1 /*
2  * Toshiba TMIO NAND flash controller driver
3  *
4  * Slightly murky pre-git history of the driver:
5  *
6  * Copyright (c) Ian Molton 2004, 2005, 2008
7  *    Original work, independent of sharps code. Included hardware ECC support.
8  *    Hard ECC did not work for writes in the early revisions.
9  * Copyright (c) Dirk Opfer 2005.
10  *    Modifications developed from sharps code but
11  *    NOT containing any, ported onto Ians base.
12  * Copyright (c) Chris Humbert 2005
13  * Copyright (c) Dmitry Baryshkov 2008
14  *    Minor fixes
15  *
16  * Parts copyright Sebastian Carlier
17  *
18  * This file is licensed under
19  * the terms of the GNU General Public License version 2. This program
20  * is licensed "as is" without any warranty of any kind, whether express
21  * or implied.
22  *
23  */
24 
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/tmio.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/slab.h>
41 
42 /*--------------------------------------------------------------------------*/
43 
44 /*
45  * NAND Flash Host Controller Configuration Register
46  */
47 #define CCR_COMMAND	0x04	/* w Command				*/
48 #define CCR_BASE	0x10	/* l NAND Flash Control Reg Base Addr	*/
49 #define CCR_INTP	0x3d	/* b Interrupt Pin			*/
50 #define CCR_INTE	0x48	/* b Interrupt Enable			*/
51 #define CCR_EC		0x4a	/* b Event Control			*/
52 #define CCR_ICC		0x4c	/* b Internal Clock Control		*/
53 #define CCR_ECCC	0x5b	/* b ECC Control			*/
54 #define CCR_NFTC	0x60	/* b NAND Flash Transaction Control	*/
55 #define CCR_NFM		0x61	/* b NAND Flash Monitor			*/
56 #define CCR_NFPSC	0x62	/* b NAND Flash Power Supply Control	*/
57 #define CCR_NFDC	0x63	/* b NAND Flash Detect Control		*/
58 
59 /*
60  * NAND Flash Control Register
61  */
62 #define FCR_DATA	0x00	/* bwl Data Register			*/
63 #define FCR_MODE	0x04	/* b Mode Register			*/
64 #define FCR_STATUS	0x05	/* b Status Register			*/
65 #define FCR_ISR		0x06	/* b Interrupt Status Register		*/
66 #define FCR_IMR		0x07	/* b Interrupt Mask Register		*/
67 
68 /* FCR_MODE Register Command List */
69 #define FCR_MODE_DATA	0x94	/* Data Data_Mode */
70 #define FCR_MODE_COMMAND 0x95	/* Data Command_Mode */
71 #define FCR_MODE_ADDRESS 0x96	/* Data Address_Mode */
72 
73 #define FCR_MODE_HWECC_CALC	0xB4	/* HW-ECC Data */
74 #define FCR_MODE_HWECC_RESULT	0xD4	/* HW-ECC Calc result Read_Mode */
75 #define FCR_MODE_HWECC_RESET	0xF4	/* HW-ECC Reset */
76 
77 #define FCR_MODE_POWER_ON	0x0C	/* Power Supply ON  to SSFDC card */
78 #define FCR_MODE_POWER_OFF	0x08	/* Power Supply OFF to SSFDC card */
79 
80 #define FCR_MODE_LED_OFF	0x00	/* LED OFF */
81 #define FCR_MODE_LED_ON		0x04	/* LED ON */
82 
83 #define FCR_MODE_EJECT_ON	0x68	/* Ejection events active  */
84 #define FCR_MODE_EJECT_OFF	0x08	/* Ejection events ignored */
85 
86 #define FCR_MODE_LOCK		0x6C	/* Lock_Mode. Eject Switch Invalid */
87 #define FCR_MODE_UNLOCK		0x0C	/* UnLock_Mode. Eject Switch is valid */
88 
89 #define FCR_MODE_CONTROLLER_ID	0x40	/* Controller ID Read */
90 #define FCR_MODE_STANDBY	0x00	/* SSFDC card Changes Standby State */
91 
92 #define FCR_MODE_WE		0x80
93 #define FCR_MODE_ECC1		0x40
94 #define FCR_MODE_ECC0		0x20
95 #define FCR_MODE_CE		0x10
96 #define FCR_MODE_PCNT1		0x08
97 #define FCR_MODE_PCNT0		0x04
98 #define FCR_MODE_ALE		0x02
99 #define FCR_MODE_CLE		0x01
100 
101 #define FCR_STATUS_BUSY		0x80
102 
103 /*--------------------------------------------------------------------------*/
104 
105 struct tmio_nand {
106 	struct mtd_info mtd;
107 	struct nand_chip chip;
108 
109 	struct platform_device *dev;
110 
