1 /*******************************************************************************
2 
3   Intel PRO/100 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  *	e100.c: Intel(R) PRO/100 ethernet driver
31  *
32  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
33  *	original e100 driver, but better described as a munging of
34  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35  *
36  *	References:
37  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
38  *		Open Source Software Developers Manual,
39  *		http://sourceforge.net/projects/e1000
40  *
41  *
42  *	                      Theory of Operation
43  *
44  *	I.   General
45  *
46  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47  *	controller family, which includes the 82557, 82558, 82559, 82550,
48  *	82551, and 82562 devices.  82558 and greater controllers
49  *	integrate the Intel 82555 PHY.  The controllers are used in
50  *	server and client network interface cards, as well as in
51  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52  *	configurations.  8255x supports a 32-bit linear addressing
53  *	mode and operates at 33Mhz PCI clock rate.
54  *
55  *	II.  Driver Operation
56  *
57  *	Memory-mapped mode is used exclusively to access the device's
58  *	shared-memory structure, the Control/Status Registers (CSR). All
59  *	setup, configuration, and control of the device, including queuing
60  *	of Tx, Rx, and configuration commands is through the CSR.
61  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
62  *	protects the shared Command Block List (CBL).
63  *
64  *	8255x is highly MII-compliant and all access to the PHY go
65  *	through the Management Data Interface (MDI).  Consequently, the
66  *	driver leverages the mii.c library shared with other MII-compliant
67  *	devices.
68  *
69  *	Big- and Little-Endian byte order as well as 32- and 64-bit
70  *	archs are supported.  Weak-ordered memory and non-cache-coherent
71  *	archs are supported.
72  *
73  *	III. Transmit
74  *
75  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
76  *	together in a fixed-size ring (CBL) thus forming the flexible mode
77  *	memory structure.  A TCB marked with the suspend-bit indicates
78  *	the end of the ring.  The last TCB processed suspends the
79  *	controller, and the controller can be restarted by issue a CU
80  *	resume command to continue from the suspend point, or a CU start
81  *	command to start at a given position in the ring.
82  *
83  *	Non-Tx commands (config, multicast setup, etc) are linked
84  *	into the CBL ring along with Tx commands.  The common structure
85  *	used for both Tx and non-Tx commands is the Command Block (CB).
86  *
87  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
88  *	is the next CB to check for completion; cb_to_send is the first
89  *	CB to start on in case of a previous failure to resume.  CB clean
90  *	up happens in interrupt context in response to a CU interrupt.
91  *	cbs_avail keeps track of number of free CB resources available.
92  *
93  * 	Hardware padding of short packets to minimum packet size is
94  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
95  * 	with 00h.
96  *
97  *	IV.  Receive
98  *
99  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
100  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
101  *	memory structure.  Rx skbs are allocated to contain both the RFD
102  *	and the data buffer, but the RFD is pulled off before the skb is
103  *	indicated.  The data buffer is aligned such that encapsulated
104  *	protocol headers are u32-aligned.  Since the RFD is part of the
105  *	mapped shared memory, and completion status is contained within
106  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
107  *	view from software and hardware.
108  *
109  *	In order to keep updates to the RFD link field from colliding with
110  *	hardware writes to mark packets complete, we use the feature that
111  *	hardware will not write to a size 0 descriptor and mark the previous
112  *	packet as end-of-list (EL).   After updating the link, we remove EL
113  *	and only then restore the size such that hardware may use the
114  *	previous-to-end RFD.
115  *
116  *	Under typical operation, the  receive unit (RU) is start once,
117  *	and the controller happily fills RFDs as frames arrive.  If
118  *	replacement RFDs cannot be allocated, or the RU goes non-active,
119  *	the RU must be restarted.  Frame arrival generates an interrupt,
120  *	and Rx indication and re-allocation happen in the same context,
121  *	therefore no locking is required.  A software-generated interrupt
122  *	is generated from the watchdog to recover from a failed allocation
123  *	scenario where all Rx resources have been indicated and none re-
124  *	placed.
125  *
126  *	V.   Miscellaneous
127  *
128  * 	VLAN offloading of tagging, stripping and filtering is not
129  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
130  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
131  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
132  * 	not supported (hardware limitation).
133  *
134  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
135  *
136  * 	Thanks to JC (jchapman@katalix.com) for helping with
137  * 	testing/troubleshooting the development driver.
138  *
139  * 	TODO:
140  * 	o several entry points race with dev->close
141  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
142  *
143  *	FIXES:
144  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145  *	- Stratus87247: protect MDI control register manipulations
146  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
148  */
149 
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
151 
152 #include <linux/module.h>
153 #include <linux/moduleparam.h>
154 #include <linux/kernel.h>
155 #include <linux/types.h>
156 #include <linux/sched.h>
157 #include <linux/slab.h>
158 #include <linux/delay.h>
159 #include <linux/init.h>
160 #include <linux/pci.h>
161 #include <linux/dma-mapping.h>
162 #include <linux/dmapool.h>
163 #include <linux/netdevice.h>
164 #include <linux/etherdevice.h>
165 #include <linux/mii.h>
166 #include <linux/if_vlan.h>
167 #include <linux/skbuff.h>
168 #include <linux/ethtool.h>
169 #include <linux/string.h>
170 #include <linux/firmware.h>
171 #include <linux/rtnetlink.h>
172 #include <asm/unaligned.h>
173 
174 
175 #define DRV_NAME		"e100"
176 #define DRV_EXT			"-NAPI"
177 #define DRV_VERSION		"3.5.24-k2"DRV_EXT
178 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
179 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
180 
181 #define E100_WATCHDOG_PERIOD	(2 * HZ)
182 #define E100_NAPI_WEIGHT	16
183 
184 #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
185 #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
186 #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
187 
188 MODULE_DESCRIPTION(DRV_DESCRIPTION);
189 MODULE_AUTHOR(DRV_COPYRIGHT);
190 MODULE_LICENSE("GPL");
191 MODULE_VERSION(DRV_VERSION);
192 MODULE_FIRMWARE(FIRMWARE_D101M);
193 MODULE_FIRMWARE(FIRMWARE_D101S);
194 MODULE_FIRMWARE(FIRMWARE_D102E);
195 
196 static int debug = 3;
197 static int eeprom_bad_csum_allow = 0;
198 static int use_io = 0;
199 module_param(debug, int, 0);
200 module_param(eeprom_bad_csum_allow, int, 0);
201 module_param(use_io, int, 0);
202 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
203 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
204 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
205 
206 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
207 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
208 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
209 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
210 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
211 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
212 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
213 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
214 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
215 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
216 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
217 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
218 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
219 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
220 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
221 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
222 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
223 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
224 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
225 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
226 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
227 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
228 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
229 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
230 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
231 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
232 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
233 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
234 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
235 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
236 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
237 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
238 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
239 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
240 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
241 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
242 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
243 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
244 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
245 	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
246 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
247 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
248 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
249 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
250 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
251 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
252 	{ 0, }
253 };
254 MODULE_DEVICE_TABLE(pci, e100_id_table);
255 
256 enum mac {
257 	mac_82557_D100_A  = 0,
258 	mac_82557_D100_B  = 1,
259 	mac_82557_D100_C  = 2,
260 	mac_82558_D101_A4 = 4,
261 	mac_82558_D101_B0 = 5,
262 	mac_82559_D101M   = 8,
263 	mac_82559_D101S   = 9,
264 	mac_82550_D102    = 12,
265 	mac_82550_D102_C  = 13,
266 	mac_82551_E       = 14,
267 	mac_82551_F       = 15,
268 	mac_82551_10      = 16,
269 	mac_unknown       = 0xFF,
270 };
271 
272 enum phy {
273 	phy_100a     = 0x000003E0,
274 	phy_100c     = 0x035002A8,
275 	phy_82555_tx = 0x015002A8,
276 	phy_nsc_tx   = 0x5C002000,
277 	phy_82562_et = 0x033002A8,
278 	phy_82562_em = 0x032002A8,
279 	phy_82562_ek = 0x031002A8,
280 	phy_82562_eh = 0x017002A8,
281 	phy_82552_v  = 0xd061004d,
282 	phy_unknown  = 0xFFFFFFFF,
283 };
284 
285 /* CSR (Control/Status Registers) */
286 struct csr {
287 	struct {
288 		u8 status;
289 		u8 stat_ack;
290 		u8 cmd_lo;
291 		u8 cmd_hi;
292 		u32 gen_ptr;
293 	} scb;
294 	u32 port;
295 	u16 flash_ctrl;
296 	u8 eeprom_ctrl_lo;
297 	u8 eeprom_ctrl_hi;
298 	u32 mdi_ctrl;
299 	u32 rx_dma_count;
300 };
301 
302 enum scb_status {
303 	rus_no_res       = 0x08,
304 	rus_ready        = 0x10,
305 	rus_mask         = 0x3C,
306 };
307 
308 enum ru_state  {
309 	RU_SUSPENDED = 0,
310 	RU_RUNNING	 = 1,
311 	RU_UNINITIALIZED = -1,
312 };
313 
314 enum scb_stat_ack {
315 	stat_ack_not_ours    = 0x00,
316 	stat_ack_sw_gen      = 0x04,
317 	stat_ack_rnr         = 0x10,
318 	stat_ack_cu_idle     = 0x20,
319 	stat_ack_frame_rx    = 0x40,
320 	stat_ack_cu_cmd_done = 0x80,
321 	stat_ack_not_present = 0xFF,
322 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
323 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
324 };
325 
326 enum scb_cmd_hi {
327 	irq_mask_none = 0x00,
328 	irq_mask_all  = 0x01,
329 	irq_sw_gen    = 0x02,
330 };
331 
332 enum scb_cmd_lo {
333 	cuc_nop        = 0x00,
334 	ruc_start      = 0x01,
335 	ruc_load_base  = 0x06,
336 	cuc_start      = 0x10,
337 	cuc_resume     = 0x20,
338 	cuc_dump_addr  = 0x40,
339 	cuc_dump_stats = 0x50,
340 	cuc_load_base  = 0x60,
341 	cuc_dump_reset = 0x70,
342 };
343 
344 enum cuc_dump {
345 	cuc_dump_complete       = 0x0000A005,
346 	cuc_dump_reset_complete = 0x0000A007,
347 };
348 
349 enum port {
350 	software_reset  = 0x0000,
351 	selftest        = 0x0001,
352 	selective_reset = 0x0002,
353 };
354 
355 enum eeprom_ctrl_lo {
356 	eesk = 0x01,
357 	eecs = 0x02,
358 	eedi = 0x04,
359 	eedo = 0x08,
360 };
361 
362 enum mdi_ctrl {
363 	mdi_write = 0x04000000,
364 	mdi_read  = 0x08000000,
365 	mdi_ready = 0x10000000,
366 };
367 
368 enum eeprom_op {
369 	op_write = 0x05,
370 	op_read  = 0x06,
371 	op_ewds  = 0x10,
372 	op_ewen  = 0x13,
373 };
374 
375 enum eeprom_offsets {
376 	eeprom_cnfg_mdix  = 0x03,
377 	eeprom_phy_iface  = 0x06,
378 	eeprom_id         = 0x0A,
379 	eeprom_config_asf = 0x0D,
380 	eeprom_smbus_addr = 0x90,
381 };
382 
383 enum eeprom_cnfg_mdix {
384 	eeprom_mdix_enabled = 0x0080,
385 };
386 
387 enum eeprom_phy_iface {
388 	NoSuchPhy = 0,
389 	I82553AB,
390 	I82553C,
391 	I82503,
392 	DP83840,
393 	S80C240,
394 	S80C24,
395 	I82555,
396 	DP83840A = 10,
397 };
398 
399 enum eeprom_id {
400 	eeprom_id_wol = 0x0020,
401 };
402 
403 enum eeprom_config_asf {
404 	eeprom_asf = 0x8000,
405 	eeprom_gcl = 0x4000,
406 };
407 
408 enum cb_status {
409 	cb_complete = 0x8000,
410 	cb_ok       = 0x2000,
411 };
412 
413 enum cb_command {
414 	cb_nop    = 0x0000,
415 	cb_iaaddr = 0x0001,
416 	cb_config = 0x0002,
417 	cb_multi  = 0x0003,
418 	cb_tx     = 0x0004,
419 	cb_ucode  = 0x0005,
420 	cb_dump   = 0x0006,
421 	cb_tx_sf  = 0x0008,
422 	cb_cid    = 0x1f00,
423 	cb_i      = 0x2000,
424 	cb_s      = 0x4000,
425 	cb_el     = 0x8000,
426 };
427 
428 struct rfd {
429 	__le16 status;
430 	__le16 command;
431 	__le32 link;
432 	__le32 rbd;
433 	__le16 actual_size;
434 	__le16 size;
435 };
436 
437 struct rx {
438 	struct rx *next, *prev;
439 	struct sk_buff *skb;
440 	dma_addr_t dma_addr;
441 };
442 
443 #if defined(__BIG_ENDIAN_BITFIELD)
444 #define X(a,b)	b,a
445 #else
446 #define X(a,b)	a,b
447 #endif
448 struct config {
449 /*0*/	u8 X(byte_count:6, pad0:2);
450 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
451 /*2*/	u8 adaptive_ifs;
452 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
453 	   term_write_cache_line:1), pad3:4);
454 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
455 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
456 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
457 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
458 	   rx_discard_overruns:1), rx_save_bad_frames:1);
459 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
460 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
461 	   tx_dynamic_tbd:1);
462 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
463 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
