgbe_lower_i2c_clk(hw, &i2cctl);
1685
1686 /* Min low period of clock is 4.7us*/
1687 udelay(IXGBE_I2C_T_LOW);
1688 }
1689
1690 ixgbe_i2c_start(hw);
1691
1692 /* Put the i2c bus back to default state */
1693 ixgbe_i2c_stop(hw);
1694 }
1695
1696 /**
1697 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
1698 * @hw: pointer to hardware structure
1699 *
1700 * Checks if the LASI temp alarm status was triggered due to overtemp
1701 **/
ixgbe_tn_check_overtemp(struct ixgbe_hw * hw)1702 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1703 {
1704 s32 status = 0;
1705 u16 phy_data = 0;
1706
1707 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1708 goto out;
1709
1710 /* Check that the LASI temp alarm status was triggered */
1711 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1712 MDIO_MMD_PMAPMD, &phy_data);
1713
1714 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1715 goto out;
1716
1717 status = IXGBE_ERR_OVERTEMP;
1718 out:
1719 return status;
1720 }
1721