111 	void __iomem *ccr;
112 	void __iomem *fcr;
113 	unsigned long fcr_base;
114 
115 	unsigned int irq;
116 
117 	/* for tmio_nand_read_byte */
118 	u8			read;
119 	unsigned read_good:1;
120 };
121 
122 #define mtd_to_tmio(m)			container_of(m, struct tmio_nand, mtd)
123 
124 #ifdef CONFIG_MTD_CMDLINE_PARTS
125 static const char *part_probes[] = { "cmdlinepart", NULL };
126 #endif
127 
128 /*--------------------------------------------------------------------------*/
129 
tmio_nand_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)130 static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd,
131 				   unsigned int ctrl)
132 {
133 	struct tmio_nand *tmio = mtd_to_tmio(mtd);
134 	struct nand_chip *chip = mtd->priv;
135 
136 	if (ctrl & NAND_CTRL_CHANGE) {
137 		u8 mode;
138 
139 		if (ctrl & NAND_NCE) {
140 			mode = FCR_MODE_DATA;
141 
142 			if (ctrl & NAND_CLE)
143 				mode |=  FCR_MODE_CLE;
144 			else
145 				mode &= ~FCR_MODE_CLE;
146 
147 			if (ctrl & NAND_ALE)
148 				mode |=  FCR_MODE_ALE;
149 			else
150 				mode &= ~FCR_MODE_ALE;
151 		} else {
152 			mode = FCR_MODE_STANDBY;
153 		}
154 
155 		tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
156 		tmio->read_good = 0;
157 	}
158 
159 	if (cmd != NAND_CMD_NONE)
160 		tmio_iowrite8(cmd, chip->IO_ADDR_W);
161 }
162 
tmio_nand_dev_ready(struct mtd_info * mtd)163 static int tmio_nand_dev_ready(struct mtd_info *mtd)
164 {
165 	struct tmio_nand *tmio = mtd_to_tmio(mtd);
166 
167 	return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
168 }
169 
tmio_irq(int irq,void * __tmio)170 static irqreturn_t tmio_irq(int irq, void *__tmio)
171 {
172 	struct tmio_nand *tmio = __tmio;
173 	struct nand_chip *nand_chip = &tmio->chip;
174 
175 	/* disable RDYREQ interrupt */
176 	tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
177 
178 	if (unlikely(!waitqueue_active(&nand_chip->controller->wq)))
179 		dev_warn(&tmio->dev->dev, "spurious interrupt\n");
180 
181 	wake_up(&nand_chip->controller->wq);
182 	return IRQ_HANDLED;
183 }
184 
185 /*
186   *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
187   *This interrupt is normally disabled, but for long operations like
188   *erase and write, we enable it to wake us up.  The irq handler
189   *disables the interrupt.
190  */
191 static int
tmio_nand_wait(struct mtd_info * mtd,struct nand_chip * nand_chip)192 tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip)
193 {
194 	struct tmio_nand *tmio = mtd_to_tmio(mtd);
195 	long timeout;
196 
197 	/* enable RDYREQ interrupt */
198 	tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
199 	tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
200 
201 	timeout = wait_event_timeout(nand_chip->controller->wq,
202 		tmio_nand_dev_ready(mtd),
203 		msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20));
204 
205 	if (unlikely(!tmio_nand_dev_ready(mtd))) {
206 		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
207 		dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n",
208 			nand_chip->state == FL_ERASING ? "erase" : "program",
209 			nand_chip->state == FL_ERASING ? 400 : 20);
210 
211 	} else if (unlikely(!timeout)) {
212 		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
213 		dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
214 	}
215 
216 	nand_chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
217 	return nand_chip->read_byte(mtd);
218 }
219 
220 /*
221   *The TMIO controller combines two 8-bit data bytes into one 16-bit
222   *word. This function separates them so nand_base.c works as expected,
223   *especially its NAND_CMD_READID routines.