464 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
465 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
466 	   loopback:2);
467 /*11*/	u8 X(linear_priority:3, pad11:5);
468 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
469 /*13*/	u8 ip_addr_lo;
470 /*14*/	u8 ip_addr_hi;
471 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
472 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
473 	   pad15_2:1), crs_or_cdt:1);
474 /*16*/	u8 fc_delay_lo;
475 /*17*/	u8 fc_delay_hi;
476 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
477 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
478 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
479 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
480 	   full_duplex_force:1), full_duplex_pin:1);
481 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
482 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
483 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
484 	u8 pad_d102[9];
485 };
486 
487 #define E100_MAX_MULTICAST_ADDRS	64
488 struct multi {
489 	__le16 count;
490 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
491 };
492 
493 /* Important: keep total struct u32-aligned */
494 #define UCODE_SIZE			134
495 struct cb {
496 	__le16 status;
497 	__le16 command;
498 	__le32 link;
499 	union {
500 		u8 iaaddr[ETH_ALEN];
501 		__le32 ucode[UCODE_SIZE];
502 		struct config config;
503 		struct multi multi;
504 		struct {
505 			u32 tbd_array;
506 			u16 tcb_byte_count;
507 			u8 threshold;
508 			u8 tbd_count;
509 			struct {
510 				__le32 buf_addr;
511 				__le16 size;
512 				u16 eol;
513 			} tbd;
514 		} tcb;
515 		__le32 dump_buffer_addr;
516 	} u;
517 	struct cb *next, *prev;
518 	dma_addr_t dma_addr;
519 	struct sk_buff *skb;
520 };
521 
522 enum loopback {
523 	lb_none = 0, lb_mac = 1, lb_phy = 3,
524 };
525 
526 struct stats {
527 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
528 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
529 		tx_multiple_collisions, tx_total_collisions;
530 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
531 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
532 		rx_short_frame_errors;
533 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
534 	__le16 xmt_tco_frames, rcv_tco_frames;
535 	__le32 complete;
536 };
537 
538 struct mem {
539 	struct {
540 		u32 signature;
541 		u32 result;
542 	} selftest;
543 	struct stats stats;
544 	u8 dump_buf[596];
545 };
546 
547 struct param_range {
548 	u32 min;
549 	u32 max;
550 	u32 count;
551 };
552 
553 struct params {
554 	struct param_range rfds;
555 	struct param_range cbs;
556 };
557 
558 struct nic {
559 	/* Begin: frequently used values: keep adjacent for cache effect */
560 	u32 msg_enable				____cacheline_aligned;
561 	struct net_device *netdev;
562 	struct pci_dev *pdev;
563 	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
564 
565 	struct rx *rxs				____cacheline_aligned;
566 	struct rx *rx_to_use;
567 	struct rx *rx_to_clean;
568 	struct rfd blank_rfd;
569 	enum ru_state ru_running;
570 
571 	spinlock_t cb_lock			____cacheline_aligned;
572 	spinlock_t cmd_lock;
573 	struct csr __iomem *csr;
574 	enum scb_cmd_lo cuc_cmd;
575 	unsigned int cbs_avail;
576 	struct napi_struct napi;
577 	struct cb *cbs;
578 	struct cb *cb_to_use;
579 	struct cb *cb_to_send;
580 	struct cb *cb_to_clean;
581 	__le16 tx_command;
582 	/* End: frequently used values: keep adjacent for cache effect */
583 
584 	enum {
585 		ich                = (1 << 0),
586 		promiscuous        = (1 << 1),
587 		multicast_all      = (1 << 2),
588 		wol_magic          = (1 << 3),
589 		ich_10h_workaround = (1 << 4),
590 	} flags					____cacheline_aligned;
591 
592 	enum mac mac;
593 	enum phy phy;
594 	struct params params;
595 	struct timer_list watchdog;
596 	struct timer_list blink_timer;
597 	struct mii_if_info mii;
598 	struct work_struct tx_timeout_task;
599 	enum loopback loopback;
600 
601 	struct mem *mem;
602 	dma_addr_t dma_addr;
603 
604 	struct pci_pool *cbs_pool;
605 	dma_addr_t cbs_dma_addr;
606 	u8 adaptive_ifs;
607 	u8 tx_threshold;
608 	u32 tx_frames;
609 	u32 tx_collisions;
610 	u32 tx_deferred;
611 	u32 tx_single_collisions;
612 	u32 tx_multiple_collisions;
613 	u32 tx_fc_pause;
614 	u32 tx_tco_frames;
615 
616 	u32 rx_fc_pause;
617 	u32 rx_fc_unsupported;
618 	u32 rx_tco_frames;
619 	u32 rx_over_length_errors;
620 
621 	u16 leds;
622 	u16 eeprom_wc;
623 	__le16 eeprom[256];
624 	spinlock_t mdio_lock;
625 	const struct firmware *fw;
626 };
627 
e100_write_flush(struct nic * nic)628 static inline void e100_write_flush(struct nic *nic)
629 {
630 	/* Flush previous PCI writes through intermediate bridges
631 	 * by doing a benign read */
632 	(void)ioread8(&nic->csr->scb.status);
633 }
634 
e100_enable_irq(struct nic * nic)635 static void e100_enable_irq(struct nic *nic)
636 {
637 	unsigned long flags;
638 
639 	spin_lock_irqsave(&nic->cmd_lock, flags);
640 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
641 	e100_write_flush(nic);
642 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
643 }
644 
e100_disable_irq(struct nic * nic)645 static void e100_disable_irq(struct nic *nic)
646 {
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&nic->cmd_lock, flags);
650 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
651 	e100_write_flush(nic);
652 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
653 }
654 
e100_hw_reset(struct nic * nic)655 static void e100_hw_reset(struct nic *nic)
656 {
657 	/* Put CU and RU into idle with a selective reset to get
658 	 * device off of PCI bus */
659 	iowrite32(selective_reset, &nic->csr->port);
660 	e100_write_flush(nic); udelay(20);
661 
662 	/* Now fully reset device */
663 	iowrite32(software_reset, &nic->csr->port);
664 	e100_write_flush(nic); udelay(20);
665 
666 	/* Mask off our interrupt line - it's unmasked after reset */
667 	e100_disable_irq(nic);
668 }
669 
e100_self_test(struct nic * nic)670 static int e100_self_test(struct nic *nic)
671 {
672 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
673 
674 	/* Passing the self-test is a pretty good indication
675 	 * that the device can DMA to/from host memory */
676 
677 	nic->mem->selftest.signature = 0;
678 	nic->mem->selftest.result = 0xFFFFFFFF;
679 
680 	iowrite32(selftest | dma_addr, &nic->csr->port);
681 	e100_write_flush(nic);
682 	/* Wait 10 msec for self-test to complete */
683 	msleep(10);
684 
685 	/* Interrupts are enabled after self-test */
686 	e100_disable_irq(nic);
687 
688 	/* Check results of self-test */
689 	if (nic->mem->selftest.result != 0) {
690 		netif_err(nic, hw, nic->netdev,
691 			  "Self-test failed: result=0x%08X\n",
692 			  nic->mem->selftest.result);
693 		return -ETIMEDOUT;
694 	}
695 	if (nic->mem->selftest.signature == 0) {
696 		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
697 		return -ETIMEDOUT;
698 	}
699 
700 	return 0;
701 }
702 
e100_eeprom_write(struct nic * nic,u16 addr_len,u16 addr,__le16 data)703 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
704 {
705 	u32 cmd_addr_data[3];
706 	u8 ctrl;
707 	int i, j;
708 
709 	/* Three cmds: write/erase enable, write data, write/erase disable */
710 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
711 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
712 		le16_to_cpu(data);
713 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
714 
715 	/* Bit-bang cmds to write word to eeprom */
716 	for (j = 0; j < 3; j++) {
717 
718 		/* Chip select */
719 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
720 		e100_write_flush(nic); udelay(4);
721 
722 		for (i = 31; i >= 0; i--) {
723 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
724 				eecs | eedi : eecs;
725 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
726 			e100_write_flush(nic); udelay(4);
727 
728 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
729 			e100_write_flush(nic); udelay(4);
730 		}
731 		/* Wait 10 msec for cmd to complete */
732 		msleep(10);
733 
734 		/* Chip deselect */
735 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
736 		e100_write_flush(nic); udelay(4);
737 	}
738 };
739 
740 /* General technique stolen from the eepro100 driver - very clever */
e100_eeprom_read(struct nic * nic,u16 * addr_len,u16 addr)741 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
742 {
743 	u32 cmd_addr_data;
744 	u16 data = 0;
745 	u8 ctrl;
746 	int i;
747 
748 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
749 
750 	/* Chip select */
751 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
752 	e100_write_flush(nic); udelay(4);
753 
754 	/* Bit-bang to read word from eeprom */
755 	for (i = 31; i >= 0; i--) {
756 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
757 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
758 		e100_write_flush(nic); udelay(4);
759 
760 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
761 		e100_write_flush(nic); udelay(4);
762 
763 		/* Eeprom drives a dummy zero to EEDO after receiving
764 		 * complete address.  Use this to adjust addr_len. */
765 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
766 		if (!(ctrl & eedo) && i > 16) {
767 			*addr_len -= (i - 16);
768 			i = 17;
769 		}
770 
771 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
772 	}
773 
774 	/* Chip deselect */
775 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
776 	e100_write_flush(nic); udelay(4);
777 
778 	return cpu_to_le16(data);
779 };
780 
781 /* Load entire EEPROM image into driver cache and validate checksum */
e100_eeprom_load(struct nic * nic)782 static int e100_eeprom_load(struct nic *nic)
783 {
784 	u16 addr, addr_len = 8, checksum = 0;
785 
786 	/* Try reading with an 8-bit addr len to discover actual addr len */
787 	e100_eeprom_read(nic, &addr_len, 0);
788 	nic->eeprom_wc = 1 << addr_len;
789 
790 	for (addr = 0; addr < nic->eeprom_wc; addr++) {
791 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
792 		if (addr < nic->eeprom_wc - 1)
793 			checksum += le16_to_cpu(nic->eeprom[addr]);
794 	}
795 
796 	/* The checksum, stored in the last word, is calculated such that
797 	 * the sum of words should be 0xBABA */
798 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
799 		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
800 		if (!eeprom_bad_csum_allow)
801 			return -EAGAIN;
802 	}
803 
804 	return 0;
805 }
806 
807 /* Save (portion of) driver EEPROM cache to device and update checksum */
e100_eeprom_save(struct nic * nic,u16 start,u16 count)808 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
809 {
810 	u16 addr, addr_len = 8, checksum = 0;
811 
812 	/* Try reading with an 8-bit addr len to discover actual addr len */
813 	e100_eeprom_read(nic, &addr_len, 0);
814 	nic->eeprom_wc = 1 << addr_len;
815 
816 	if (start + count >= nic->eeprom_wc)
817 		return -EINVAL;
818 
819 	for (addr = start; addr < start + count; addr++)
820 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
821 
822 	/* The checksum, stored in the last word, is calculated such that
823 	 * the sum of words should be 0xBABA */
824 	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
825 		checksum += le16_to_cpu(nic->eeprom[addr]);
826 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
827 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
828 		nic->eeprom[nic->eeprom_wc - 1]);
829 
830 	return 0;
831 }
832 
833 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
834 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
e100_exec_cmd(struct nic * nic,u8 cmd,dma_addr_t dma_addr)835 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
836 {
837 	unsigned long flags;
838 	unsigned int i;
839 	int err = 0;
840 
841 	spin_lock_irqsave(&nic->cmd_lock, flags);
842 
843 	/* Previous command is accepted when SCB clears */
844 	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
845 		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
846 			break;
847 		cpu_relax();
848 		if (unlikely(i > E100_WAIT_SCB_FAST))
849 			udelay(5);
850 	}
851 	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
852 		err = -EAGAIN;
853 		goto err_unlock;
854 	}
855 
856 	if (unlikely(cmd != cuc_resume))
857 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
858 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
859 
860 err_unlock:
861 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
862 
863 	return err;
864 }
865 
e100_exec_cb(struct nic * nic,struct sk_buff * skb,void (* cb_prepare)(struct nic *,struct cb *,struct sk_buff *))866 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
867 	void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
868 {
869 	struct cb *cb;
870 	unsigned long flags;
871 	int err = 0;
872 
873 	spin_lock_irqsave(&nic->cb_lock, flags);
874 
875 	if (unlikely(!nic->cbs_avail)) {
876 		err = -ENOMEM;
877 		goto err_unlock;
878 	}
879 
880 	cb = nic->cb_to_use;
881 	nic->cb_to_use = cb->next;
882 	nic->cbs_avail--;
883 	cb->skb = skb;
884 
885 	if (unlikely(!nic->cbs_avail))
886 		err = -ENOSPC;
887 
888 	cb_prepare(nic, cb, skb);
889 
890 	/* Order is important otherwise we'll be in a race with h/w:
891 	 * set S-bit in current first, then clear S-bit in previous. */
892 	cb->command |= cpu_to_le16(cb_s);
893 	wmb();
894 	cb->prev->command &= cpu_to_le16(~cb_s);
895 
896 	while (nic->cb_to_send != nic->cb_to_use) {
897 		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
898 			nic->cb_to_send->dma_addr))) {
899 			/* Ok, here's where things get sticky.  It's
900 			 * possible that we can't schedule the command
901 			 * because the controller is too busy, so
902 			 * let's just queue the command and try again
903 			 * when another command is scheduled. */
904 			if (err == -ENOSPC) {
905 				//request a reset
906 				schedule_work(&nic->tx_timeout_task);
907 			}
908 			break;
909 		} else {
910 			nic->cuc_cmd = cuc_resume;
911 			nic->cb_to_send = nic->cb_to_send->next;
912 		}
913 	}
914 
915 err_unlock:
916 	spin_unlock_irqrestore(&nic->cb_lock, flags);
917 
918 	return err;
919 }
920 
mdio_read(struct net_device * netdev,int addr,int reg)921 static int mdio_read(struct net_device *netdev, int addr, int reg)
922 {
923 	struct nic *nic = netdev_priv(netdev);
924 	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
925 }
926 
mdio_write(struct net_device * netdev,int addr,int reg,int data)927 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
928 {
929 	struct nic *nic = netdev_priv(netdev);
930 
931 	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
932 }
933 
934 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
mdio_ctrl_hw(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)935 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
936 {
937 	u32 data_out = 0;
938 	unsigned int i;
939 	unsigned long flags;
940 
941 
942 	/*
943 	 * Stratus87247: we shouldn't be writing the MDI control
944 	 * register until the Ready bit shows True.  Also, since
945 	 * manipulation of the MDI control registers is a multi-step
946 	 * procedure it should be done under lock.