224  *
225   *To prevent stale data from being read, tmio_nand_hwcontrol() clears
226   *tmio->read_good.
227  */
tmio_nand_read_byte(struct mtd_info * mtd)228 static u_char tmio_nand_read_byte(struct mtd_info *mtd)
229 {
230 	struct tmio_nand *tmio = mtd_to_tmio(mtd);
231 	unsigned int data;
232 
233 	if (tmio->read_good--)
234 		return tmio->read;
235 
236 	data = tmio_ioread16(tmio->fcr + FCR_DATA);
237 	tmio->read = data >> 8;
238 	return data;
239 }
240 
241 /*
242   *The TMIO controller converts an 8-bit NAND interface to a 16-bit
243   *bus interface, so all data reads and writes must be 16-bit wide.
244   *Thus, we implement 16-bit versions of the read, write, and verify
245   *buffer functions.
246  */
247 static void
tmio_nand_write_buf(struct mtd_info * mtd,const u_char * buf,int len)248 tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
249 {
250 	struct tmio_nand *tmio = mtd_to_tmio(mtd);
251 
252 	tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
253 }
254 
tmio_nand_read_buf(struct mtd_info * mtd,u_char * buf,int len)255 static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
256 {
257 	struct tmio_nand *tmio = mtd_to_tmio(mtd);
258 
259 	tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
260 }
261 
262 static int
tmio_nand_verify_buf(struct mtd_info * mtd,const u_char * buf,int len)263 tmio_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
264 {
265 	struct tmio_nand *tmio = mtd_to_tmio(mtd);
266 	u16				*p = (u16 *) buf;
267 
268 	for (len >>= 1; len; len--)
269 		if (*(p++) != tmio_ioread16(tmio->fcr + FCR_DATA))
270 			return -EFAULT;
271 	return 0;
272 }
273 
tmio_nand_enable_hwecc(struct mtd_info * mtd,int mode)274 static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode)
275 {
276 	struct tmio_nand *tmio = mtd_to_tmio(mtd);
277 
278 	tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
279 	tmio_ioread8(tmio->fcr + FCR_DATA);	/* dummy read */
280 	tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
281 }
282 
tmio_nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)283 static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
284 							u_char *ecc_code)
285 {
286 	struct tmio_nand *tmio = mtd_to_tmio(mtd);
287 	unsigned int ecc;
288 
289 	tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
290 
291 	ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
292 	ecc_code[1] = ecc;	/* 000-255 LP7-0 */
293 	ecc_code[0] = ecc >> 8;	/* 000-255 LP15-8 */
294 	ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
295 	ecc_code[2] = ecc;	/* 000-255 CP5-0,11b */
296 	ecc_code[4] = ecc >> 8;	/* 256-511 LP7-0 */
297 	ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
298 	ecc_code[3] = ecc;	/* 256-511 LP15-8 */
299 	ecc_code[5] = ecc >> 8;	/* 256-511 CP5-0,11b */
300 
301 	tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE);
302 	return 0;
303 }
304 
tmio_nand_correct_data(struct mtd_info * mtd,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)305 static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
306 		unsigned char *read_ecc, unsigned char *calc_ecc)
307 {
308 	int r0, r1;
309 
310 	/* assume ecc.size = 512 and ecc.bytes = 6 */
311 	r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256);
312 	if (r0 < 0)
313 		return r0;
314 	r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256);
315 	if (r1 < 0)
316 		return r1;
317 	return r0 + r1;
318 }
319 
tmio_hw_init(struct platform_device * dev,struct tmio_nand * tmio)320 static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
321 {
322 	const struct mfd_cell *cell = mfd_get_cell(dev);