947 	 */
948 	spin_lock_irqsave(&nic->mdio_lock, flags);
949 	for (i = 100; i; --i) {
950 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
951 			break;
952 		udelay(20);
953 	}
954 	if (unlikely(!i)) {
955 		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
956 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
957 		return 0;		/* No way to indicate timeout error */
958 	}
959 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
960 
961 	for (i = 0; i < 100; i++) {
962 		udelay(20);
963 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
964 			break;
965 	}
966 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
967 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
968 		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
969 		     dir == mdi_read ? "READ" : "WRITE",
970 		     addr, reg, data, data_out);
971 	return (u16)data_out;
972 }
973 
974 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
mdio_ctrl_phy_82552_v(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)975 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
976 				 u32 addr,
977 				 u32 dir,
978 				 u32 reg,
979 				 u16 data)
980 {
981 	if ((reg == MII_BMCR) && (dir == mdi_write)) {
982 		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
983 			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
984 							MII_ADVERTISE);
985 
986 			/*
987 			 * Workaround Si issue where sometimes the part will not
988 			 * autoneg to 100Mbps even when advertised.
989 			 */
990 			if (advert & ADVERTISE_100FULL)
991 				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
992 			else if (advert & ADVERTISE_100HALF)
993 				data |= BMCR_SPEED100;
994 		}
995 	}
996 	return mdio_ctrl_hw(nic, addr, dir, reg, data);
997 }
998 
999 /* Fully software-emulated mdio_ctrl() function for cards without
1000  * MII-compliant PHYs.
1001  * For now, this is mainly geared towards 80c24 support; in case of further
1002  * requirements for other types (i82503, ...?) either extend this mechanism
1003  * or split it, whichever is cleaner.
1004  */
mdio_ctrl_phy_mii_emulated(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)1005 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1006 				      u32 addr,
1007 				      u32 dir,
1008 				      u32 reg,
1009 				      u16 data)
1010 {
1011 	/* might need to allocate a netdev_priv'ed register array eventually
1012 	 * to be able to record state changes, but for now
1013 	 * some fully hardcoded register handling ought to be ok I guess. */
1014 
1015 	if (dir == mdi_read) {
1016 		switch (reg) {
1017 		case MII_BMCR:
1018 			/* Auto-negotiation, right? */
1019 			return  BMCR_ANENABLE |
1020 				BMCR_FULLDPLX;
1021 		case MII_BMSR:
1022 			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1023 				BMSR_ANEGCAPABLE |
1024 				BMSR_10FULL;
1025 		case MII_ADVERTISE:
1026 			/* 80c24 is a "combo card" PHY, right? */
1027 			return	ADVERTISE_10HALF |
1028 				ADVERTISE_10FULL;
1029 		default:
1030 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1031 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1032 				     dir == mdi_read ? "READ" : "WRITE",
1033 				     addr, reg, data);
1034 			return 0xFFFF;
1035 		}
1036 	} else {
1037 		switch (reg) {
1038 		default:
1039 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041 				     dir == mdi_read ? "READ" : "WRITE",
1042 				     addr, reg, data);
1043 			return 0xFFFF;
1044 		}
1045 	}
1046 }
e100_phy_supports_mii(struct nic * nic)1047 static inline int e100_phy_supports_mii(struct nic *nic)
1048 {
1049 	/* for now, just check it by comparing whether we
1050 	   are using MII software emulation.
1051 	*/
1052 	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1053 }
1054 
e100_get_defaults(struct nic * nic)1055 static void e100_get_defaults(struct nic *nic)
1056 {
1057 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1058 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1059 
1060 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1061 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1062 	if (nic->mac == mac_unknown)
1063 		nic->mac = mac_82557_D100_A;
1064 
1065 	nic->params.rfds = rfds;
1066 	nic->params.cbs = cbs;
1067 
1068 	/* Quadwords to DMA into FIFO before starting frame transmit */
1069 	nic->tx_threshold = 0xE0;
1070 
1071 	/* no interrupt for every tx completion, delay = 256us if not 557 */
1072 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1073 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1074 
1075 	/* Template for a freshly allocated RFD */
1076 	nic->blank_rfd.command = 0;
1077 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1078 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
1079 
1080 	/* MII setup */
1081 	nic->mii.phy_id_mask = 0x1F;
1082 	nic->mii.reg_num_mask = 0x1F;
1083 	nic->mii.dev = nic->netdev;
1084 	nic->mii.mdio_read = mdio_read;
1085 	nic->mii.mdio_write = mdio_write;
1086 }
1087 
e100_configure(struct nic * nic,struct cb * cb,struct sk_buff * skb)1088 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1089 {
1090 	struct config *config = &cb->u.config;
1091 	u8 *c = (u8 *)config;
1092 
1093 	cb->command = cpu_to_le16(cb_config);
1094 
1095 	memset(config, 0, sizeof(struct config));
1096 
1097 	config->byte_count = 0x16;		/* bytes in this struct */
1098 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1099 	config->direct_rx_dma = 0x1;		/* reserved */
1100 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1101 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1102 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1103 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1104 	if (e100_phy_supports_mii(nic))
1105 		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1106 	config->pad10 = 0x6;
1107 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1108 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1109 	config->ifs = 0x6;			/* x16 = inter frame spacing */
1110 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1111 	config->pad15_1 = 0x1;
1112 	config->pad15_2 = 0x1;
1113 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1114 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1115 	config->tx_padding = 0x1;		/* 1=pad short frames */
1116 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1117 	config->pad18 = 0x1;
1118 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1119 	config->pad20_1 = 0x1F;
1120 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1121 	config->pad21_1 = 0x5;
1122 
1123 	config->adaptive_ifs = nic->adaptive_ifs;
1124 	config->loopback = nic->loopback;
1125 
1126 	if (nic->mii.force_media && nic->mii.full_duplex)
1127 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1128 
1129 	if (nic->flags & promiscuous || nic->loopback) {
1130 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1131 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1132 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1133 	}
1134 
1135 	if (nic->flags & multicast_all)
1136 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1137 
1138 	/* disable WoL when up */
1139 	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1140 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1141 
1142 	if (nic->mac >= mac_82558_D101_A4) {
1143 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1144 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1145 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1146 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1147 		if (nic->mac >= mac_82559_D101M) {
1148 			config->tno_intr = 0x1;		/* TCO stats enable */
1149 			/* Enable TCO in extended config */
1150 			if (nic->mac >= mac_82551_10) {
1151 				config->byte_count = 0x20; /* extended bytes */
1152 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1153 			}
1154 		} else {
1155 			config->standard_stat_counter = 0x0;
1156 		}
1157 	}
1158 
1159 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1160 		     "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1161 		     c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1162 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1163 		     "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1164 		     c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1165 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1166 		     "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1167 		     c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1168 }
1169 
1170 /*************************************************************************
1171 *  CPUSaver parameters
1172 *
1173 *  All CPUSaver parameters are 16-bit literals that are part of a
1174 *  "move immediate value" instruction.  By changing the value of
1175 *  the literal in the instruction before the code is loaded, the
1176 *  driver can change the algorithm.
1177 *
1178 *  INTDELAY - This loads the dead-man timer with its initial value.
1179 *    When this timer expires the interrupt is asserted, and the
1180 *    timer is reset each time a new packet is received.  (see
1181 *    BUNDLEMAX below to set the limit on number of chained packets)
1182 *    The current default is 0x600 or 1536.  Experiments show that
1183 *    the value should probably stay within the 0x200 - 0x1000.
1184 *
1185 *  BUNDLEMAX -
1186 *    This sets the maximum number of frames that will be bundled.  In
1187 *    some situations, such as the TCP windowing algorithm, it may be
1188 *    better to limit the growth of the bundle size than let it go as
1189 *    high as it can, because that could cause too much added latency.
1190 *    The default is six, because this is the number of packets in the
1191 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1192 *    an interrupt for every frame received.  If you do not want to put
1193 *    a limit on the bundle size, set this value to xFFFF.
1194 *
1195 *  BUNDLESMALL -
1196 *    This contains a bit-mask describing the minimum size frame that
1197 *    will be bundled.  The default masks the lower 7 bits, which means
1198 *    that any frame less than 128 bytes in length will not be bundled,
1199 *    but will instead immediately generate an interrupt.  This does
1200 *    not affect the current bundle in any way.  Any frame that is 128
1201 *    bytes or large will be bundled normally.  This feature is meant
1202 *    to provide immediate indication of ACK frames in a TCP environment.
1203 *    Customers were seeing poor performance when a machine with CPUSaver
1204 *    enabled was sending but not receiving.  The delay introduced when
1205 *    the ACKs were received was enough to reduce total throughput, because
1206 *    the sender would sit idle until the ACK was finally seen.
1207 *
1208 *    The current default is 0xFF80, which masks out the lower 7 bits.
1209 *    This means that any frame which is x7F (127) bytes or smaller
1210 *    will cause an immediate interrupt.  Because this value must be a
1211 *    bit mask, there are only a few valid values that can be used.  To
1212 *    turn this feature off, the driver can write the value xFFFF to the
1213 *    lower word of this instruction (in the same way that the other
1214 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1215 *    cause an interrupt to be generated for every frame, because all
1216 *    standard Ethernet frames are <= 2047 bytes in length.
1217 *************************************************************************/
1218 
1219 /* if you wish to disable the ucode functionality, while maintaining the
1220  * workarounds it provides, set the following defines to:
1221  * BUNDLESMALL 0
1222  * BUNDLEMAX 1
1223  * INTDELAY 1
1224  */
1225 #define BUNDLESMALL 1
1226 #define BUNDLEMAX (u16)6
1227 #define INTDELAY (u16)1536 /* 0x600 */
1228 
1229 /* Initialize firmware */
e100_request_firmware(struct nic * nic)1230 static const struct firmware *e100_request_firmware(struct nic *nic)
1231 {
1232 	const char *fw_name;
1233 	const struct firmware *fw = nic->fw;
1234 	u8 timer, bundle, min_size;
1235 	int err = 0;
1236 
1237 	/* do not load u-code for ICH devices */
1238 	if (nic->flags & ich)
1239 		return NULL;
1240 
1241 	/* Search for ucode match against h/w revision */
1242 	if (nic->mac == mac_82559_D101M)
1243 		fw_name = FIRMWARE_D101M;
1244 	else if (nic->mac == mac_82559_D101S)
1245 		fw_name = FIRMWARE_D101S;
1246 	else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
1247 		fw_name = FIRMWARE_D102E;
1248 	else /* No ucode on other devices */
1249 		return NULL;
1250 
1251 	/* If the firmware has not previously been loaded, request a pointer
1252 	 * to it. If it was previously loaded, we are reinitializing the
1253 	 * adapter, possibly in a resume from hibernate, in which case
1254 	 * request_firmware() cannot be used.
1255 	 */
1256 	if (!fw)
1257 		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1258 
1259 	if (err) {
1260 		netif_err(nic, probe, nic->netdev,
1261 			  "Failed to load firmware \"%s\": %d\n",
1262 			  fw_name, err);
1263 		return ERR_PTR(err);
1264 	}
1265 
1266 	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1267 	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1268 	if (fw->size != UCODE_SIZE * 4 + 3) {
1269 		netif_err(nic, probe, nic->netdev,
1270 			  "Firmware \"%s\" has wrong size %zu\n",
1271 			  fw_name, fw->size);
1272 		release_firmware(fw);
1273 		return ERR_PTR(-EINVAL);
1274 	}
1275 
1276 	/* Read timer, bundle and min_size from end of firmware blob */
1277 	timer = fw->data[UCODE_SIZE * 4];
1278 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1279 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1280 
1281 	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1282 	    min_size >= UCODE_SIZE) {
1283 		netif_err(nic, probe, nic->netdev,
1284 			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1285 			  fw_name, timer, bundle, min_size);
1286 		release_firmware(fw);
1287 		return ERR_PTR(-EINVAL);
1288 	}
1289 
1290 	/* OK, firmware is validated and ready to use. Save a pointer
1291 	 * to it in the nic */
1292 	nic->fw = fw;
1293 	return fw;
1294 }
1295 
e100_setup_ucode(struct nic * nic,struct cb * cb,struct sk_buff * skb)1296 static void e100_setup_ucode(struct nic *nic, struct cb *cb,
1297 			     struct sk_buff *skb)
1298 {
1299 	const struct firmware *fw = (void *)skb;
1300 	u8 timer, bundle, min_size;
1301 
1302 	/* It's not a real skb; we just abused the fact that e100_exec_cb
1303 	   will pass it through to here... */
1304 	cb->skb = NULL;
1305 
1306 	/* firmware is stored as little endian already */
1307 	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1308 
1309 	/* Read timer, bundle and min_size from end of firmware blob */
1310 	timer = fw->data[UCODE_SIZE * 4];
1311 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1312 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1313 
1314 	/* Insert user-tunable settings in cb->u.ucode */
1315 	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1316 	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1317 	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1318 	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1319 	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1320 	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1321 
1322 	cb->command = cpu_to_le16(cb_ucode | cb_el);
1323 }
1324 
e100_load_ucode_wait(struct nic * nic)1325 static inline int e100_load_ucode_wait(struct nic *nic)
1326 {
1327 	const struct firmware *fw;
1328 	int err = 0, counter = 50;
1329 	struct cb *cb = nic->cb_to_clean;
1330 
1331 	fw = e100_request_firmware(nic);
1332 	/* If it's NULL, then no ucode is required */
1333 	if (!fw || IS_ERR(fw))
1334 		return PTR_ERR(fw);
1335 
1336 	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1337 		netif_err(nic, probe, nic->netdev,
1338 			  "ucode cmd failed with error %d\n", err);
1339 
1340 	/* must restart cuc */
1341 	nic->cuc_cmd = cuc_start;
1342 
1343 	/* wait for completion */
1344 	e100_write_flush(nic);
1345 	udelay(10);
1346 
1347 	/* wait for possibly (ouch) 500ms */
1348 	while (!(cb->status & cpu_to_le16(cb_complete))) {
1349 		msleep(10);
1350 		if (!--counter) break;
1351 	}
1352 
1353 	/* ack any interrupts, something could have been set */
1354 	iowrite8(~0, &nic->csr->scb.stat_ack);
1355 
1356 	/* if the command failed, or is not OK, notify and return */
1357 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1358 		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1359 		err = -EPERM;
1360 	}
1361 
1362 	return err;
1363 }
1364 
e100_setup_iaaddr(struct nic * nic,struct cb * cb,struct sk_buff * skb)1365 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1366 	struct sk_buff *skb)
1367 {
1368 	cb->command = cpu_to_le16(cb_iaaddr);
1369 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1370 }
1371 
e100_dump(struct nic * nic,struct cb * cb,struct sk_buff * skb)1372 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1373 {
1374 	cb->command = cpu_to_le16(cb_dump);
1375 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1376 		offsetof(struct mem, dump_buf));
1377 }
1378 
e100_phy_check_without_mii(struct nic * nic)1379 static int e100_phy_check_without_mii(struct nic *nic)
1380 {
1381 	u8 phy_type;
1382 	int without_mii;
1383 
1384 	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1385 
1386 	switch (phy_type) {
1387 	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1388 	case I82503: /* Non-MII PHY; UNTESTED! */
1389 	case S80C24: /* Non-MII PHY; tested and working */
1390 		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1391 		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1392 		 * doesn't have a programming interface of any sort.  The
1393 		 * media is sensed automatically based on how the link partner
1394 		 * is configured.  This is, in essence, manual configuration.
1395 		 */
1396 		netif_info(nic, probe, nic->netdev,
1397 			   "found MII-less i82503 or 80c24 or other PHY\n");
1398 
1399 		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1400 		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1401 
1402 		/* these might be needed for certain MII-less cards...
1403 		 * nic->flags |= ich;
1404 		 * nic->flags |= ich_10h_workaround; */
1405 
1406 		without_mii = 1;
1407 		break;
1408 	default:
1409 		without_mii = 0;
1410 		break;
1411 	}
1412 	return without_mii;
1413 }
1414 
1415 #define NCONFIG_AUTO_SWITCH	0x0080
1416 #define MII_NSC_CONG		MII_RESV1
1417 #define NSC_CONG_ENABLE		0x0100
1418 #define NSC_CONG_TXREADY	0x0400
1419 #define ADVERTISE_FC_SUPPORTED	0x0400
e100_phy_init(struct nic * nic)1420 static int e100_phy_init(struct nic *nic)
1421 {
1422 	struct net_device *netdev = nic->netdev;
1423 	u32 addr;
1424 	u16 bmcr, stat, id_lo, id_hi, cong;
1425 
1426 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1427 	for (addr = 0; addr < 32; addr++) {
1428 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1429 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1430 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1431 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1432 		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1433 			break;
1434 	}
1435 	if (addr == 32) {
1436 		/* uhoh, no PHY detected: check whether we seem to be some
1437 		 * weird, rare variant which is *known* to not have any MII.
1438 		 * But do this AFTER MII checking only, since this does
1439 		 * lookup of EEPROM values which may easily be unreliable. */
1440 		if (e100_phy_check_without_mii(nic))
1441 			return 0; /* simply return and hope for the best */
1442 		else {
1443 			/* for unknown cases log a fatal error */
1444 			netif_err(nic, hw, nic->netdev,
1445 				  "Failed to locate any known PHY, aborting\n");
1446 			return -EAGAIN;
1447 		}
1448 	} else
1449 		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1450 			     "phy_addr = %d\n", nic->mii.phy_id);
1451 
1452 	/* Get phy ID */
1453 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1454 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1455 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1456 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1457 		     "phy ID = 0x%08X\n", nic->phy);
1458 
1459 	/* Select the phy and isolate the rest */
1460 	for (addr = 0; addr < 32; addr++) {
1461 		if (addr != nic->mii.phy_id) {
1462 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1463 		} else if (nic->phy != phy_82552_v) {
1464 			bmcr = mdio_read(netdev, addr, MII_BMCR);
1465 			mdio_write(netdev, addr, MII_BMCR,
1466 				bmcr & ~BMCR_ISOLATE);
1467 		}
1468 	}
1469 	/*
1470 	 * Workaround for 82552:
1471 	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1472 	 * other phy_id's) using bmcr value from addr discovery loop above.
1473 	 */
1474 	if (nic->phy == phy_82552_v)
1475 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1476 			bmcr & ~BMCR_ISOLATE);
1477 
1478 	/* Handle National tx phys */
1479 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1480 	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1481 		/* Disable congestion control */
1482 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1483 		cong |= NSC_CONG_TXREADY;
1484 		cong &= ~NSC_CONG_ENABLE;
1485 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1486 	}
1487 
1488 	if (nic->phy == phy_82552_v) {
1489 		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1490 
1491 		/* assign special tweaked mdio_ctrl() function */
1492 		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1493 
1494 		/* Workaround Si not advertising flow-control during autoneg */
1495 		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1496 		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1497 
1498 		/* Reset for the above changes to take effect */
1499 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1500 		bmcr |= BMCR_RESET;
1501 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1502 	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1503 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1504 		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1505 		/* enable/disable MDI/MDI-X auto-switching. */
1506 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1507 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1508 	}
1509 
1510 	return 0;
1511 }
1512 
e100_hw_init(struct nic * nic)1513 static int e100_hw_init(struct nic *nic)
1514 {
1515 	int err;
1516 
1517 	e100_hw_reset(nic);
1518 
1519 	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1520 	if (!in_interrupt() && (err = e100_self_test(nic)))
1521 		return err;
1522 
1523 	if ((err = e100_phy_init(nic)))
1524 		return err;
1525 	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1526 		return err;
1527 	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1528 		return err;
1529 	if ((err = e100_load_ucode_wait(nic)))
1530 		return err;
1531 	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1532 		return err;
1533 	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1534 		return err;
1535 	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1536 		nic->dma_addr + offsetof(struct mem, stats))))
1537 		return err;
1538 	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1539 		return err;
1540 
1541 	e100_disable_irq(nic);
1542 
1543 	return 0;
1544 }
1545 
e100_multi(struct nic * nic,struct cb * cb,struct sk_buff * skb)1546 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1547 {
1548 	struct net_device *netdev = nic->netdev;
1549 	struct netdev_hw_addr *ha;
1550 	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1551 
1552 	cb->command = cpu_to_le16(cb_multi);
1553 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1554 	i = 0;
1555 	netdev_for_each_mc_addr(ha, netdev) {
1556 		if (i == count)
1557 			break;
1558 		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1559 			ETH_ALEN);
1560 	}
1561 }
1562 
e100_set_multicast_list(struct net_device * netdev)1563 static void e100_set_multicast_list(struct net_device *netdev)
1564 {
1565 	struct nic *nic = netdev_priv(netdev);
1566 
1567 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1568 		     "mc_count=%d, flags=0x%04X\n",
1569 		     netdev_mc_count(netdev), netdev->flags);
1570 
1571 	if (netdev->flags & IFF_PROMISC)
1572 		nic->flags |= promiscuous;
1573 	else
1574 		nic->flags &= ~promiscuous;
1575 
1576 	if (netdev->flags & IFF_ALLMULTI ||
1577 		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1578 		nic->flags |= multicast_all;
1579 	else
1580 		nic->flags &= ~multicast_all;
1581 
1582 	e100_exec_cb(nic, NULL, e100_configure);
1583 	e100_exec_cb(nic, NULL, e100_multi);
1584 }
1585 
e100_update_stats(struct nic * nic)1586 static void e100_update_stats(struct nic *nic)
1587 {
1588 	struct net_device *dev = nic->netdev;
1589 	struct net_device_stats *ns = &dev->stats;
1590 	struct stats *s = &nic->mem->stats;
1591 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1592 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1593 		&s->complete;
1594 
1595 	/* Device's stats reporting may take several microseconds to
1596 	 * complete, so we're always waiting for results of the
1597 	 * previous command. */
1598 
1599 	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1600 		*complete = 0;
1601 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1602 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1603 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1604 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1605 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1606 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1607 		ns->collisions += nic->tx_collisions;
1608 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1609 			le32_to_cpu(s->tx_lost_crs);
1610 		ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1611 			nic->rx_over_length_errors;
1612 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1613 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1614 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1615 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1616 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1617 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1618 			le32_to_cpu(s->rx_alignment_errors) +
1619 			le32_to_cpu(s->rx_short_frame_errors) +
1620 			le32_to_cpu(s->rx_cdt_errors);
1621 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1622 		nic->tx_single_collisions +=
1623 			le32_to_cpu(s->tx_single_collisions);
1624 		nic->tx_multiple_collisions +=
1625 			le32_to_cpu(s->tx_multiple_collisions);
1626 		if (nic->mac >= mac_82558_D101_A4) {
1627 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1628 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1629 			nic->rx_fc_unsupported +=
1630 				le32_to_cpu(s->fc_rcv_unsupported);
1631 			if (nic->mac >= mac_82559_D101M) {
1632 				nic->tx_tco_frames +=
1633 					le16_to_cpu(s->xmt_tco_frames);
1634 				nic->rx_tco_frames +=
1635 					le16_to_cpu(s->rcv_tco_frames);
1636 			}
1637 		}
1638 	}
1639 
1640 
1641 	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1642 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1643 			     "exec cuc_dump_reset failed\n");
1644 }
1645 
e100_adjust_adaptive_ifs(struct nic * nic,int speed,int duplex)1646 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1647 {
1648 	/* Adjust inter-frame-spacing (IFS) between two transmits if
1649 	 * we're getting collisions on a half-duplex connection. */
1650 
1651 	if (duplex == DUPLEX_HALF) {
1652 		u32 prev = nic->adaptive_ifs;
1653 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1654 
1655 		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1656 		   (nic->tx_frames > min_frames)) {
1657 			if (nic->adaptive_ifs < 60)
1658 				nic->adaptive_ifs += 5;
1659 		} else if (nic->tx_frames < min_frames) {
1660 			if (nic->adaptive_ifs >= 5)
1661 				nic->adaptive_ifs -= 5;
1662 		}
1663 		if (nic->adaptive_ifs != prev)
1664 			e100_exec_cb(nic, NULL, e100_configure);
1665 	}
1666 }
1667 
e100_watchdog(unsigned long data)1668 static void e100_watchdog(unsigned long data)
1669 {
1670 	struct nic *nic = (struct nic *)data;
1671 	struct ethtool_cmd cmd;
1672 
1673 	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1674 		     "right now = %ld\n", jiffies);
1675 
1676 	/* mii library handles link maintenance tasks */
1677 
1678 	mii_ethtool_gset(&nic->mii, &cmd);
1679 
1680 	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1681 		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1682 			    cmd.speed == SPEED_100 ? 100 : 10,
1683 			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1684 	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1685 		netdev_info(nic->netdev, "NIC Link is Down\n");
1686 	}
1687 
1688 	mii_check_link(&nic->mii);
1689 
1690 	/* Software generated interrupt to recover from (rare) Rx
1691 	 * allocation failure.