323 	int ret;
324 
325 	if (cell->enable) {
326 		ret = cell->enable(dev);
327 		if (ret)
328 			return ret;
329 	}
330 
331 	/* (4Ch) CLKRUN Enable    1st spcrunc */
332 	tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
333 
334 	/* (10h)BaseAddress    0x1000 spba.spba2 */
335 	tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
336 	tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
337 
338 	/* (04h)Command Register I/O spcmd */
339 	tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
340 
341 	/* (62h) Power Supply Control ssmpwc */
342 	/* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
343 	tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
344 
345 	/* (63h) Detect Control ssmdtc */
346 	tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
347 
348 	/* Interrupt status register clear sintst */
349 	tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
350 
351 	/* After power supply, Media are reset smode */
352 	tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE);
353 	tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE);
354 	tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA);
355 
356 	/* Standby Mode smode */
357 	tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE);
358 
359 	mdelay(5);
360 
361 	return 0;
362 }
363 
tmio_hw_stop(struct platform_device * dev,struct tmio_nand * tmio)364 static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
365 {
366 	const struct mfd_cell *cell = mfd_get_cell(dev);
367 
368 	tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE);
369 	if (cell->disable)
370 		cell->disable(dev);
371 }
372 
tmio_probe(struct platform_device * dev)373 static int tmio_probe(struct platform_device *dev)
374 {
375 	struct tmio_nand_data *data = mfd_get_data(dev);
376 	struct resource *fcr = platform_get_resource(dev,
377 			IORESOURCE_MEM, 0);
378 	struct resource *ccr = platform_get_resource(dev,
379 			IORESOURCE_MEM, 1);
380 	int irq = platform_get_irq(dev, 0);
381 	struct tmio_nand *tmio;
382 	struct mtd_info *mtd;
383 	struct nand_chip *nand_chip;
384 #ifdef CONFIG_MTD_PARTITIONS
385 	struct mtd_partition *parts;
386 	int nbparts = 0;
387 #endif
388 	int retval;
389 
390 	if (data == NULL)
391 		dev_warn(&dev->dev, "NULL platform data!\n");
392 
393 	tmio = kzalloc(sizeof *tmio, GFP_KERNEL);
394 	if (!tmio) {
395 		retval = -ENOMEM;
396 		goto err_kzalloc;
397 	}
398 
399 	tmio->dev = dev;
400 
401 	platform_set_drvdata(dev, tmio);
402 	mtd = &tmio->mtd;
403 	nand_chip = &tmio->chip;
404 	mtd->priv = nand_chip;
405 	mtd->name = "tmio-nand";
406 
407 	tmio->ccr = ioremap(ccr->start, resource_size(ccr));
408 	if (!tmio->ccr) {
409 		retval = -EIO;
410 		goto err_iomap_ccr;
411 	}
412 
413 	tmio->fcr_base = fcr->start & 0xfffff;
414 	tmio->fcr = ioremap(fcr->start, resource_size(fcr));
415 	if (!tmio->fcr) {
416 		retval = -EIO;
417 		goto err_iomap_fcr;
418 	}
419 
420 	retval = tmio_hw_init(dev, tmio);
421 	if (retval)
422 		goto err_hwinit;
423 
424 	/* Set address of NAND IO lines */
425 	nand_chip->IO_ADDR_R = tmio->fcr;
426 	nand_chip->IO_ADDR_W = tmio->fcr;
427 
428 	/* Set address of hardware control function */
429 	nand_chip->cmd_ctrl = tmio_nand_hwcontrol;
430 	nand_chip->dev_ready = tmio_nand_dev_ready;
431 	nand_chip->read_byte = tmio_nand_read_byte;
432 	nand_chip->write_buf = tmio_nand_write_buf;
433 	nand_chip->read_buf = tmio_nand_read_buf;
434 	nand_chip->verify_buf = tmio_nand_verify_buf;
435 
436 	/* set eccmode using hardware ECC */
437 	nand_chip->ecc.mode = NAND_ECC_HW;