1692 	 * Unfortunately have to use a spinlock to not re-enable interrupts
1693 	 * accidentally, due to hardware that shares a register between the
1694 	 * interrupt mask bit and the SW Interrupt generation bit */
1695 	spin_lock_irq(&nic->cmd_lock);
1696 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1697 	e100_write_flush(nic);
1698 	spin_unlock_irq(&nic->cmd_lock);
1699 
1700 	e100_update_stats(nic);
1701 	e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1702 
1703 	if (nic->mac <= mac_82557_D100_C)
1704 		/* Issue a multicast command to workaround a 557 lock up */
1705 		e100_set_multicast_list(nic->netdev);
1706 
1707 	if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1708 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1709 		nic->flags |= ich_10h_workaround;
1710 	else
1711 		nic->flags &= ~ich_10h_workaround;
1712 
1713 	mod_timer(&nic->watchdog,
1714 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1715 }
1716 
e100_xmit_prepare(struct nic * nic,struct cb * cb,struct sk_buff * skb)1717 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1718 	struct sk_buff *skb)
1719 {
1720 	cb->command = nic->tx_command;
1721 	/* interrupt every 16 packets regardless of delay */
1722 	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1723 		cb->command |= cpu_to_le16(cb_i);
1724 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1725 	cb->u.tcb.tcb_byte_count = 0;
1726 	cb->u.tcb.threshold = nic->tx_threshold;
1727 	cb->u.tcb.tbd_count = 1;
1728 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1729 		skb->data, skb->len, PCI_DMA_TODEVICE));
1730 	/* check for mapping failure? */
1731 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1732 }
1733 
e100_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1734 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1735 				   struct net_device *netdev)
1736 {
1737 	struct nic *nic = netdev_priv(netdev);
1738 	int err;
1739 
1740 	if (nic->flags & ich_10h_workaround) {
1741 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1742 		   Issue a NOP command followed by a 1us delay before
1743 		   issuing the Tx command. */
1744 		if (e100_exec_cmd(nic, cuc_nop, 0))
1745 			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1746 				     "exec cuc_nop failed\n");
1747 		udelay(1);
1748 	}
1749 
1750 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1751 
1752 	switch (err) {
1753 	case -ENOSPC:
1754 		/* We queued the skb, but now we're out of space. */
1755 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1756 			     "No space for CB\n");
1757 		netif_stop_queue(netdev);
1758 		break;
1759 	case -ENOMEM:
1760 		/* This is a hard error - log it. */
1761 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1762 			     "Out of Tx resources, returning skb\n");
1763 		netif_stop_queue(netdev);
1764 		return NETDEV_TX_BUSY;
1765 	}
1766 
1767 	return NETDEV_TX_OK;
1768 }
1769 
e100_tx_clean(struct nic * nic)1770 static int e100_tx_clean(struct nic *nic)
1771 {
1772 	struct net_device *dev = nic->netdev;
1773 	struct cb *cb;
1774 	int tx_cleaned = 0;
1775 
1776 	spin_lock(&nic->cb_lock);
1777 
1778 	/* Clean CBs marked complete */
1779 	for (cb = nic->cb_to_clean;
1780 	    cb->status & cpu_to_le16(cb_complete);
1781 	    cb = nic->cb_to_clean = cb->next) {
1782 		rmb(); /* read skb after status */
1783 		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1784 			     "cb[%d]->status = 0x%04X\n",
1785 			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1786 			     cb->status);
1787 
1788 		if (likely(cb->skb != NULL)) {
1789 			dev->stats.tx_packets++;
1790 			dev->stats.tx_bytes += cb->skb->len;
1791 
1792 			pci_unmap_single(nic->pdev,
1793 				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1794 				le16_to_cpu(cb->u.tcb.tbd.size),
1795 				PCI_DMA_TODEVICE);
1796 			dev_kfree_skb_any(cb->skb);
1797 			cb->skb = NULL;
1798 			tx_cleaned = 1;
1799 		}
1800 		cb->status = 0;
1801 		nic->cbs_avail++;
1802 	}
1803 
1804 	spin_unlock(&nic->cb_lock);
1805 
1806 	/* Recover from running out of Tx resources in xmit_frame */
1807 	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1808 		netif_wake_queue(nic->netdev);
1809 
1810 	return tx_cleaned;
1811 }
1812 
e100_clean_cbs(struct nic * nic)1813 static void e100_clean_cbs(struct nic *nic)
1814 {
1815 	if (nic->cbs) {
1816 		while (nic->cbs_avail != nic->params.cbs.count) {
1817 			struct cb *cb = nic->cb_to_clean;
1818 			if (cb->skb) {
1819 				pci_unmap_single(nic->pdev,
1820 					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1821 					le16_to_cpu(cb->u.tcb.tbd.size),
1822 					PCI_DMA_TODEVICE);
1823 				dev_kfree_skb(cb->skb);
1824 			}
1825 			nic->cb_to_clean = nic->cb_to_clean->next;
1826 			nic->cbs_avail++;
1827 		}
1828 		pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1829 		nic->cbs = NULL;
1830 		nic->cbs_avail = 0;
1831 	}
1832 	nic->cuc_cmd = cuc_start;
1833 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1834 		nic->cbs;
1835 }
1836 
e100_alloc_cbs(struct nic * nic)1837 static int e100_alloc_cbs(struct nic *nic)
1838 {
1839 	struct cb *cb;
1840 	unsigned int i, count = nic->params.cbs.count;
1841 
1842 	nic->cuc_cmd = cuc_start;
1843 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1844 	nic->cbs_avail = 0;
1845 
1846 	nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1847 				  &nic->cbs_dma_addr);
1848 	if (!nic->cbs)
1849 		return -ENOMEM;
1850 	memset(nic->cbs, 0, count * sizeof(struct cb));
1851 
1852 	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1853 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1854 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1855 
1856 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1857 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1858 			((i+1) % count) * sizeof(struct cb));
1859 	}
1860 
1861 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1862 	nic->cbs_avail = count;
1863 
1864 	return 0;
1865 }
1866 
e100_start_receiver(struct nic * nic,struct rx * rx)1867 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1868 {
1869 	if (!nic->rxs) return;
1870 	if (RU_SUSPENDED != nic->ru_running) return;
1871 
1872 	/* handle init time starts */
1873 	if (!rx) rx = nic->rxs;
1874 
1875 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1876 	if (rx->skb) {
1877 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1878 		nic->ru_running = RU_RUNNING;
1879 	}
1880 }
1881 
1882 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
e100_rx_alloc_skb(struct nic * nic,struct rx * rx)1883 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1884 {
1885 	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1886 		return -ENOMEM;
1887 
1888 	/* Init, and map the RFD. */
1889 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1890 	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1891 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1892 
1893 	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1894 		dev_kfree_skb_any(rx->skb);
1895 		rx->skb = NULL;
1896 		rx->dma_addr = 0;
1897 		return -ENOMEM;
1898 	}
1899 
1900 	/* Link the RFD to end of RFA by linking previous RFD to
1901 	 * this one.  We are safe to touch the previous RFD because
1902 	 * it is protected by the before last buffer's el bit being set */
1903 	if (rx->prev->skb) {
1904 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1905 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1906 		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1907 			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1908 	}
1909 
1910 	return 0;
1911 }
1912 
e100_rx_indicate(struct nic * nic,struct rx * rx,unsigned int * work_done,unsigned int work_to_do)1913 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1914 	unsigned int *work_done, unsigned int work_to_do)
1915 {
1916 	struct net_device *dev = nic->netdev;
1917 	struct sk_buff *skb = rx->skb;
1918 	struct rfd *rfd = (struct rfd *)skb->data;
1919 	u16 rfd_status, actual_size;
1920 
1921 	if (unlikely(work_done && *work_done >= work_to_do))
1922 		return -EAGAIN;
1923 
1924 	/* Need to sync before taking a peek at cb_complete bit */
1925 	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1926 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1927 	rfd_status = le16_to_cpu(rfd->status);
1928 
1929 	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1930 		     "status=0x%04X\n", rfd_status);
1931 	rmb(); /* read size after status bit */
1932 
1933 	/* If data isn't ready, nothing to indicate */
1934 	if (unlikely(!(rfd_status & cb_complete))) {
1935 		/* If the next buffer has the el bit, but we think the receiver
1936 		 * is still running, check to see if it really stopped while
1937 		 * we had interrupts off.
1938 		 * This allows for a fast restart without re-enabling
1939 		 * interrupts */
1940 		if ((le16_to_cpu(rfd->command) & cb_el) &&
1941 		    (RU_RUNNING == nic->ru_running))
1942 
1943 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1944 				nic->ru_running = RU_SUSPENDED;
1945 		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1946 					       sizeof(struct rfd),
1947 					       PCI_DMA_FROMDEVICE);
1948 		return -ENODATA;
1949 	}
1950 
1951 	/* Get actual data size */
1952 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1953 	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1954 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1955 
1956 	/* Get data */
1957 	pci_unmap_single(nic->pdev, rx->dma_addr,
1958 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1959 
1960 	/* If this buffer has the el bit, but we think the receiver
1961 	 * is still running, check to see if it really stopped while
1962 	 * we had interrupts off.
1963 	 * This allows for a fast restart without re-enabling interrupts.
1964 	 * This can happen when the RU sees the size change but also sees
1965 	 * the el bit set. */
1966 	if ((le16_to_cpu(rfd->command) & cb_el) &&
1967 	    (RU_RUNNING == nic->ru_running)) {
1968 
1969 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
1970 		nic->ru_running = RU_SUSPENDED;
1971 	}
1972 
1973 	/* Pull off the RFD and put the actual data (minus eth hdr) */
1974 	skb_reserve(skb, sizeof(struct rfd));
1975 	skb_put(skb, actual_size);
1976 	skb->protocol = eth_type_trans(skb, nic->netdev);
1977 
1978 	if (unlikely(!(rfd_status & cb_ok))) {
1979 		/* Don't indicate if hardware indicates errors */
1980 		dev_kfree_skb_any(skb);
1981 	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1982 		/* Don't indicate oversized frames */
1983 		nic->rx_over_length_errors++;
1984 		dev_kfree_skb_any(skb);
1985 	} else {
1986 		dev->stats.rx_packets++;
1987 		dev->stats.rx_bytes += actual_size;
1988 		netif_receive_skb(skb);
1989 		if (work_done)
1990 			(*work_done)++;
1991 	}
1992 
1993 	rx->skb = NULL;
1994 
1995 	return 0;
1996 }
1997 
e100_rx_clean(struct nic * nic,unsigned int * work_done,unsigned int work_to_do)1998 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1999 	unsigned int work_to_do)
2000 {
2001 	struct rx *rx;
2002 	int restart_required = 0, err = 0;
2003 	struct rx *old_before_last_rx, *new_before_last_rx;
2004 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2005 
2006 	/* Indicate newly arrived packets */
2007 	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2008 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2009 		/* Hit quota or no more to clean */
2010 		if (-EAGAIN == err || -ENODATA == err)
2011 			break;
2012 	}
2013 
2014 
2015 	/* On EAGAIN, hit quota so have more work to do, restart once
2016 	 * cleanup is complete.
2017 	 * Else, are we already rnr? then pay attention!!! this ensures that
2018 	 * the state machine progression never allows a start with a
2019 	 * partially cleaned list, avoiding a race between hardware
2020 	 * and rx_to_clean when in NAPI mode */
2021 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2022 		restart_required = 1;
2023 
2024 	old_before_last_rx = nic->rx_to_use->prev->prev;
2025 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2026 
2027 	/* Alloc new skbs to refill list */
2028 	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2029 		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2030 			break; /* Better luck next time (see watchdog) */
2031 	}
2032 
2033 	new_before_last_rx = nic->rx_to_use->prev->prev;
2034 	if (new_before_last_rx != old_before_last_rx) {
2035 		/* Set the el-bit on the buffer that is before the last buffer.
2036 		 * This lets us update the next pointer on the last buffer
2037 		 * without worrying about hardware touching it.
2038 		 * We set the size to 0 to prevent hardware from touching this
2039 		 * buffer.
2040 		 * When the hardware hits the before last buffer with el-bit
2041 		 * and size of 0, it will RNR interrupt, the RUS will go into
2042 		 * the No Resources state.  It will not complete nor write to
2043 		 * this buffer. */
2044 		new_before_last_rfd =
2045 			(struct rfd *)new_before_last_rx->skb->data;
2046 		new_before_last_rfd->size = 0;
2047 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2048 		pci_dma_sync_single_for_device(nic->pdev,
2049 			new_before_last_rx->dma_addr, sizeof(struct rfd),
2050 			PCI_DMA_BIDIRECTIONAL);
2051 
2052 		/* Now that we have a new stopping point, we can clear the old
2053 		 * stopping point.  We must sync twice to get the proper
2054 		 * ordering on the hardware side of things. */
2055 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2056 		pci_dma_sync_single_for_device(nic->pdev,
2057 			old_before_last_rx->dma_addr, sizeof(struct rfd),
2058 			PCI_DMA_BIDIRECTIONAL);
2059 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
2060 		pci_dma_sync_single_for_device(nic->pdev,
2061 			old_before_last_rx->dma_addr, sizeof(struct rfd),
2062 			PCI_DMA_BIDIRECTIONAL);
2063 	}
2064 
2065 	if (restart_required) {
2066 		// ack the rnr?
2067 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2068 		e100_start_receiver(nic, nic->rx_to_clean);
2069 		if (work_done)
2070 			(*work_done)++;
2071 	}
2072 }
2073 
e100_rx_clean_list(struct nic * nic)2074 static void e100_rx_clean_list(struct nic *nic)
2075 {
2076 	struct rx *rx;
2077 	unsigned int i, count = nic->params.rfds.count;
2078 
2079 	nic->ru_running = RU_UNINITIALIZED;
2080 
2081 	if (nic->rxs) {
2082 		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2083 			if (rx->skb) {
2084 				pci_unmap_single(nic->pdev, rx->dma_addr,
2085 					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2086 				dev_kfree_skb(rx->skb);
2087 			}
2088 		}
2089 		kfree(nic->rxs);
2090 		nic->rxs = NULL;
2091 	}
2092 
2093 	nic->rx_to_use = nic->rx_to_clean = NULL;
2094 }
2095 
e100_rx_alloc_list(struct nic * nic)2096 static int e100_rx_alloc_list(struct nic *nic)
2097 {
2098 	struct rx *rx;
2099 	unsigned int i, count = nic->params.rfds.count;
2100 	struct rfd *before_last;
2101 
2102 	nic->rx_to_use = nic->rx_to_clean = NULL;
2103 	nic->ru_running = RU_UNINITIALIZED;
2104 
2105 	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2106 		return -ENOMEM;
2107 
2108 	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2109 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2110 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2111 		if (e100_rx_alloc_skb(nic, rx)) {
2112 			e100_rx_clean_list(nic);
2113 			return -ENOMEM;
2114 		}
2115 	}
2116 	/* Set the el-bit on the buffer that is before the last buffer.
2117 	 * This lets us update the next pointer on the last buffer without
2118 	 * worrying about hardware touching it.
2119 	 * We set the size to 0 to prevent hardware from touching this buffer.
2120 	 * When the hardware hits the before last buffer with el-bit and size
2121 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2122 	 * state.  It will not complete nor write to this buffer. */
2123 	rx = nic->rxs->prev->prev;
2124 	before_last = (struct rfd *)rx->skb->data;
2125 	before_last->command |= cpu_to_le16(cb_el);
2126 	before_last->size = 0;
2127 	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2128 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2129 
2130 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2131 	nic->ru_running = RU_SUSPENDED;
2132 
2133 	return 0;
2134 }
2135 
e100_intr(int irq,void * dev_id)2136 static irqreturn_t e100_intr(int irq, void *dev_id)
2137 {
2138 	struct net_device *netdev = dev_id;
2139 	struct nic *nic = netdev_priv(netdev);
2140 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2141 
2142 	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2143 		     "stat_ack = 0x%02X\n", stat_ack);
2144 
2145 	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2146 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2147 		return IRQ_NONE;
2148 
2149 	/* Ack interrupt(s) */
2150 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2151 
2152 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2153 	if (stat_ack & stat_ack_rnr)
2154 		nic->ru_running = RU_SUSPENDED;
2155 
2156 	if (likely(napi_schedule_prep(&nic->napi))) {
2157 		e100_disable_irq(nic);
2158 		__napi_schedule(&nic->napi);
2159 	}
2160 
2161 	return IRQ_HANDLED;
2162 }
2163 
e100_poll(struct napi_struct * napi,int budget)2164 static int e100_poll(struct napi_struct *napi, int budget)
2165 {
2166 	struct nic *nic = container_of(napi, struct nic, napi);
2167 	unsigned int work_done = 0;
2168 
2169 	e100_rx_clean(nic, &work_done, budget);
2170 	e100_tx_clean(nic);
2171 
2172 	/* If budget not fully consumed, exit the polling mode */
2173 	if (work_done < budget) {
2174 		napi_complete(napi);
2175 		e100_enable_irq(nic);
2176 	}
2177 
2178 	return work_done;
2179 }
2180 
2181 #ifdef CONFIG_NET_POLL_CONTROLLER
e100_netpoll(struct net_device * netdev)2182 static void e100_netpoll(struct net_device *netdev)
2183 {
2184 	struct nic *nic = netdev_priv(netdev);
2185 
2186 	e100_disable_irq(nic);
2187 	e100_intr(nic->pdev->irq, netdev);
2188 	e100_tx_clean(nic);
2189 	e100_enable_irq(nic);
2190 }
2191 #endif
2192 
e100_set_mac_address(struct net_device * netdev,void * p)2193 static int e100_set_mac_address(struct net_device *netdev, void *p)
2194 {
2195 	struct nic *nic = netdev_priv(netdev);
2196 	struct sockaddr *addr = p;
2197 
2198 	if (!is_valid_ether_addr(addr->sa_data))
2199 		return -EADDRNOTAVAIL;
2200 
2201 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2202 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2203 
2204 	return 0;
2205 }
2206 
e100_change_mtu(struct net_device * netdev,int new_mtu)2207 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2208 {
2209 	if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2210 		return -EINVAL;
2211 	netdev->mtu = new_mtu;
2212 	return 0;
2213 }
2214 
e100_asf(struct nic * nic)2215 static int e100_asf(struct nic *nic)
2216 {
2217 	/* ASF can be enabled from eeprom */
2218 	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2219 	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2220 	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2221 	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2222 }
2223 
e100_up(struct nic * nic)2224 static int e100_up(struct nic *nic)
2225 {
2226 	int err;
2227 
2228 	if ((err = e100_rx_alloc_list(nic)))
2229 		return err;
2230 	if ((err = e100_alloc_cbs(nic)))
2231 		goto err_rx_clean_list;
2232 	if ((err = e100_hw_init(nic)))
2233 		goto err_clean_cbs;
2234 	e100_set_multicast_list(nic->netdev);
2235 	e100_start_receiver(nic, NULL);
2236 	mod_timer(&nic->watchdog, jiffies);
2237 	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2238 		nic->netdev->name, nic->netdev)))
2239 		goto err_no_irq;
2240 	netif_wake_queue(nic->netdev);
2241 	napi_enable(&nic->napi);
2242 	/* enable ints _after_ enabling poll, preventing a race between
2243 	 * disable ints+schedule */
2244 	e100_enable_irq(nic);
2245 	return 0;
2246 
2247 err_no_irq:
2248 	del_timer_sync(&nic->watchdog);
2249 err_clean_cbs:
2250 	e100_clean_cbs(nic);
2251 err_rx_clean_list:
2252 	e100_rx_clean_list(nic);
2253 	return err;
2254 }
2255 
e100_down(struct nic * nic)2256 static void e100_down(struct nic *nic)
2257 {
2258 	/* wait here for poll to complete */
2259 	napi_disable(&nic->napi);
2260 	netif_stop_queue(nic->netdev);
2261 	e100_hw_reset(nic);
2262 	free_irq(nic->pdev->irq, nic->netdev);
2263 	del_timer_sync(&nic->watchdog);
2264 	netif_carrier_off(nic->netdev);
2265 	e100_clean_cbs(nic);
2266 	e100_rx_clean_list(nic);
2267 }
2268 
e100_tx_timeout(struct net_device * netdev)2269 static void e100_tx_timeout(struct net_device *netdev)
2270 {
2271 	struct nic *nic = netdev_priv(netdev);
2272 
2273 	/* Reset outside of interrupt context, to avoid request_irq
2274 	 * in interrupt context */
2275 	schedule_work(&nic->tx_timeout_task);
2276 }
2277 
e100_tx_timeout_task(struct work_struct * work)2278 static void e100_tx_timeout_task(struct work_struct *work)
2279 {
2280 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2281 	struct net_device *netdev = nic->netdev;
2282 
2283 	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2284 		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2285 
2286 	rtnl_lock();
2287 	if (netif_running(netdev)) {
2288 		e100_down(netdev_priv(netdev));
2289 		e100_up(netdev_priv(netdev));
2290 	}
2291 	rtnl_unlock();
2292 }
2293 
e100_loopback_test(struct nic * nic,enum loopback loopback_mode)2294 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2295 {
2296 	int err;
2297 	struct sk_buff *skb;
2298 
2299 	/* Use driver resources to perform internal MAC or PHY
2300 	 * loopback test.  A single packet is prepared and transmitted
2301 	 * in loopback mode, and the test passes if the received
2302 	 * packet compares byte-for-byte to the transmitted packet. */
2303 
2304 	if ((err = e100_rx_alloc_list(nic)))
2305 		return err;
2306 	if ((err = e100_alloc_cbs(nic)))
2307 		goto err_clean_rx;
2308 
2309 	/* ICH PHY loopback is broken so do MAC loopback instead */
2310 	if (nic->flags & ich && loopback_mode == lb_phy)
2311 		loopback_mode = lb_mac;
2312 
2313 	nic->loopback = loopback_mode;
2314 	if ((err = e100_hw_init(nic)))
2315 		goto err_loopback_none;
2316 
2317 	if (loopback_mode == lb_phy)
2318 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2319 			BMCR_LOOPBACK);
2320 
2321 	e100_start_receiver(nic, NULL);
2322 
2323 	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2324 		err = -ENOMEM;
2325 		goto err_loopback_none;
2326 	}
2327 	skb_put(skb, ETH_DATA_LEN);
2328 	memset(skb->data, 0xFF, ETH_DATA_LEN);
2329 	e100_xmit_frame(skb, nic->netdev);
2330 
2331 	msleep(10);
2332 
2333 	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2334 			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2335 
2336 	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2337 	   skb->data, ETH_DATA_LEN))
2338 		err = -EAGAIN;
2339 
2340 err_loopback_none:
2341 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2342 	nic->loopback = lb_none;
2343 	e100_clean_cbs(nic);
2344 	e100_hw_reset(nic);
2345 err_clean_rx:
2346 	e100_rx_clean_list(nic);
2347 	return err;
2348 }
2349 
2350 #define MII_LED_CONTROL	0x1B
2351 #define E100_82552_LED_OVERRIDE 0x19
2352 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2353 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
e100_blink_led(unsigned long data)2354 static void e100_blink_led(unsigned long data)
2355 {
2356 	struct nic *nic = (struct nic *)data;
2357 	enum led_state {
2358 		led_on     = 0x01,
2359 		led_off    = 0x04,
2360 		led_on_559 = 0x05,
2361 		led_on_557 = 0x07,
2362 	};
2363 	u16 led_reg = MII_LED_CONTROL;
2364 
2365 	if (nic->phy == phy_82552_v) {
2366 		led_reg = E100_82552_LED_OVERRIDE;
2367 
2368 		nic->leds = (nic->leds == E100_82552_LED_ON) ?