438 	nand_chip->ecc.size = 512;
439 	nand_chip->ecc.bytes = 6;
440 	nand_chip->ecc.hwctl = tmio_nand_enable_hwecc;
441 	nand_chip->ecc.calculate = tmio_nand_calculate_ecc;
442 	nand_chip->ecc.correct = tmio_nand_correct_data;
443 
444 	if (data)
445 		nand_chip->badblock_pattern = data->badblock_pattern;
446 
447 	/* 15 us command delay time */
448 	nand_chip->chip_delay = 15;
449 
450 	retval = request_irq(irq, &tmio_irq,
451 				IRQF_DISABLED, dev_name(&dev->dev), tmio);
452 	if (retval) {
453 		dev_err(&dev->dev, "request_irq error %d\n", retval);
454 		goto err_irq;
455 	}
456 
457 	tmio->irq = irq;
458 	nand_chip->waitfunc = tmio_nand_wait;
459 
460 	/* Scan to find existence of the device */
461 	if (nand_scan(mtd, 1)) {
462 		retval = -ENODEV;
463 		goto err_scan;
464 	}
465 	/* Register the partitions */
466 #ifdef CONFIG_MTD_PARTITIONS
467 #ifdef CONFIG_MTD_CMDLINE_PARTS
468 	nbparts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
469 #endif
470 	if (nbparts <= 0 && data) {
471 		parts = data->partition;
472 		nbparts = data->num_partitions;
473 	}
474 
475 	if (nbparts)
476 		retval = add_mtd_partitions(mtd, parts, nbparts);
477 	else
478 #endif
479 	retval = add_mtd_device(mtd);
480 
481 	if (!retval)
482 		return retval;
483 
484 	nand_release(mtd);
485 
486 err_scan:
487 	if (tmio->irq)
488 		free_irq(tmio->irq, tmio);
489 err_irq:
490 	tmio_hw_stop(dev, tmio);
491 err_hwinit:
492 	iounmap(tmio->fcr);
493 err_iomap_fcr:
494 	iounmap(tmio->ccr);
495 err_iomap_ccr:
496 	kfree(tmio);
497 err_kzalloc:
498 	return retval;
499 }
500 
tmio_remove(struct platform_device * dev)501 static int tmio_remove(struct platform_device *dev)
502 {
503 	struct tmio_nand *tmio = platform_get_drvdata(dev);
504 
505 	nand_release(&tmio->mtd);
506 	if (tmio->irq)
507 		free_irq(tmio->irq, tmio);
508 	tmio_hw_stop(dev, tmio);
509 	iounmap(tmio->fcr);
510 	iounmap(tmio->ccr);
511 	kfree(tmio);
512 	return 0;
513 }
514 
515 #ifdef CONFIG_PM
tmio_suspend(struct platform_device * dev,pm_message_t state)516 static int tmio_suspend(struct platform_device *dev, pm_message_t state)
517 {
518 	const struct mfd_cell *cell = mfd_get_cell(dev);
519 
520 	if (cell->suspend)
521 		cell->suspend(dev);
522 
523 	tmio_hw_stop(dev, platform_get_drvdata(dev));
524 	return 0;
525 }
526 
tmio_resume(struct platform_device * dev)527 static int tmio_resume(struct platform_device *dev)
528 {
529 	const struct mfd_cell *cell = mfd_get_cell(dev);
530 
531 	/* FIXME - is this required or merely another attack of the broken
532 	 * SHARP platform? Looks suspicious.
533 	 */
534 	tmio_hw_init(dev, platform_get_drvdata(dev));
535 
536 	if (cell->resume)
537 		cell->resume(dev);
538 
539 	return 0;
540 }
541 #else
542 #define tmio_suspend NULL
543 #define tmio_resume NULL
544 #endif
545 
546 static struct platform_driver tmio_driver = {
547 	.driver.name	= "tmio-nand",
548 	.driver.owner	= THIS_MODULE,
549 	.probe		= tmio_probe,
550 	.remove		= tmio_remove,
551 	.suspend	= tmio_suspend,
552 	.resume		= tmio_resume,
553 };
554 
tmio_init(void)555 static int __init tmio_init(void)
556 {
557 	return platform_driver_register(&tmio_driver);
558 }
559 
tmio_exit(void)560 static void __exit tmio_exit(void)
561 {
562 	platform_driver_unregister(&tmio_driver);
563 }
564 
565 module_init(tmio_init);
566 module_exit(tmio_exit);
567 
568 MODULE_LICENSE("GPL v2");
569 MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
570 MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
571 MODULE_ALIAS("platform:tmio-nand");
572