2369 		            E100_82552_LED_OFF : E100_82552_LED_ON;
2370 	} else {
2371 		nic->leds = (nic->leds & led_on) ? led_off :
2372 		            (nic->mac < mac_82559_D101M) ? led_on_557 :
2373 		            led_on_559;
2374 	}
2375 	mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
2376 	mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2377 }
2378 
e100_get_settings(struct net_device * netdev,struct ethtool_cmd * cmd)2379 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2380 {
2381 	struct nic *nic = netdev_priv(netdev);
2382 	return mii_ethtool_gset(&nic->mii, cmd);
2383 }
2384 
e100_set_settings(struct net_device * netdev,struct ethtool_cmd * cmd)2385 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2386 {
2387 	struct nic *nic = netdev_priv(netdev);
2388 	int err;
2389 
2390 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2391 	err = mii_ethtool_sset(&nic->mii, cmd);
2392 	e100_exec_cb(nic, NULL, e100_configure);
2393 
2394 	return err;
2395 }
2396 
e100_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * info)2397 static void e100_get_drvinfo(struct net_device *netdev,
2398 	struct ethtool_drvinfo *info)
2399 {
2400 	struct nic *nic = netdev_priv(netdev);
2401 	strcpy(info->driver, DRV_NAME);
2402 	strcpy(info->version, DRV_VERSION);
2403 	strcpy(info->fw_version, "N/A");
2404 	strcpy(info->bus_info, pci_name(nic->pdev));
2405 }
2406 
2407 #define E100_PHY_REGS 0x1C
e100_get_regs_len(struct net_device * netdev)2408 static int e100_get_regs_len(struct net_device *netdev)
2409 {
2410 	struct nic *nic = netdev_priv(netdev);
2411 	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2412 }
2413 
e100_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)2414 static void e100_get_regs(struct net_device *netdev,
2415 	struct ethtool_regs *regs, void *p)
2416 {
2417 	struct nic *nic = netdev_priv(netdev);
2418 	u32 *buff = p;
2419 	int i;
2420 
2421 	regs->version = (1 << 24) | nic->pdev->revision;
2422 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2423 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2424 		ioread16(&nic->csr->scb.status);
2425 	for (i = E100_PHY_REGS; i >= 0; i--)
2426 		buff[1 + E100_PHY_REGS - i] =
2427 			mdio_read(netdev, nic->mii.phy_id, i);
2428 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2429 	e100_exec_cb(nic, NULL, e100_dump);
2430 	msleep(10);
2431 	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2432 		sizeof(nic->mem->dump_buf));
2433 }
2434 
e100_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2435 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2436 {
2437 	struct nic *nic = netdev_priv(netdev);
2438 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2439 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2440 }
2441 
e100_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2442 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2443 {
2444 	struct nic *nic = netdev_priv(netdev);
2445 
2446 	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2447 	    !device_can_wakeup(&nic->pdev->dev))
2448 		return -EOPNOTSUPP;
2449 
2450 	if (wol->wolopts)
2451 		nic->flags |= wol_magic;
2452 	else
2453 		nic->flags &= ~wol_magic;
2454 
2455 	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2456 
2457 	e100_exec_cb(nic, NULL, e100_configure);
2458 
2459 	return 0;
2460 }
2461 
e100_get_msglevel(struct net_device * netdev)2462 static u32 e100_get_msglevel(struct net_device *netdev)
2463 {
2464 	struct nic *nic = netdev_priv(netdev);
2465 	return nic->msg_enable;
2466 }
2467 
e100_set_msglevel(struct net_device * netdev,u32 value)2468 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2469 {
2470 	struct nic *nic = netdev_priv(netdev);
2471 	nic->msg_enable = value;
2472 }
2473 
e100_nway_reset(struct net_device * netdev)2474 static int e100_nway_reset(struct net_device *netdev)
2475 {
2476 	struct nic *nic = netdev_priv(netdev);
2477 	return mii_nway_restart(&nic->mii);
2478 }
2479 
e100_get_link(struct net_device * netdev)2480 static u32 e100_get_link(struct net_device *netdev)
2481 {
2482 	struct nic *nic = netdev_priv(netdev);
2483 	return mii_link_ok(&nic->mii);
2484 }
2485 
e100_get_eeprom_len(struct net_device * netdev)2486 static int e100_get_eeprom_len(struct net_device *netdev)
2487 {
2488 	struct nic *nic = netdev_priv(netdev);
2489 	return nic->eeprom_wc << 1;
2490 }
2491 
2492 #define E100_EEPROM_MAGIC	0x1234
e100_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2493 static int e100_get_eeprom(struct net_device *netdev,
2494 	struct ethtool_eeprom *eeprom, u8 *bytes)
2495 {
2496 	struct nic *nic = netdev_priv(netdev);
2497 
2498 	eeprom->magic = E100_EEPROM_MAGIC;
2499 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2500 
2501 	return 0;
2502 }
2503 
e100_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2504 static int e100_set_eeprom(struct net_device *netdev,
2505 	struct ethtool_eeprom *eeprom, u8 *bytes)
2506 {
2507 	struct nic *nic = netdev_priv(netdev);
2508 
2509 	if (eeprom->magic != E100_EEPROM_MAGIC)
2510 		return -EINVAL;
2511 
2512 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2513 
2514 	return e100_eeprom_save(nic, eeprom->offset >> 1,
2515 		(eeprom->len >> 1) + 1);
2516 }
2517 
e100_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)2518 static void e100_get_ringparam(struct net_device *netdev,
2519 	struct ethtool_ringparam *ring)
2520 {
2521 	struct nic *nic = netdev_priv(netdev);
2522 	struct param_range *rfds = &nic->params.rfds;
2523 	struct param_range *cbs = &nic->params.cbs;
2524 
2525 	ring->rx_max_pending = rfds->max;
2526 	ring->tx_max_pending = cbs->max;
2527 	ring->rx_mini_max_pending = 0;
2528 	ring->rx_jumbo_max_pending = 0;
2529 	ring->rx_pending = rfds->count;
2530 	ring->tx_pending = cbs->count;
2531 	ring->rx_mini_pending = 0;
2532 	ring->rx_jumbo_pending = 0;
2533 }
2534 
e100_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)2535 static int e100_set_ringparam(struct net_device *netdev,
2536 	struct ethtool_ringparam *ring)
2537 {
2538 	struct nic *nic = netdev_priv(netdev);
2539 	struct param_range *rfds = &nic->params.rfds;
2540 	struct param_range *cbs = &nic->params.cbs;
2541 
2542 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2543 		return -EINVAL;
2544 
2545 	if (netif_running(netdev))
2546 		e100_down(nic);
2547 	rfds->count = max(ring->rx_pending, rfds->min);
2548 	rfds->count = min(rfds->count, rfds->max);
2549 	cbs->count = max(ring->tx_pending, cbs->min);
2550 	cbs->count = min(cbs->count, cbs->max);
2551 	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2552 		   rfds->count, cbs->count);
2553 	if (netif_running(netdev))
2554 		e100_up(nic);
2555 
2556 	return 0;
2557 }
2558 
2559 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2560 	"Link test     (on/offline)",
2561 	"Eeprom test   (on/offline)",
2562 	"Self test        (offline)",
2563 	"Mac loopback     (offline)",
2564 	"Phy loopback     (offline)",
2565 };
2566 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2567 
e100_diag_test(struct net_device * netdev,struct ethtool_test * test,u64 * data)2568 static void e100_diag_test(struct net_device *netdev,
2569 	struct ethtool_test *test, u64 *data)
2570 {
2571 	struct ethtool_cmd cmd;
2572 	struct nic *nic = netdev_priv(netdev);
2573 	int i, err;
2574 
2575 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2576 	data[0] = !mii_link_ok(&nic->mii);
2577 	data[1] = e100_eeprom_load(nic);
2578 	if (test->flags & ETH_TEST_FL_OFFLINE) {
2579 
2580 		/* save speed, duplex & autoneg settings */
2581 		err = mii_ethtool_gset(&nic->mii, &cmd);
2582 
2583 		if (netif_running(netdev))
2584 			e100_down(nic);
2585 		data[2] = e100_self_test(nic);
2586 		data[3] = e100_loopback_test(nic, lb_mac);
2587 		data[4] = e100_loopback_test(nic, lb_phy);
2588 
2589 		/* restore speed, duplex & autoneg settings */
2590 		err = mii_ethtool_sset(&nic->mii, &cmd);
2591 
2592 		if (netif_running(netdev))
2593 			e100_up(nic);
2594 	}
2595 	for (i = 0; i < E100_TEST_LEN; i++)
2596 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2597 
2598 	msleep_interruptible(4 * 1000);
2599 }
2600 
e100_phys_id(struct net_device * netdev,u32 data)2601 static int e100_phys_id(struct net_device *netdev, u32 data)
2602 {
2603 	struct nic *nic = netdev_priv(netdev);
2604 	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2605 	              MII_LED_CONTROL;
2606 
2607 	if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2608 		data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2609 	mod_timer(&nic->blink_timer, jiffies);
2610 	msleep_interruptible(data * 1000);
2611 	del_timer_sync(&nic->blink_timer);
2612 	mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
2613 
2614 	return 0;
2615 }
2616 
2617 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2618 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2619 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2620 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2621 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2622 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2623 	"tx_heartbeat_errors", "tx_window_errors",
2624 	/* device-specific stats */
2625 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2626 	"tx_flow_control_pause", "rx_flow_control_pause",
2627 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2628 };
2629 #define E100_NET_STATS_LEN	21
2630 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2631 
e100_get_sset_count(struct net_device * netdev,int sset)2632 static int e100_get_sset_count(struct net_device *netdev, int sset)
2633 {
2634 	switch (sset) {
2635 	case ETH_SS_TEST:
2636 		return E100_TEST_LEN;
2637 	case ETH_SS_STATS:
2638 		return E100_STATS_LEN;
2639 	default:
2640 		return -EOPNOTSUPP;
2641 	}
2642 }
2643 
e100_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2644 static void e100_get_ethtool_stats(struct net_device *netdev,
2645 	struct ethtool_stats *stats, u64 *data)
2646 {
2647 	struct nic *nic = netdev_priv(netdev);
2648 	int i;
2649 
2650 	for (i = 0; i < E100_NET_STATS_LEN; i++)
2651 		data[i] = ((unsigned long *)&netdev->stats)[i];
2652 
2653 	data[i++] = nic->tx_deferred;
2654 	data[i++] = nic->tx_single_collisions;
2655 	data[i++] = nic->tx_multiple_collisions;
2656 	data[i++] = nic->tx_fc_pause;
2657 	data[i++] = nic->rx_fc_pause;
2658 	data[i++] = nic->rx_fc_unsupported;
2659 	data[i++] = nic->tx_tco_frames;
2660 	data[i++] = nic->rx_tco_frames;
2661 }
2662 
e100_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2663 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2664 {
2665 	switch (stringset) {
2666 	case ETH_SS_TEST:
2667 		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2668 		break;
2669 	case ETH_SS_STATS:
2670 		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2671 		break;
2672 	}
2673 }
2674 
2675 static const struct ethtool_ops e100_ethtool_ops = {
2676 	.get_settings		= e100_get_settings,
2677 	.set_settings		= e100_set_settings,
2678 	.get_drvinfo		= e100_get_drvinfo,
2679 	.get_regs_len		= e100_get_regs_len,
2680 	.get_regs		= e100_get_regs,
2681 	.get_wol		= e100_get_wol,
2682 	.set_wol		= e100_set_wol,
2683 	.get_msglevel		= e100_get_msglevel,
2684 	.set_msglevel		= e100_set_msglevel,
2685 	.nway_reset		= e100_nway_reset,
2686 	.get_link		= e100_get_link,
2687 	.get_eeprom_len		= e100_get_eeprom_len,
2688 	.get_eeprom		= e100_get_eeprom,
2689 	.set_eeprom		= e100_set_eeprom,
2690 	.get_ringparam		= e100_get_ringparam,
2691 	.set_ringparam		= e100_set_ringparam,
2692 	.self_test		= e100_diag_test,
2693 	.get_strings		= e100_get_strings,
2694 	.phys_id		= e100_phys_id,
2695 	.get_ethtool_stats	= e100_get_ethtool_stats,
2696 	.get_sset_count		= e100_get_sset_count,
2697 };
2698 
e100_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2699 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2700 {
2701 	struct nic *nic = netdev_priv(netdev);
2702 
2703 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2704 }
2705 
e100_alloc(struct nic * nic)2706 static int e100_alloc(struct nic *nic)
2707 {
2708 	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2709 		&nic->dma_addr);
2710 	return nic->mem ? 0 : -ENOMEM;
2711 }
2712 
e100_free(struct nic * nic)2713 static void e100_free(struct nic *nic)
2714 {
2715 	if (nic->mem) {
2716 		pci_free_consistent(nic->pdev, sizeof(struct mem),
2717 			nic->mem, nic->dma_addr);
2718 		nic->mem = NULL;
2719 	}
2720 }
2721 
e100_open(struct net_device * netdev)2722 static int e100_open(struct net_device *netdev)
2723 {
2724 	struct nic *nic = netdev_priv(netdev);
2725 	int err = 0;
2726 
2727 	netif_carrier_off(netdev);
2728 	if ((err = e100_up(nic)))
2729 		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2730 	return err;
2731 }
2732 
e100_close(struct net_device * netdev)2733 static int e100_close(struct net_device *netdev)
2734 {
2735 	e100_down(netdev_priv(netdev));
2736 	return 0;
2737 }
2738 
2739 static const struct net_device_ops e100_netdev_ops = {
2740 	.ndo_open		= e100_open,
2741 	.ndo_stop		= e100_close,
2742 	.ndo_start_xmit		= e100_xmit_frame,
2743 	.ndo_validate_addr	= eth_validate_addr,
2744 	.ndo_set_multicast_list	= e100_set_multicast_list,
2745 	.ndo_set_mac_address	= e100_set_mac_address,
2746 	.ndo_change_mtu		= e100_change_mtu,
2747 	.ndo_do_ioctl		= e100_do_ioctl,
2748 	.ndo_tx_timeout		= e100_tx_timeout,
2749 #ifdef CONFIG_NET_POLL_CONTROLLER
2750 	.ndo_poll_controller	= e100_netpoll,
2751 #endif
2752 };
2753 
e100_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2754 static int __devinit e100_probe(struct pci_dev *pdev,
2755 	const struct pci_device_id *ent)
2756 {
2757 	struct net_device *netdev;
2758 	struct nic *nic;
2759 	int err;
2760 
2761 	if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2762 		if (((1 << debug) - 1) & NETIF_MSG_PROBE)
2763 			pr_err("Etherdev alloc failed, aborting\n");
2764 		return -ENOMEM;
2765 	}
2766 
2767 	netdev->netdev_ops = &e100_netdev_ops;
2768 	SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2769 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2770 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2771 
2772 	nic = netdev_priv(netdev);
2773 	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2774 	nic->netdev = netdev;
2775 	nic->pdev = pdev;
2776 	nic->msg_enable = (1 << debug) - 1;
2777 	nic->mdio_ctrl = mdio_ctrl_hw;
2778 	pci_set_drvdata(pdev, netdev);
2779 
2780 	if ((err = pci_enable_device(pdev))) {
2781 		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2782 		goto err_out_free_dev;
2783 	}
2784 
2785 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2786 		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2787 		err = -ENODEV;
2788 		goto err_out_disable_pdev;
2789 	}
2790 
2791 	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2792 		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2793 		goto err_out_disable_pdev;
2794 	}
2795 
2796 	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2797 		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2798 		goto err_out_free_res;
2799 	}
2800 
2801 	SET_NETDEV_DEV(netdev, &pdev->dev);
2802 
2803 	if (use_io)
2804 		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2805 
2806 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2807 	if (!nic->csr) {
2808 		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2809 		err = -ENOMEM;
2810 		goto err_out_free_res;
2811 	}
2812 
2813 	if (ent->driver_data)
2814 		nic->flags |= ich;
2815 	else
2816 		nic->flags &= ~ich;
2817 
2818 	e100_get_defaults(nic);
2819 
2820 	/* locks must be initialized before calling hw_reset */
2821 	spin_lock_init(&nic->cb_lock);
2822 	spin_lock_init(&nic->cmd_lock);
2823 	spin_lock_init(&nic->mdio_lock);
2824 
2825 	/* Reset the device before pci_set_master() in case device is in some
2826 	 * funky state and has an interrupt pending - hint: we don't have the
2827 	 * interrupt handler registered yet. */
2828 	e100_hw_reset(nic);
2829 
2830 	pci_set_master(pdev);
2831 
2832 	init_timer(&nic->watchdog);
2833 	nic->watchdog.function = e100_watchdog;
2834 	nic->watchdog.data = (unsigned long)nic;
2835 	init_timer(&nic->blink_timer);
2836 	nic->blink_timer.function = e100_blink_led;
2837 	nic->blink_timer.data = (unsigned long)nic;
2838 
2839 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2840 
2841 	if ((err = e100_alloc(nic))) {
2842 		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2843 		goto err_out_iounmap;
2844 	}
2845 
2846 	if ((err = e100_eeprom_load(nic)))
2847 		goto err_out_free;
2848 
2849 	e100_phy_init(nic);
2850 
2851 	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2852 	memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2853 	if (!is_valid_ether_addr(netdev->perm_addr)) {
2854 		if (!eeprom_bad_csum_allow) {
2855 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2856 			err = -EAGAIN;
2857 			goto err_out_free;
2858 		} else {
2859 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2860 		}
2861 	}
2862 
2863 	/* Wol magic packet can be enabled from eeprom */
2864 	if ((nic->mac >= mac_82558_D101_A4) &&
2865 	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2866 		nic->flags |= wol_magic;
2867 		device_set_wakeup_enable(&pdev->dev, true);
2868 	}
2869 
2870 	/* ack any pending wake events, disable PME */
2871 	pci_pme_active(pdev, false);
2872 
2873 	strcpy(netdev->name, "eth%d");
2874 	if ((err = register_netdev(netdev))) {
2875 		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2876 		goto err_out_free;
2877 	}
2878 	nic->cbs_pool = pci_pool_create(netdev->name,
2879 			   nic->pdev,
2880 			   nic->params.cbs.max * sizeof(struct cb),
2881 			   sizeof(u32),
2882 			   0);
2883 	netif_info(nic, probe, nic->netdev,
2884 		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2885 		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2886 		   pdev->irq, netdev->dev_addr);
2887 
2888 	return 0;
2889 
2890 err_out_free:
2891 	e100_free(nic);
2892 err_out_iounmap:
2893 	pci_iounmap(pdev, nic->csr);
2894 err_out_free_res:
2895 	pci_release_regions(pdev);
2896 err_out_disable_pdev:
2897 	pci_disable_device(pdev);
2898 err_out_free_dev:
2899 	pci_set_drvdata(pdev, NULL);
2900 	free_netdev(netdev);
2901 	return err;
2902 }
2903 
e100_remove(struct pci_dev * pdev)2904 static void __devexit e100_remove(struct pci_dev *pdev)
2905 {
2906 	struct net_device *netdev = pci_get_drvdata(pdev);
2907 
2908 	if (netdev) {
2909 		struct nic *nic = netdev_priv(netdev);
2910 		unregister_netdev(netdev);
2911 		e100_free(nic);
2912 		pci_iounmap(pdev, nic->csr);
2913 		pci_pool_destroy(nic->cbs_pool);
2914 		free_netdev(netdev);
2915 		pci_release_regions(pdev);
2916 		pci_disable_device(pdev);
2917 		pci_set_drvdata(pdev, NULL);
2918 	}
2919 }
2920 
2921 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2922 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2923 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
__e100_shutdown(struct pci_dev * pdev,bool * enable_wake)2924 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2925 {
2926 	struct net_device *netdev = pci_get_drvdata(pdev);
2927 	struct nic *nic = netdev_priv(netdev);
2928 
2929 	if (netif_running(netdev))
2930 		e100_down(nic);
2931 	netif_device_detach(netdev);
2932 
2933 	pci_save_state(pdev);
2934 
2935 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
2936 		/* enable reverse auto-negotiation */
2937 		if (nic->phy == phy_82552_v) {
2938 			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2939 			                           E100_82552_SMARTSPEED);
2940 
2941 			mdio_write(netdev, nic->mii.phy_id,
2942 			           E100_82552_SMARTSPEED, smartspeed |
2943 			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
2944 		}
2945 		*enable_wake = true;
2946 	} else {
2947 		*enable_wake = false;
2948 	}
2949 
2950 	pci_disable_device(pdev);
2951 }
2952 
__e100_power_off(struct pci_dev * pdev,bool wake)2953 static int __e100_power_off(struct pci_dev *pdev, bool wake)
2954 {
2955 	if (wake)
2956 		return pci_prepare_to_sleep(pdev);
2957 
2958 	pci_wake_from_d3(pdev, false);
2959 	pci_set_power_state(pdev, PCI_D3hot);
2960 
2961 	return 0;
2962 }
2963 
2964 #ifdef CONFIG_PM
e100_suspend(struct pci_dev * pdev,pm_message_t state)2965 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2966 {
2967 	bool wake;
2968 	__e100_shutdown(pdev, &wake);
2969 	return __e100_power_off(pdev, wake);
2970 }
2971 
e100_resume(struct pci_dev * pdev)2972 static int e100_resume(struct pci_dev *pdev)
2973 {
2974 	struct net_device *netdev = pci_get_drvdata(pdev);
2975 	struct nic *nic = netdev_priv(netdev);
2976 
2977 	pci_set_power_state(pdev, PCI_D0);
2978 	pci_restore_state(pdev);
2979 	/* ack any pending wake events, disable PME */
2980 	pci_enable_wake(pdev, 0, 0);
2981 
2982 	/* disable reverse auto-negotiation */
2983 	if (nic->phy == phy_82552_v) {
2984 		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
2985 		                           E100_82552_SMARTSPEED);
2986 
2987 		mdio_write(netdev, nic->mii.phy_id,
2988 		           E100_82552_SMARTSPEED,
2989 		           smartspeed & ~(E100_82552_REV_ANEG));
2990 	}
2991 
2992 	netif_device_attach(netdev);
2993 	if (netif_running(netdev))
2994 		e100_up(nic);
2995 
2996 	return 0;
2997 }
2998 #endif /* CONFIG_PM */
2999 
e100_shutdown(struct pci_dev * pdev)3000 static void e100_shutdown(struct pci_dev *pdev)
3001 {
3002 	bool wake;
3003 	__e100_shutdown(pdev, &wake);
3004 	if (system_state == SYSTEM_POWER_OFF)
3005 		__e100_power_off(pdev, wake);
3006 }
3007 
3008 /* ------------------ PCI Error Recovery infrastructure  -------------- */
3009 /**
3010  * e100_io_error_detected - called when PCI error is detected.
3011  * @pdev: Pointer to PCI device
3012  * @state: The current pci connection state
3013  */
e100_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3014 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3015 {
3016 	struct net_device *netdev = pci_get_drvdata(pdev);
3017 	struct nic *nic = netdev_priv(netdev);
3018 
3019 	netif_device_detach(netdev);
3020 
3021 	if (state == pci_channel_io_perm_failure)
3022 		return PCI_ERS_RESULT_DISCONNECT;
3023 
3024 	if (netif_running(netdev))
3025 		e100_down(nic);
3026 	pci_disable_device(pdev);
3027 
3028 	/* Request a slot reset. */
3029 	return PCI_ERS_RESULT_NEED_RESET;
3030 }
3031 
3032 /**
3033  * e100_io_slot_reset - called after the pci bus has been reset.
3034  * @pdev: Pointer to PCI device
3035  *
3036  * Restart the card from scratch.
3037  */
e100_io_slot_reset(struct pci_dev * pdev)3038 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3039 {
3040 	struct net_device *netdev = pci_get_drvdata(pdev);
3041 	struct nic *nic = netdev_priv(netdev);
3042 
3043 	if (pci_enable_device(pdev)) {
3044 		pr_err("Cannot re-enable PCI device after reset\n");
3045 		return PCI_ERS_RESULT_DISCONNECT;
3046 	}
3047 	pci_set_master(pdev);
3048 
3049 	/* Only one device per card can do a reset */
3050 	if (0 != PCI_FUNC(pdev->devfn))
3051 		return PCI_ERS_RESULT_RECOVERED;
3052 	e100_hw_reset(nic);
3053 	e100_phy_init(nic);
3054 
3055 	return PCI_ERS_RESULT_RECOVERED;
3056 }
3057 
3058 /**
3059  * e100_io_resume - resume normal operations
3060  * @pdev: Pointer to PCI device
3061  *
3062  * Resume normal operations after an error recovery
3063  * sequence has been completed.
3064  */
e100_io_resume(struct pci_dev * pdev)3065 static void e100_io_resume(struct pci_dev *pdev)
3066 {
3067 	struct net_device *netdev = pci_get_drvdata(pdev);
3068 	struct nic *nic = netdev_priv(netdev);
3069 
3070 	/* ack any pending wake events, disable PME */
3071 	pci_enable_wake(pdev, 0, 0);
3072 
3073 	netif_device_attach(netdev);
3074 	if (netif_running(netdev)) {
3075 		e100_open(netdev);
3076 		mod_timer(&nic->watchdog, jiffies);
3077 	}
3078 }
3079 
3080 static struct pci_error_handlers e100_err_handler = {
3081 	.error_detected = e100_io_error_detected,
3082 	.slot_reset = e100_io_slot_reset,
3083 	.resume = e100_io_resume,
3084 };
3085 
3086 static struct pci_driver e100_driver = {
3087 	.name =         DRV_NAME,
3088 	.id_table =     e100_id_table,
3089 	.probe =        e100_probe,
3090 	.remove =       __devexit_p(e100_remove),
3091 #ifdef CONFIG_PM
3092 	/* Power Management hooks */
3093 	.suspend =      e100_suspend,
3094 	.resume =       e100_resume,
3095 #endif
3096 	.shutdown =     e100_shutdown,
3097 	.err_handler = &e100_err_handler,
3098 };
3099 
e100_init_module(void)3100 static int __init e100_init_module(void)
3101 {
3102 	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3103 		pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3104 		pr_info("%s\n", DRV_COPYRIGHT);
3105 	}
3106 	return pci_register_driver(&e100_driver);
3107 }
3108 
e100_cleanup_module(void)3109 static void __exit e100_cleanup_module(void)
3110 {
3111 	pci_unregister_driver(&e100_driver);
3112 }
3113 
3114 module_init(e100_init_module);
3115 module_exit(e100_cleanup_module);
3116